

APPROVED BY AICTE NEW DELHI, AFFILIATED TO VTU BELGAUM

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MICROPROCESSOR AND MICROCONTROLLER

LABORATORY

 LAB MANUAL - 15CSL48

As per Choice Based Credit System (CBCS) scheme

Effective from the academic year 2016 -2017

Prepared by: Reviewed by: Approved by:

Smruthi Nair N.S.Saradha Devi Dr. A.A. Powly Thomas

Assistant Professor Head of the Department Principal

Dept. of CSE Dept. of CSE GCEM

GCEM GCEM

181/1, 182/1, Hoodi Village, Sonnenahalli, K.R. Puram,, Bengaluru,

Karnataka 560048

Computer Lab DO’s and DON’TS

Do’s

1. Know the location of the fire extinguisher and the first aid box and how to use them in case of

an emergency.

2. Read and understand how to carry out an activity thoroughly before coming to the laboratory.

3. Report fires or accidents to your lecturer/laboratory technician immediately.

4. Report any broken plugs or exposed electrical wires to your lecturer/laboratory technician

immediately.

Don’ts

1. Do not eat or drink in the laboratory.

2. Avoid stepping on electrical wires or any other computer cables.

3. Do not open the system unit casing or monitor casing particularly when the power is turned on.

Some internal components hold electric voltages of up to 230 volts, which can be fatal.

4. Do not insert metal objects such as clips, pins and needles into the computer casings. They may

cause fire.

5. Do not remove anything from the computer laboratory without permission.

6. Do not touch, connect or disconnect any plug or cable without your lecturer/laboratory

technician’s permission.

7. Do not misbehave in the computer laboratory.

MICROPROCESSOR AND MICROCONTROLLER LABORATORY
 [As per Choice Based Credit System (CBCS) scheme] (Effective

from the academic year 2016 -2017)

SEMESTER – IV

Subject Code 15CSL48 IA Marks 20

Number of Lecture Hours/Week 01 I + 02 P Exam Marks 80

Total Number of Lecture Hours 40 Exam Hours 03

CREDITS – 02

Course objectives: This course will enable students to

 To provide practical exposure to the students on microprocessors, design and coding

knowledge on 80x86 family/ARM. To give the knowledge and practical exposure on

connectivity and execute of interfacing devices with 8086/ARM kit like LED displays,

Keyboards, DAC/ADC, and various other devices.

Description

Demonstration and Explanation hardware components and Faculty in-charge should explain 8086

architecture, pin diagram in one slot. The second slot, the Faculty in-charge should explain instruction

set types/category etc. Students have to prepare a write-up on the same and include it in the Lab record

and to be evaluated.

Laboratory Session-1: Write-up on Microprocessors, 8086 Functional block diagram, Pin diagram and

description. The same information is also taught in theory class; this helps the students to understand

better.

Laboratory Session-2: Write-up on Instruction group, Timing diagrams, etc. The same information is

also taught in theory class; this helps the students to understand better.

Note: These TWO Laboratory sessions are used to fill the gap between theory classes and practical

sessions. Both sessions are evaluated as lab experiments for 20 marks.

Experiments

 Develop and execute the following programs using 8086 Assembly Language. Any suitable

assembler like MASM/TASM/8086 kit or any equivalent software may be used.

 Program should have suitable comments.

 The board layout and the circuit diagram of the interface are to be provided to the student

during the examination.

 Software Required: Open source ARM Development platform, KEIL IDE and Proteus for

simulation

SOFTWARE PROGRAMS: PART A

1. Design and develop an assembly language program to search a key element “X” in a list of ‘n’

16-bit numbers. Adopt Binary search algorithm in your program for searching.

2. Design and develop an assembly program to sort a given set of ‘n’ 16-bit numbers in

ascending order. Adopt Bubble Sort algorithm to sort given elements.

3. Develop an assembly language program to reverse a given string and verify whether it is a

palindrome or not. Display the appropriate message.

4. Develop an assembly language program to compute nCr using recursive procedure. Assume

that ‘n’ and ‘r’ are non-negative integers.

5. Design and develop an assembly language program to read the current time and Date from the

system and display it in the standard format on the screen.

6. To write and simulate ARM assembly language programs for data transfer, arithmetic and

logical operations (Demonstrate with the help of a suitable program).

7. To write and simulate C Programs for ARM microprocessor using KEIL (Demonstrate with

the help of a suitable program)

Note : To use KEIL one may refer the book: Insider’s Guide to the ARM7 based

microcontrollers, Hitex Ltd.,1
st

edition, 2005

HARDWARE PROGRAMS: PART B

8. a. Design and develop an assembly program to demonstrate BCD Up-Down Counter (00-99)

on the Logic Controller Interface.

b. Design and develop an assembly program to read the status of two 8-bit inputs (X & Y) from the

Logic Controller Interface and display X*Y.

9. Design and develop an assembly program to display messages “FIRE” and “HELP”

alternately with flickering effects on a 7-segment display interface for a suitable period of

time. Ensure a flashing rate that makes it easy to read both the messages (Examiner does not

specify these delay values nor is it necessary for the student to compute these values).

10. Design and develop an assembly program to drive a Stepper Motor interface and rotate the

motor in specified direction (clockwise or counter-clockwise) by N steps (Direction and N

are specified by the examiner). Introduce suitable delay between successive steps. (Any

arbitrary value for the delay may be assumed by the student).

11. Design and develop an assembly language program to

a. Generate the Sine Wave using DAC interface (The output of the DAC is to be

displayed on the CRO).

b. Generate a Half Rectified Sine waveform using the DAC interface. (The output of

the DAC is to be displayed on the CRO).

12. To interface LCD with ARM processor-- ARM7TDMI/LPC2148. Write and execute

programs in C language for displaying text messages and numbers on LCD

13. To interface Stepper motor with ARM processor-- ARM7TDMI/LPC2148. Write a program

to rotate stepper motor

Study Experiments:

1. Interfacing of temperature sensor with ARM freedom board (or any other ARM

microprocessor board) and display temperature on LCD

2. To design ARM cortex based automatic number plate recognition system

3. To design ARM based power saving system

Course Outcomes: After studying this course, students will be able to

 Learn 80x86 instruction sets and gins the knowledge of how assembly language works.

 Design and implement programs written in 80x86 assembly language

 Know functioning of hardware devices and interfacing them to x86 family

 Choose processors for various kinds of applications.

Graduate Attributes

 Engineering Knowledge

 Problem Analysis

 Modern Tool Usage

 Conduct Investigations of Complex Problems

 Design/Development of Solutions

Conduction of Practical Examination:

All laboratory experiments (all 7 + 6 nos) are to be included for practical examination.

Students are allowed to pick one experiment from each of the lot.

Strictly follow the instructions as printed on the cover page of answer script for breakup of

marks

PART –A: Procedure + Conduction + Viva: 10 + 25 +05 (40)

PART –B: Procedure + Conduction + Viva: 10 + 25 +05 (40)

Change of experiment is allowed only once and marks allotted to the procedure part to be

made zero.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 1 Semester- 4

TABLE OF CONTENTS

SL.NO TITLE PAGE

NO

 SOFTWARE PROGRAMS:PART A

1A Binary Search 11-12

2A Bubble Sort 13-14

3A Palindrome 15-16

4A Compute nCr using recursive procedure 17-18

5A Current Time and Date of System 19-20

6A ARM assembly language programs 21-22

7A C Programs for ARM microprocessor using KEIL 23

 HARDWARE PROGRAMS:PART B

7B BCD Up-Down Counter (00-99) on the Logic Controller

Interface.
24-26

8B X&Y from the Logic Controller Interface and display X*Y. 27-28

9B 7-segment display 29-33

10B Stepper Motor 34-36

11A Sine Wave using DAC interface 37-39

11B Half Rectified Sine wave form using the DAC interface 40-42

12B Interface LCD with ARM processor 43-45

13B To interface Stepper motor with ARM processor 46-47

 STUDY EXPERIMENTS

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 2 Semester- 4

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 3 Semester- 4

Introduction to 8086 and Microsoft assembler

8086 Internal Block diagram

8086 is a 16-bit processor having 16-bit data bus and 20-bit address bus. The block diagram of 8086is

as shown. (Refer figures 1A & 1B). This can be subdivided into two parts; the Bus Interface Unit (BIU)

and Execution Unit (EU).

Bus Interface Unit:

The BIU consists of segment registers, an adder to generate 20 bit address and instruction prefetch

queue. It is responsible for all the external bus operations like opcode fetch, mem read, mem write, I/O

read/write etc. Once this address is sent OUT of BIU, the instruction and data bytes are fetched from

memory and they fill a 6-byte First in First out (FIFO) queue.

Execution Unit:

The execution unit consists of: General purpose (scratch pad) registers AX, BX, CX and DX; Pointer

registers SP (Stack Pointer) and BP (Base Pointer); index registers source index (SI) & destination index

(DI) registers; the Flag register, the ALU to perform operations and a control unit with associated

internal bus. The 16-bit scratch pad registers can be split into two 8-bit registers. AX AL, AH ; BX

BL, BH; CX CL, CH; DX DL, DH.

Figure 1A

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 4 Semester- 4

Figure 1B

Note: All registers are of size 16-bits.

Different registers and their operations are listed below:

Register Uses/Operations

AX As accumulator in Word multiply & Word divide operations, Word I/O
operations

AL As accumulator in Byte Multiply, Byte Divide, Byte I/O, translate,

Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX As Base register to hold the address of memory

CX String Operations, as counter in Loops

CL As counter in Variable Shift and Rotate operations

DX Word Multiply, word Divide, Indirect I/O

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 5 Semester- 4

8086/8088 MP

MEMORY

IP

00000016

Instruction Pointer

CS

Code Segment Register

DS

 Code Segment (64Kb)

Data Segment Register

SS

Stack Segment Register

ES

 Data Segment (64Kb)

Extra Segment Register

AX

AH AL

BX

 Stack Segment (64Kb)

BE BL

CX

CE CL

DX

 Extra Segment (64Kb)

DH DL

SP

Stack Pointer Register
FFFFF16

BP

Break Pointer Register

SI

Source Index Register

DI

Destination Index Register

SR

Status Register

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 6 Semester- 4

Execution of Instructions in 8086:

The microprocessor sends OUT a 20-bit physical address to the memory and fetches the first

instruction of a program from the memory. Subsequent addresses are sent OUT and the queue is filled

up to 6 bytes. The instructions are decoded and further data (if necessary) are fetched from memory.

After the execution of the instruction, the results may go back to memory or to the output peripheral

devices as the case may be.

8086 Flag Register format

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 U U U U OF DF IF TF SF ZF U AF U PF U CF

 U= UNDEFINED (a)

(b)

 (c)

 (d)

(e)

(f)

(g)

(h)

(i)

(a) : CARRY FLAG – SET BY CARRY OUT OF MSB
(b) : PARITY FLAG – SET IF RESULT HAS EVEN PARITY
(c) : AUXILIARY CARRY FLAG FOR BCD
(d) : ZERO FLAG – SET IF RESULT = 0
(e) : SIGN FLAG = MSB OF RESULT
(f) : SINGLE STEP TRAP FLAG

(g) : INTERRUPT ENABLE FLAG

(h) : STRING DIRECTION FLAG
(i) : OVERFLOW FLAG

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 7 Semester- 4

Generation of 20-bit Physical Address:

LOGICAL ADDRESS

SEGMENT REGISTER 0000

ADDER

20 BIT PHYSICAL MEMORY ADDRESS

Programming Models:

Depending on the size of the memory the user program occupies, different types of assembly language

models are defined.

To designate a model, we use “.MODEL” directive.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 8 Semester- 4

Assembly Language Development Tools:

1. EDITOR:

o It’s a system software (program) which allows users to create a file containing assembly

instructions and statements. Ex: Wordstar, DOS Editor, Norton Editor

o Using the editor, you can also edit/delete/modify already existing files.
o While saving, you must give the file extension as “.asm”.
o Follow the AL syntax while typing the programs
o Editor stores the ASCII codes for the letters and numbers keyed in.
o Any statement beginning with semicolon is treated as comment.

When you typed your entire program, you have to save the file on the disk. This file is called

“source” file, having an ‘.asm’ extension. The next step is to convert this source file into a machine

executable ‘.obj’ file.

2. ASSEMBLER:

o An “assembler” is a system software (program) used to translate the assembly language

mnemonics for instructions to the corresponding binary codes.

o An assembler makes two ‘passes’ thro’ your source code. On the first pass, it determines

the displacement of named data items, the offset of labels etc., and puts this information

in a symbol table. On the second pass, the assembler produces the binary code for each

instruction and inserts the offsets, etc., that is calculated during the first pass. The

assembler checks for the correct syntax in the assembly instructions and provides

appropriate warning and error messages. You have to open your file again using the

editor to correct the errors and reassemble it using assembler. Unless all the errors are

corrected, the program cannot be executed in the next step.

o The assembler generates two files from the source file; the first file, called the object file

having an extension “.obj” which contains the binary codes for instructions and

information about the addresses of the instructions. The second file is called “list file”

with an extension “’.lst”. This file contains the assembly language statements, the binary

codes for each instruction, and the offset for each inst. It also indicates any syntax errors

or typing errors in the source program.

Note: The assembler generates only offsets (i.e., effective addresses); not absolute physical
addresses.

3. LINKER:

o It’s a program used to join several object files into one large object file. For large

programs, usually several modules are written and each module is tested and debugged.

When all the modules work, their object modules can be linked together to form a

complete functioning program.

o The LINK program must be run on “.obj” file.

o The linker produces a link file which contains the binary codes for all the combined

modules. The linker also produces a link map file which contains the address

information about the linked files.

o The linker assigns only relative addresses starting from zero, so that this can be put

anywhere in physical primary memory later (by another program called ‘locator’ or

‘loader’). Therefore, this file is called relocatable. The linker produces link files with

“.exe” extension.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 9 Semester- 4

o Object modules of useful programs (like square root, factorial etc.) can be kept in a

“library”, and linked to other programs when needed.

4. LOADER:

o It’s a program used to assign absolute physical addresses to the segments in the “.exe”

file, in the memory. IBM PC DOS environment comes with EXE2BIN loader program.

The “.exe” file is converted into “.bin” file.

o The physical addresses are assigned at run time by the loader. So, assembler does not

know about the segment starting addresses at the time program being assembled.

5. DEBUGGER:

o If your program requires no external hardware, you can use a program called debugger

to load and run the “.exe” file.

o A debugger is a program which allows you to load your object code program into system

memory, execute the program and troubleshoot or debug it. The debugger also allows

you to look at the contents of registers and memory locations after you run your

program.

o The debugger allows you to change the contents of registers & memory locations and

rerun the program. Also, if facilitates to set up “breakpoints” in your program, single

step feature, and other easy-to-use features.

o If you are using a prototype SDK 86 board, the debugger is usually called “monitor

program”.

We would be using the development tool MASM 5.0 or higher version from

Microsoft Inc. MASM stands for Microsoft Macro Assembler. Another assembler

TASM (Turbo Assembler) from Borland Inc., is also available.

8255 Programmable Peripheral Interface:

8255 is a programmable peripheral IC which can be used to interface computer (CPU) to

various types of external peripherals such as: ADC, DAC, Motor, LEDs, 7-segment

displays, Keyboard, Switches etc. It has 3 ports A, B and C and a Control word register.

User can program the operation of ports by writing appropriate 8-bit “control word” into

the control word register.

Control Word format

Bits → D7 D6 D5 D4 D3 D2 D1 D0

 1 for I/O PA mode: PA PCU PB mode PB PCL

00 – mode 0, 01 –

direction direction

0 – mode 0

direction direction

0 – output 0 – output 0 – output 0 – output

mode1, 10/11 – mode 2

1 – mode 1

1 – input 1 – input 1 – input 1 – input

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 10 Semester- 4

How to Write and execute your ALP using MASM?

Steps to be followed:

1. Type EDIT at the command prompt (C :\> \MASM\). A window will be opened with all

the options like File, Edit etc., In the workspace, type your program according to the

assembly language syntax and save the file with a “.asm” extension. (say test.asm)

2. Exit the Editor using File menu or pressing ALT + F + X.

3. At the prompt, type the command MASM followed by filename.asm (say, test.asm). Press Enter

key 2 or 3 times. The assembler checks the syntax of your program and creates “.obj” file, if

there are no errors. Otherwise, it indicates the error with line numbers. You have to correct the

errors by opening your file with EDIT command and changing your instructions. Come back to

DOS prompt and again assemble your program using MASM command. This has to continue

until MASM displays “0 Severe Errors”. There may still be “Warning Errors”. Try to correct

them also.

4. Once you get the “.obj” file from step 3, you have to create the“.exe” file. At the prompt, type

the command LINK followed by “filename.obj” (say, test.obj) and press Enter key. (Note that

you have to give the extension now as “.obj” and not as “.asm”). If there are no linker errors,

linker will create “.exe” file of your program. Now, your program is ready to run.
5. There are two ways to run your program.
a) If your program accepts user inputs thro’ keyboard and displays the result on the screen, then you can type

the name of the file at the prompt and press Enter key. Appropriate messages will be displayed.
b) If your program works with memory data and if you really want to know the contents of registers, flags,

memory locations assigned, opcodes etc., then type CV test (file name) at the prompt. Another window

will be opened with your program, machine codes, register contents etc., Now, you also get a prompt >

sign within CV window. Here you can use “d” command to display memory contents, “E” command to
enter data into memory and “g” command to execute your program. Also, you can single step through your

program using the menu options. In many ways, CV (Code View) is like Turbo C environment.

Once you are familiar with the architecture and basics of assembly language tools, you can start typing

and executing your program.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 11 Semester- 4

Instructions for Laboratory Exercises:

1. The programs with comments are listed for your reference. Write the programs in observation

book.

2. Create your own subdirectory in the computer. Edit (type) the programs with program number

and place them in your subdirectory. Have a copy of MASM.EXE, CV.EXE and LINK.EXE files
in your subdirectory. You can write comments for your instructions using Semicolon (;) symbol.

3. Execute the programs as per the steps discussed earlier and note the results in your observation

book.

4. Make changes to the original program according to the questions given at the END of each

program and observe the outputs.

5. For part A programs, input-output is through computer keyboard and monitor or through memory.

6. For part B programs, you need an external interface board. Connect the board to the computer

using the FRC available. Some boards may require external power supply also.

7. Consult the Lab In-charge/Instructor before executing part B experiments.

8. The assembler is not case sensitive. However, we have used the following notation: uppercase

letters to indicate register names, mnemonics and assembler directives; lowercase letters to

indicate variable names, labels, segment names, and models.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 12 Semester- 4

SOFTWARE PROGRAMS: PART A

EXP NO: 1

Binary Search

Aim:

Design and develop an assembly language program to search a key element “X” in a list of ‘n’ 16-bit

numbers. Adopt Binary search algorithm in your program for searching.

Algorithm:

Step 1 : Declare the array

Step 2 : Input the array elements in the sorted order

Step 3 : Input the search element

Step 4 : Assign left as 0 and right as n-1

Step 5 : Find mid index = (left +right)/2

Step 6 : Compare mid element with search element

Step 7 : If search element <mid element assign right as mid-1

Step 8 : If search element >mid element, assign left as mid+1

Step 9 : If search element = mid element , the search is successful so display the

location of the search element, go to step -12

Step 10 : Repeat step 5 to 9 until the search is successful

Step 11 : If search element is not available, display “element not available”

Step 12 : Terminate the program

Program:

.MODEL SMALL

.DATA

A1 DW 010H,020H,030H,040H ;Array declaration

LEN DW (LEN-A1)/2 ; Finding no of elements

KEY DW 20H; Key value

M1 DB 'KEY FOUND AT '

RES DB ?

M3 DB ' POSITION $'

M2 DB 'KEY NOT FOUND $'

.CODE

MOV AX,@DATA ; Initialize data segment

MOV DS,AX

MOV BX,01; Initialize left

MOV DX,LEN; Initialize right

MOV CX,KEY

L2:CMP BX,DX ; compare left and right

 JA FAIL

 MOV AX,BX ; Find mid index

 ADD AX,DX

 SHR AX,01

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 13 Semester- 4

 MOV SI,AX

 DEC SI

 ADD SI,SI

 CMP CX,A1[SI] ; Compare mid element with key value

 JAE L1

 MOV DX,AX ;If Element< key assign right is mid -1

 DEC DX

 JMP L2

L1: JE SUCCESS

 MOV BX,AX If Element> key assign left is mid +1

 INC BX

 JMP L2

FAIL:LEA DX,M2

 JMP L3

SUCCESS: ADD AX,30H ; Display found message and position

 MOV RES,AL

 LEA DX,M1

L3: MOV AH,09H ; Display not fount message

 INT 21H

 MOV AH,04CH ; Terminate the program

 INT 21H

 END

Expected Output:
The message “the search element is available at the particular position” is displayed if “the search

element is available” else it displays search element is “not available”

Result:

The program used the binary search algorithm to find a particular element from an array of

elements and at a specific location.

Input Output
Enter the number of elements in the array:5

Enter the array elements:

15 20 30 45 50

Search element: 20

Element available at location 2

Enter the number of elements in the array:6

Enter the array elements: 115 120 130 140 150

160

Search element: 15

Element not available

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 14 Semester- 4

EXP No: 2

Bubble Sort

Aim:

Design and develop an assembly program to sort a given set of ‘n’ 16-bit numbers in ascending order.

Adopt Bubble Sort algorithm to sort given elements.

Algorithm:

Step 1 : Declare the array with the numbers that need to be sorted.

Step 2 : Initialize iteration count (n-1)

Step 3 : Initialize comparison counter

Step 4 : Compare num1 and num2

Step 5 : Num1<=num2 do not exchange

Step 6 : Num1>=num2 then exchange the number positions

Step 7 : Decrement iteration counter, comparison counter

Step 8 : Terminate the program

Program:

.MODEL SMALL

.STACK

.DATA

NUM DB 54H,98H,77H,18H

COUNT DW 0004H

.CODE

MOV AX,@DATA

MOV BX,COUNT

DEC BX

MOV CX,BX

UP2: LEA SI,NUM

UP1 MOV AL,[SI]

CMP AL,[SI+1]

JC SKIP

XCHG AL,[SI+1]

MOV [SI],AL

SKIP:INC SI

DEC CX

JNZ UP1

DEC BX

MOV CX,BX

JNZ UP2

INT 03H

END

Expected Output:

 Trace the program after the debug command –t to get the location of SI then type the command

d ds:000c to find the declared array use the debug command –g for executing the program go to the

same location to find the sorted array

Result: The 8086 assembly program sorts the declared array using bubble sort algorithm in ascending

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 15 Semester- 4

order.

At source

before

execution

58 98 77 18

-g (to execute)

At source after

execution

18 58 77 98

At source

before

execution

10 45 2 8

-g (to execute)

At source after

execution

2 8 10 45

Result: The array is sorted in ascending order using bubble sort algorithm

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 16 Semester- 4

EXP No: 3

 Palindrome

Aim:

Develop an assembly language program to reverse a given string and verify whether it is a palindrome

or not. Display the appropriate message.

Algorithm:

Step 1 : Create display macro to display the message

Step 2 : Declare the string

Step 3 : Declare the message to display

Step 4 : Find the reverse of string and store in string1

Step 5 : Is string=string1,display it is a palindrome

Step 6 : Else if display not a palindrome

Step 7 : Terminate the program

Program:
DISPLAY MACRO M ; Display macro

MOV AH,09

LEA DX,M

INT 21H

ENDM

.MODEL SMALL

.DATA

 STR DB 'MADAM' ; Declare the string

 LEN DW LEN-STR

 STR1 DB 10 DUP('$')

 M1 DB 'POLINDROME$' ; Declare the message to display

 M2 DB 'NOT POLINDROME$'

.CODE

 MOV AX,@DATA

 MOV DS,AX

 MOV ES,AX

 LEA DI,STR1 ;Find the reverse string and store in str1

 LEA SI,STR

 ADD SI,LEN

 DEC SI

 MOV CX,LEN

 L2:MOV AL,[SI]

 MOV [DI],AL

 INC DI

 DEC SI

 LOOP L2

 MOV CX,LEN

 LEA SI,STR

 LEA DI,STR1

 CLD

 REPE CMPSB ; Compare original and reverse string

 JNE L1

 DISPLAY M1 ; Display palindrome if equal

 JMP L3

 L1:DISPLAY M2 ; Display not palindrome if not equal

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 17 Semester- 4

 L3: MOV AH,4CH

 INT 21H

END,

Expected output: The string declared is checked with the original and reverse of the string and if the

original and the reverse is equal then it is palindrome else it is not a palindrome.

Result: The entered string is reversed and compared with the original string to see if it is a palindrome

or not, appropriate messages are displayed

INPUT OUTPUT

MADAM PALINDROME

HELLO NOT A PALINDROME

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 18 Semester- 4

EXP No: 4

Compute ncr using recursive procedure

Aim:

Develop an assembly language program to compute nCr using recursive procedure. Assume that ‘n’ and

‘r’ are non-negative integers.

Algorithm:

Step 1 : Initialize the values for n,r,res.

Step 2

Step 3

:

:

Call ncr procedure

If r=0,res=1 goto step

Step 4

Step 5

Step 6

Step 7

Step 8

:

:

:

:

:

Else r=r-1

Subtract n-r

Multiply (n-r)*res

Res=(n-r)*res/2

Return to step 2

Step 9 : Save the result in res

Step 10 : Terminate the program

Program:

MODEL SMALL

.DATA ; Initialize the values for n, r, res

 N DW 5

 R DW 3

 RES DW 0

.CODE

 MOV AX,@DATA; Initialize data segment

 MOV DS,AX

 MOV BX,N ; sent n value to bx

 MOV CX,R ; Set r value to cx

 CALL NCR ; Call ncr procedure

 MOV AH,4CH ; Terminate the program

 INT 21H

NCR PROC NEAR

 CMP CX,0 ; Check the value of cx is zero

 JE EXIT

 PUSH CX ; Push the cx value to stack and decrement cx

 DEC CX

 CALL NCR ; call ncr recursive

 POP CX

 MOV AX,BX

 INC AX

 SUB AX,CX ; subtract cx from ax

 MOV DX,00

 MUL RES ; multiply ax and res

 DIV CX

 MOV RES,AX ; move the value to res

 RET

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 19 Semester- 4

EXIT: MOV RES,1; cx is zero set res is 1

 RET

NCR ENDP

END

Expected Result: The nCr is calculated using the recursive procedure. N and R are non-negative

integers.

Result: For the value N=5, R=3 the result is =0AH

Input Output

N=5 R=3(nCr) 0AH

N=6 R=3(nCr) 0DH

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 20 Semester- 4

EXP NO: 5

Read the Current Time and Date from the System and Display

Aim:

Design and develop an assembly language program to read the current time and Date from the system

and display it in the standard format on the screen.

Algorithm:

Step1 : Create display message macro to display the message

Step2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

:

:

:

:

:

:

:

Create dis macro for displaying two digits after converting to ascii.

Create main program.

Call display message.

Use INT 21H function 02ch to get the system time.

Call dis macro to display hours

Call dis macro to display minutes

Call dis macro to display seconds.

Step 9

Step 10

: The system date is displayed on the screen

Terminate the program.

Program:

DISPLAY MACRO M1 ; Display message macro

MOV AH,09

LEA DX,M1

INT 21H

ENDM

DIS MACRO M ; Display macro for two digit numbers

 MOV AL,M

 AAM

 MOV BX,AX

 ADD BX,3030H ; Convert to ASCII

 MOV DL,BH

 MOV AH,02 ; Display left digit

 INT 21H ;Display right digit

 MOV DL,BL

 INT 21H

ENDM

.MODEL SMALL

.DATA

 STR DB ' CURRENT SYSTEM TIME IS $'

.CODE

 MOV AX,@DATA

 MOV DS,AX

 DISPLAY STR

 MOV AH,02CH ; Read time form system

 INT 21H

 DIS CH ; CH HOLDING HOURS

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 21 Semester- 4

 MOV DL,':'

 INT 21H

 DIS CL ; CL HOLDING MINUTES

 MOV DL,':'

 INT 21H

 DIS DH ; DH HOLDING SECONDS

 MOV AH,4CH

 INT 21H

END

Expected output:
The current time from the system is displayed in the standard format on the screen.

Result:

CURRENT SYSTEM TIME IS 08:30:30

Input(current time) Output(time displayed)

12:10:06 12:10:06

08:30:30 08:30:30

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 22 Semester- 4

EXP NO: 6

ARM ASSEMBLY LANGUAGE PROGRAMS

Aim:

To write and simulate ARM assembly language programs for data transfer, arithmetic

And logical operations (Demonstrate with the help of a suitable program).

Program:

a. Data Transfer

; PROGRAM TO TRANSFER DATA FROM CODE AREA TO DATA AREA

; COMPILE AND DEBUG PROGRAM

; SET BREAKPOINT AT NOP INSTRUCTION

; PRESS F5 TO RUN THE PROGRAM

; HAVE MEMORY1 WINDOW OPENED AND SET ADDRESS AT 0X40000000

; AND AFTER EXECUTION CHECK 0X44444444 APPEAR AT MEMORY1 WINDOW

AREA LARGEST , CODE, READONLY

ENTRY ;Mark first instruction to execute

START

LDR R1,=VALUE1 ; LOADS THE ADDRESS OF FIRST VALUE

LDR R2,[R1],#4 ; WORD ALIGN T0 ARRAY ELEMENT

LDR R4,=RESULT ; LOADS THE ADDRESS OF RESULT

STR R2,[R4] ; STORES THE RESULT IN R2

NOP

NOP

NOP

; ARRAY OF 32 BIT NUMBERS(N=7)

VALUE1

DCD 0X44444444 ;

AREA DATA2,DATA,READWRITE ; TO STORE RESULT IN GIVEN ADDRESS

RESULT DCD 0X0

END ; Mark end of file

b. Arithmetic

; program to add two words

; R1,=0X43210010 + R3,=0X43212102 = R4 = 0x8642212

; R0,=0X1234E640 + R2,=0X12348900 = R5 = 0x24696f40

EXPORT ADD64

AREA ADDITION , CODE , READONLY

ADD64

LDR R0,=0X1234E640

LDR R1,=0X43210010

LDR R2,=0X12348900

LDR R3,=0X43212102

ADDS R4,R1,R3

ADC R5,R0,R2

NOP

NOP

BX LR

END //Mark end of file

c. Logical

; PROGRAM TO DEMONSTRATE LOGICAL OR INSTRUCTION

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 23 Semester- 4

; COMPILE AND DEBUG PROGRAM

; SET BREAKPOINT AT NOP INSTRUCTION

; PRESS F5 TO RUN THE PROGRAM

; STEP THROUGH THE PROGRAM AND FIND

; FIRST OPERNAD AT R2= 55AAAA55

; SECOND OPERNAD AT R3= 5555AA55

; AND AFTER EXECUTION CHECK REGISTER R2 = 5500AA55

; AND AT 0X40000000 5500AA55 AT MEMORY 1 WINDOW

AREA LARGEST , CODE, READONLY

ENTRY ;Mark first instruction to execute

START

LDR R1,=VALUE1 ; LOADS THE ADDRESS OF FIRST VALUE

LDR R2,[R1] ; WORD ALIGN T0 ARRAY ELEMENT

LDR R1,=VALUE2 ; LOADS THE ADDRESS OF FIRST VALUE

LDR R3,[R1]

AND R2,R3

LDR R4,=RESULT ; LOADS THE ADDRESS OF RESULT

STR R2,[R4] ; STORES THE RESULT IN R2 AND ATT MEMORY

0X40000000

NOP

NOP

NOP

; ARRAY OF 32 BIT NUMBERS(N=7)

VALUE1

DCD 0X55AAAA55 ;

VALUE2

DCD 0X5555AA55 ;

AREA DATA2,DATA,READWRITE ; TO STORE RESULT IN GIVEN ADDRESS

RESULT DCD 0X0

END ; Mark end of file

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 24 Semester- 4

EXP NO: 7

C PROGRAMS FOR ARM MICROPROCESSOR USING KEIL

AIM: To write and simulate C Programs for ARM microprocessor using KEIL (Demonstrate with

the help of a suitable program).

Program:

#include <lpc214x.h>

void main(void)

{

int a,b,c;

a=4;

b=5;

c=a+b;

a=5;

}

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 25 Semester- 4

PART B

EXP 8A:

BCD Up-Down Counter (00-99) on the Logic Controller Interface.

Aim:

Design and develop an assembly program to demonstrate BCD Up-Down Counter (00-99) on

the Logic Controller Interface.

Algorithm:

Step 1 : Create a delay macro

Step 2 : Create a up procedure to count form 0-9

Step 3 : Send the initial value 0 to the logic controller interface, sense a key

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 26 Semester- 4

from the keyboard to stop

Step 4

Step 5

: Call the up procedure

Increment the value and send it to output until it reaches a value greater

than 9

Step 6 : Call the down procedure to count from 9-0

Step 7

Step 8

:

:

Decrement the value to be sent to the output until it reaches the value 0

Repeat the steps from step2 ,until any key is pressed from the keyboard

Terminate the program

Program:

DELAY MACRO ; Delay macro

LOCAL D1,D2

PUSH BX

PUSH CX

MOV BX,0FFFFH ; Count of outer loop

D1: MOV CX,0FFFH count of Inner loop

D2: LOOP D2

DEC BX

JNZ D1

POP CX

POP BX

ENDM

.MODEL SMALL

.DATA

 PA EQU 0DOC0H ; Initialize port values

 PB EQU 0D0C1H

 CT EQU 0DOC3H

.CODE

 MOV AX,@DATA

 MOV DS,AX

 MOV DX,CT ;Initialize 8255

 MOV AL,82H

 OUT DX,AL

 L2:CALL UP ; call up Procedure

 CALL DOWN ; Call down procedure

 JMP L2

STOP:MOV AH,04CH ;Terminate the program

 INT 21H

UP PROC NEAR

 MOV AL,00H

 L3:MOV DX,PA ; Send the value to port A from 0-9

 OUT DX,AL

 INC AX

 PUSH AX

 MOV AH,0BH ; Sense the key is pressed

 INT 21H

 OR AL,AL

 JNZ STOP

 DELAY

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 27 Semester- 4

 POP AX

 CMP AL,0AH ;repeat the loop if value less than 10

 JNE L3

 RET

UP ENDP

DOWN PROC NEAR

 MOV AL,09H

L4:MOV DX,PA ; send the values to port A from 9-0

 OUT DX,AL

 DEC AX

 PUSH AX

 MOV AH,0BH ; Sense the key is pressed

 INT 21H

 OR AL,AL

 JNZ STOP

 DELAY

 POP AX

 CMP AL,00H ;Repeat the loop the value is greater than 0

 JNE L4

 RET

DOWN ENDP

 END

Expected Result: The LED of the logic controller glows form 0-9 and -9-0 and so on until key is

pressed on the keyboard to stop.

Result: The output shows the behavior of a BCD UP-DOWN Counter.

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 28 Semester- 4

EXP 8B:

Display X*Y on the Logic Controller Interface.

Aim:

Design and develop an assembly program to read the status of two 8-bit inputs (X & Y)

from the Logic Controller Interface and display X*Y.

Algorithm:

Step1 : Give the input value of X from the interface

Step 2 : Read the input from the logic controller

Step 3 : Repeat step1 and step2 for y value

Step 4 : Multiply X*Y

Step 5 : The result is shown on the LED of the interface, first the LSB is

shown on the led then the MSB is seen on the led

Step 6 : Sense any key on the keyboard

Step 7 : Terminate the program

Program:

DISMSG MACRO M ; display message macro

LEA DX,M

MOV AH,09

INT 21H

ENDM

WAIT1 MACRO ; waiting for setting input

MOV AH,01

INT 21H

ENDM

.MODEL SMALL

.DATA

.STACK

M1 DB 'SET X VALUE AND ENTER$' ; Initialize strings

M2 DB 'SET Y VALUE AND ENTER$'

M3 DB 'LOWER BYTE FORM PORTA AND ENTER FOR HIGHER BYTE$'

M4 DB 'HIGHER BYTE FROM PORTA$'

PORTA EQU 0E880H ; Initialize port numbers

PORTB EQU 0E881H

CTRL EQU 0E883H

.CODE

MOV AX,@DATA; Initialize data segment

MOV DS,AX

MOV DX,CTRL ; Initialize 8255 control word

MOV AL,82H

OUT DX,AL

DISMSG M1 ;Display message macro

WAIT1 ;wait macro

MOV DX,PORTB ; Read x value from port B

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 29 Semester- 4

IN AL,DX

MOV BL,AL

DISMSG M2

WAIT1

MOV DX,PORTB ;Read y value from port B

IN AL,DX

MOV AH,00

MUL BL ; Multiply x and y

PUSH AX

DISMSG M3

POP AX

MOV DX,PORTA ; Display lower byte from port A

OUT DX,AL

MOV BL,AH

WAIT1

DISMSG M4

MOV DX,PORTA ; Display higher byte from port A

MOV AL,BL

OUT DX,AL

MOV AH,04CH ; Terminate program

INT 21H

END

Expected Result:

The input of x and y is given from the input port by switching on/off the 8 switches e.g. x=00000010

y=00000100, x*y=00001000 that is x=2,y=4 x*y=8. The result is specified by the equivalent glowing

of LED’S

Result: The result is seen at the output port of the interface ,the LED’S glow according the result of

multiplication the lower byte is displayed first, press enter the higher byte is displayed.

Input given to the logic controller Output displayed on the logic controller

X=00000101, Y=00000010

X*Y=00010000

X=00000011 ,Y=00000101 X*Y=00010101

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 30 Semester- 4

EXP 9:

Display Messages Alternatively

Aim: Design and develop an assembly program to display messages “FIRE” and “HELP”

alternately with flickering effects on a 7-segment display interface for a suitable period of time.

Ensure a flashing rate that makes it easy to read both the messages (Examiner does not specify these

delay values nor is it necessary for the student to compute these values).

 Algorithm:

Step1

Step 2

: Create delay macro, initialize count to display no of times and the number

of characters.

Declare the 7 segment codes of the characters that is to be displayed(FIRE

BLANK HELP)

Step3 : Call display procedure to display FIRE

Step4 : Call display procedure to display BLANK

Step5

Step 6

: Call display procedure to display HELP

Select the 7-segment position, send data to be displayed

Step7 : Sense if any key is pressed on the keyboard

Step8

Step 9

: Call delay

Repeat to display all characters step 2 to step 6

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 31 Semester- 4

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 32 Semester- 4

Program:

DELAY MACRO ; Delay macro

PUSH BX

PUSH CX

MOV BX,02 ; set outer loop

D1: MOV CX,0FFFFH ; Set inner loop

D2: LOOP D2

DEC BX

JNZ D1

POP CX

POP BX

ENDM

.MODEL SMALL

.STACK 64

.DATA

N1 DB 071H,06H,050H,079H ; Values for FIRE

N2 DB 076H,079H,038H,073H ; Values for HELP

N3 DB 00H,00H,00H,00H ; Values for clear

PORTA EQU 0D0C0H ; Initialize port values

PORTB EQU 0DOC1H

PORTC EQU 0DOC2H

CTRL EQU 0DOC3H

.CODE

 MOV AX,@DATA

 MOV DS,AX

 MOV AL,80H ; Initialize 8255

 MOV DX,CTRL

 OUT DX,AL

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 33 Semester- 4

L3: MOV BX,OFFSET N1

 CALL DISPLAY ; Display FIRE

 MOV BX, OFFSET N3

 CALL DISPLAY ; Clear LEDs

 MOV BX,OFFSET N2

 CALL DISPLAY

 MOV BX, OFFSET N3 ; Display HELP

 CALL DISPLAY

 JMP L3

 STOP: MOV AH,4CH ; Terminate Program

 INT 21H

DISPLAY PROC NEAR

 MOV CX,0CFH ;Display no.of times

L2: PUSH CX

 PUSH BX

 MOV CX,04H

 MOV AL,05H

L1: MOV DX,PORTC ;Select the seven segment position

 OUT DX,AL

 DEC AX

 PUSH AX

 MOV AL,[BX]

 MOV DX,PORTA ; send data to display

 OUT DX,AL

 INC BX

 MOV AH,0BH ; Sense the keyboard

 INT 21H

 OR AL,AL

 JNZ STOP ; key pressed go to stop

 PUSH CX

DELAY ; call delay for 2ms

 POP CX

 POP AX

 DEC CX

 JNZ L1 ; repeat to display all characters

 POP BX

 POP CX

 DEC CX

 JNZ L2 ; display the specific times

 RET

 DISPLAY ENDP

 END

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 34 Semester- 4

Expected result: The 7 segment interface needs to display FIRE and HELP blinking alternately.

Result:

Input data to be displayed Output data to be displayed

FIRE HELP on the 7 segment

display(BLINKING)

FIRE HELP on the 7 segment

display(BLINKING)

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 35 Semester- 4

EXP 10:

Stepper Motor in Both Directions

Aim:

Design and develop an assembly program to drive a Stepper Motor interface and rotate the

motor in specified direction (clockwise or counter-clockwise) by N steps (Direction and N

are specified by the examiner). Introduce suitable delay between successive steps. (Any

arbitrary value for the delay may be assumed by the student).

Algorithm:

Step1

Step2

:

:

Create delay macro

Initialize the steps in which the stepper motor should rotate.

Step2 : Set the phase value

Step3 : Send the values to the motor to rotate

Step4 : Call delay between steps

Step5

Step 7

:

:

Set the direction by rotating the value of phase

 Repeat step 2 to step 5 until steps=0

Step 6 : Terminate the program

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 36 Semester- 4

Program:

DELAY MACRO; Delay macro for few seconds

PUSH BX

PUSH CX

MOV BX,09FFH ; Outer loop value

D1: MOV CX,0FFFFH ; Inner loop value

D2: LOOP D2 inner loop

DEC BX

JNZ D1; Repeat outer loop

POP CX

POP BX

ENDM

.MODEL SMALL

.STACK 20

.DATA

NSTEPR DB 20; initialize the steps

PORTC EQU 0E882H ; Initialize the port nos.

CTR EQU 0E883H

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 37 Semester- 4

.CODE

MOV AX,@DATA ; Initialize data segment

MOV DS,AX

MOV DX,CTR

MOV AL,80H ; Initialize 8255 control word value

OUT DX,AL

MOV AL,77H ; set the phase value

L1:MOV DX,PORTC ; send the values to rotate

 OUT DX,AL

DELAY ; Delay between the steps

 ROL AL,01 ; ROR AL,01 FOR CLOCK DIRECTION

 DEC NSTEPR

 JNZ L1 ; Repeat for no of steps

 MOV AH,4CH ; Terminate the program

 INT 21H END

Expected Result:

The stepper motor rotates in clockwise or anti-clock wise direction in specified number of steps.

Result:

 Input no of steps the motor rotates output

5 The motor rotates in steps of 5

6 The motor rotates in steps of 6

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 38 Semester- 4

EXP 11A:

Generate Sine-Wave

Aim:

 Design and develop an assembly language program to generate the Sine Wave using

 DAC interface (The output of the DAC is to be displayed on t h e CRO).

Algorithm:

Step1 : Initialize the values for generating Sine Wave.

Step2 : Initialize count to the number of values to be plotted.

Step3 : Send the values to DAC and plot on CRO.

Step4 : Decrement count.

Step5 : Repeat step3 until count becomes zero.

Step6 : Sense the keyboard input to stop the program

Step7 : Terminate the program

Program:

.MODEL SMALL

.DATA

PORTA EQU 0D0C0H

PORTB EQU ODOC1H

PORTC EQU 0D0C2H

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 39 Semester- 4

CWR EQU 0D0C3H

SINES DB 00,11,22,33,43,53,63,72,81,89,97,104,109,115,119,122,125,126,127

MSG DB 10,13,’OBSERVE SINE WAVE ON CRO; PRESS ANY KEY TO EXIT’,10,13,’$’

.CODE

MOV AX,@DATA

MOV DS,AX

MOV DX,CWR

MOV AL,80H

OUT DX,AL

LEA DX,MSG

MOV AH,9H

INT 21H

MOV DX,PORTA

FULL_WAVE:MOV SI,OFFSET SINES

MOV CX,13H

FIRST_QUART: MOV AL,7FH

MOV BL,BYTE PTR[SI]

ADD AL,BL

OUT DX,AL

INC SI

LOOP FIRST_QUART

MOV CX,12H

DEC SI

SECOND_QUART:

MOV AL,7FH

MOV BL,BYTE PTR[SI]

ADD AL,BL

OUT DX,AL

DEC SI

LOOP SECOND_QUART

MOV SI,OFFEST SINES

MOV CX,13H

THIRD_QUART:

MOV AL,7FH

MOV BL,BYTE PTR[SI]

SUB AL,BL

OUT DX,AL

DEC SI

LOOP FOURTH_QUART

MOV AH,1

INT 16H

JNZ STOP

JMP FULL_WAVE

STOP:MOV AH,4CH

INT 21H

END

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 40 Semester- 4

Expected Result: Sine wave is generated using DAC interface and output is observed on the CRO

Result:

Sine wave is generated using the DAC interface.

Formatted: Font: (Default) Times New Roman, Font color:
Blue

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi4ltes2JbKAhVCG44KHSRBA2EQjRwIBw&url=http://www.songsofthecosmos.com/encyclopedia_of_modern_music/S/sine_wave.html&psig=AFQjCNHgmhH63g0UnEwsfiyZfgQbIp1LaQ&ust=1452221367382065

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 41 Semester- 4

EXP 11B:

HALF RECTIFIED SINE WAVEFORM USING THE DAC

Aim:

Generate a Half Rectified Sine waveform using the DAC interface. (The output of the DAC is to be

displayed on the CRO).

Algorithm:

Step 1 : Initialize the values for generating Half Rectified Sine Wave.

Step 2 : Initialize count to the number of values to be plotted.

Step 3 : Send the values to DAC and plot on CRO.

Step 4 : Decrement count.

Step 5 : Repeat step3 until count becomes zero.

Step 6 : Sense the keyboard input to stop the program

Step 7 : Terminate the program

Program:

.MODEL

.DATA

SINES DB

00,22,44,66,87,108,127,146,164,180,195,209,221,231,240,246,251,254,255

MSG DB 10,13,10,’OBSERVE HALF RECTIFIED WAVE ON CRO.PRESS ANY KEY TO EXIT$’

PORTA EQU 0D0C0H

PORTB EQU ODOC1H

PORTC EQU ODOC2H

CTRL EQU 0D0C3H

.STACK

.CODE

MOV AX,@DATA

MOV DS,AX

LEA DX,MSG

MOV AH,9

INT 21H

MOV AL,80H

MOV DX,CTRL

OUT DX,AL

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 42 Semester- 4

CALL DELAY

HALF_WAVE

MOV DX,PORTA

MOV CX,13H

MOV SI,OFFSET SINES

FIRST_QUART:

MOV AL,BYTE PTR[SI]

OUT DX,AL

CALL DELAY

INC SI

LOOP FIRST_QUART

DEC SI

MOV CX,12H

SECOND_QUART:

MOV AL,BYTE PTR[SI]

OUT DX,AL

CALL DELAY

DEC SI

LOOP SECOND_QUART

MOV CX,25H

NO_WAVE

MOV AL,00H

OUT DX,AL

CALL DELAY

LOOP NO_WAVE

MOV AH,1

STOP

INT 16H

JNZ STOP

JMP HALF_WAVE

STOP:MOV AH,4CH

INT 21H

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 43 Semester- 4

DELAY PROC NEAR

PUSH CX

MOV CX, 2FFFH

BACK: NOP

LOOP BACK

POP CX

RET

DELAY ENDP

END

Expected output: The Half Rectified Sine waveform is observed in the CRO.

Result:

Formatted: Font: (Default) Times New Roman, 13.5 pt, Font
color: Blue

https://www.google.co.in/imgres?imgurl=http://www.mpoweruk.com/images/fullwave.gif&imgrefurl=http://www.mpoweruk.com/generators.htm&h=158&w=211&tbnid=1kDU5YlkSyfB5M:&docid=q2jcD7WJNkn1pM&ei=nNKNVr6iINSNuATklov4CQ&tbm=isch&ved=0ahUKEwi-4LPX2JbKAhXUBo4KHWTLAp8QMwhHKBQwFA

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 44 Semester- 4

EXP NO: 12

INTERFACE LCD WITH ARM PROCESSOR

Aim:

 To interface LCD with ARM processor-- ARM7TDMI/LPC2148. Write and execute programs in C

language for displaying text messages and numbers on LCD.

Algorithm:

Program:

#include<lpc214x.h>

#include<stdio.h>

//Function prototypes void

lcd_init(void); void

wr_cn(void); void

clr_disp(void);

void delay(unsigned int); void

lcd_com(void);

void wr_dn(void); void

lcd_data(void);

unsigned char temp1;

unsigned long int temp,r=0;

unsigned char *ptr,disp[] = "GCEM BENGALURU",disp1[]="LCD

INTERFACING";

int main()

{

PINSEL0 = 0X00000000; // configure P0.0 TO P0.15 as GPIO

IO0DIR = 0x000000FC; //configure o/p lines for lcd [P0.2-

P0.7]

lcd_init(); //lcd initialisation

delay(3200); // delay 1.06ms

clr_disp(); //clear display

delay(3200); // delay 1.06ms

temp1 = 0x81; //Display starting address of first line 2nd pos

lcd_com(); //function to send command to lcd

ptr = disp; // pointing data

while(*ptr!='\0')

{

temp1 = *ptr;

lcd_data(); //function to send data to lcd ptr ++;

}

temp1 = 0xC0; // Display starting address of second line 1st pos

lcd_com(); //function to send command to lcd

ptr = disp1; // pointing second data

while(*ptr!='\0')

{

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 45 Semester- 4

temp1 = *ptr;

lcd_data(); //send data to lcd ptr ++;

}

while(1);

} //end of main()

// lcd initialisation routine. void lcd_init(void)

{

temp = 0x30; //command to test LCD voltage level wr_cn();

delay(3200);

temp = 0x30; //command to test LCD voltage level wr_cn();

delay(3200);

temp = 0x30; //command to test LCD voltage level wr_cn();

delay(3200);

temp = 0x20; // change to 4 bit mode from default 8 bit

mode

wr_cn(); delay(3200);

temp1 = 0x28; // load command for lcd function setting

with lcd in 4 bit mode, lcd_com(); // 2 line and

5x7 matrix display delay(3200);

temp1 = 0x0C; // load a command for display on, cursor on

and blinking off

lcd_com(); delay(800);

temp1 = 0x06; // command for cursor increment after data

dump

lcd_com(); delay(800);

temp1 = 0x80; // set the cursor to beginning of line 1 lcd_com();

delay(800);

}

void lcd_com(void)

{

temp = temp1 & 0xf0; //masking higher nibble first wr_cn();

temp = temp1 & 0x0f; //masking lower nibble temp = temp << 4;

wr_cn();

delay(500); // some delay

}

// command nibble o/p routine

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 46 Semester- 4

void wr_cn(void) //write command reg

{

IO0CLR = 0x000000FC; // clear the port lines.

IO0SET = temp; // Assign the value to the PORT lines IO0CLR = 0x00000004; // clear bit RS = 0

IO0SET = 0x00000008; // E=1

delay(10);

IO0CLR = 0x00000008; //E=0

}

// data nibble o/p routine

void wr_dn(void) ////write data reg

{

IO0CLR = 0x000000FC; // clear the port lines.

IO0SET = temp; // Assign the value to the PORT lines IO0SET =
0x00000004; // set bit RS = 1

IO0SET = 0x00000008; // E=1

delay(10);

IO0CLR = 0x00000008; //E=0

}

// data o/p routine which also outputs high nibble first

// and lower nibble next void

lcd_data(void)

{

temp = temp1 & 0xf0; //masking higher nibble first temp = temp ;

wr_dn();

temp= temp1 & 0x0f; //masking lower nibble temp= temp << 4;

 //shift 4bit to left wr_dn();

delay(100);

}

void clr_disp(void) // function to clear the LCD screen

{

temp1 = 0x01; lcd_com();

delay(500);

}

void delay(unsigned int r1) // delay function using for loop

{

for(r=0;r<r1;r++);

}

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 47 Semester- 4

EXP NO: 13

TO INTERFACE STEPPER MOTOR WITH ARM PROCESSOR

Aim:

To interface Stepper motor with ARM processor-- ARM7TDMI/LPC2148. Write

a program to rotate stepper motor.

// the coils. Port lines : P1.20 to P1.23

#include <LPC21xx.h>

void clock_wise(void) ;

void anti_clock_wise(void) ;

unsigned int var1 ;

unsigned long int i = 0 , j = 0 , k = 0 ;

int main(void)

{

PINSEL2 = 0x00000000; //P1.20 to P1.23 GPIO

IO1DIR |= 0x00F00000 ; //P1.20 to P1.23 made as output

while(1)

{

for(j = 0 ; j < 50 ; j++) // 50 times in Clock wise Rotation

clock_wise() ; // rotate one round clockwise

for(k = 0 ; k < 65000 ; k++) ; // Delay to show anti_clock Rotation for(j=0 ; j < 50 ; j++) // 50

times in Anti Clock wise Rotation anti_clock_wise() ; // rotate one round anticlockwise

for(k = 0 ; k < 65000 ; k++) ; // Delay to show ANTI_clock Rotation

}

} // End of main

void clock_wise(void)

{

var1 = 0x00080000; //For Clockwise

for(i = 0 ; i <= 3 ; i++) // for A B C D Stepping

{

var1 <<= 1 ;

IO1CLR =0x00F00000 ; //clearing all 4 bits

IO1SET = var1 ; // setting particular bit

for(k = 0 ; k < 3000 ; k++); //for step speed variation

}

}

void anti_clock_wise(void)

{

var1 = 0x00800000 ; //For

Anticlockwise IO1CLR =0x00F00000 ; //clearing all 4

bits IO1SET = var1 ;

for(k = 0 ; k < 3000 ; k++) ;

Microprocessor & Microcontroller laboratory

Dept. of CSE, GCEM Page 48 Semester- 4

for(i = 0 ; i < 3 ; i++) // for A B C D Stepping

{

var1 >>=1; //rotating bits

IO1CLR =0x00F00000 ; // clear all bits before setting

IO1SET = var1 ; // setting particular bit

for(k = 0 ; k < 3000 ; k++) ; //for step speed variation

}}

