Scheme of Teaching and Examination and Syllabus
B.E. CIVIL ENGINEERING
(Effective from Academic year 2018-19)

General Notes:

1. Question Paper Pattern for Theory Courses:
 • The question paper will have TEN questions. Each full question carries 20 marks. There will be two full questions (with a maximum of four subquestions) from each module. Each full question will have sub questions covering all the topics under a module.
 • Students will have to answer 5 full questions, selecting one full question from each module.
2. The teaching learning process should be as per the Choice Based Credit System
3. All Civil Engineering Departments should have a “CIVIL ENGINEERING MUSEUM” with collections like models, charts, material samples, fixtures and fittings etc. which assist effective teaching learning process.
4. The teaching learning process may be planned to develop capabilities, competencies and skills required for career development based on course beginning and course end surveys.
5. Course objectives, course outcomes and RBT levels given under each course in the syllabus are indicative/suggestive. The faculty can set them appropriately according to their lesson/course plan.
6. The course coordinators/teachers/instructors are informed to deliberate in the faculty meeting with module coordinator, program coordinator along with the stakeholders to develop the respective lesson/course plans.
7. The department advisory board may make suitable changes to the course objectives, course outcomes according to their finalized course plans.
8. The faculty should complement the teaching with case studies and field visits wherever required.
9. At least one faculty development program to be conducted to compliment teaching learning process by the department in a year.
VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

Scheme of Teaching and Examination 2018 – 19

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2018 – 19)

Programme: CIVIL ENGINEERING

III SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course Code</th>
<th>Course Title</th>
<th>Teaching Hours /Week</th>
<th>Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIE Marks</td>
<td>SEE Marks</td>
<td>Total Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Lecture Tutorial Practical/Drawing Duration in hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BSC 18MAT31</td>
<td>Transform Calculus, Fourier Series and Numerical Techniques</td>
<td>Mathematics</td>
<td>2 2 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>2</td>
<td>PCC 18CV32</td>
<td>Strength of Materials</td>
<td>Civil Engg.</td>
<td>3 2 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>3</td>
<td>PCC 18CV33</td>
<td>Fluid Mechanics</td>
<td>Civil Engg.</td>
<td>3 0 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>4</td>
<td>PCC 18CV34</td>
<td>Building Materials and Construction</td>
<td>Civil Engg.</td>
<td>3 0 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>5</td>
<td>PCC 18CV35</td>
<td>Basic Surveying</td>
<td>Civil Engg.</td>
<td>3 0 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>6</td>
<td>PCC 18CV36</td>
<td>Engineering Geology</td>
<td>Geology</td>
<td>3 0 --</td>
<td>03 40 60</td>
</tr>
<tr>
<td>7</td>
<td>PCC 18CVL37</td>
<td>Computer Aided Building Planning & Drawing</td>
<td>Civil Engg.</td>
<td>-- 2 2</td>
<td>03 40 60</td>
</tr>
<tr>
<td>8</td>
<td>PCC 18CVL38</td>
<td>Building Materials Testing Laboratory</td>
<td>Civil Engg.</td>
<td>-- 2 2</td>
<td>03 40 60</td>
</tr>
<tr>
<td>9</td>
<td>HSMC 18KVK39</td>
<td>Vyavaharika Kannada (Kannada for communication)/Aadalitha Kannada (Kannada for Administration)</td>
<td>HSMC</td>
<td>-- 2 --</td>
<td>-- 100 --</td>
</tr>
<tr>
<td></td>
<td>18KAK39</td>
<td>Aadalitha Kannada (Kannada for Administration)</td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 CPC39</td>
<td>Constitution of India, Professional Ethics and Cyber Law</td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 08</td>
<td>04</td>
<td>24 420</td>
<td>480</td>
</tr>
</tbody>
</table>

Note: BSC: Basic Science, PCC: Professional Core, HSMC: Humanity and Social Science, NCMC: Non-credit mandatory course.

18KVK39Vyavaharika Kannada (Kannada for communication) is for non-Kannada speaking, reading and writing students and 18KAK39 Aadalitha Kannada (Kannada for Administration) is for students who speak, read and write Kannada.

Course prescribed to lateral entry Diploma holders admitted to III semester of Engineering programs

- 18MATDIP31 Additional Mathematics - I
- 18MATDIP32 Additional Mathematics - II

(a) The mandatory non-credit courses Additional Mathematics I and II prescribed for III and IV semesters respectively, to the lateral entry Diploma holders admitted to III semester of BE/B. Tech programs, shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the University examination. In case, any student fails to register for the said course/fails to secure the minimum 40% of the prescribed CIE marks, he/she shall be deemed to have secured F grade. In such a case, the students have to fulfill the requirements during subsequent semester(s) to appear for
SEE.
(b) These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

Courses prescribed to lateral entry B. Sc degree holders admitted to III semester of Engineering programs

Lateral entrant students from B.Sc. Stream, shall clear the non-credit courses Engineering Graphics and Elements of Civil Engineering and Mechanics of the First Year Engineering Programme. These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

AICTE Activity Points to be earned by students admitted to BE/B. Tech/B. Plan day college programme (For more details refer to Chapter 6, AICTE Activity Point Programme, Model Internship Guidelines):

Over and above the academic grades, every Day College regular student admitted to the 4 years Degree programme and every student entering 4 years Degree programme through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Programme. Students transferred from other Universities to fifth semester are required to earn 50 Activity Points from the year of entry to VTU. The Activity Points earned shall be reflected on the student’s eighth semester Grade Card.

The activities can be spread over the years, anytime during the semester weekends and holidays, as per the liking and convenience of the student from the year of entry to the programme. However, minimum hours’ requirement should be fulfilled. Activity Points (non-credit) have no effect on SGPA/CGPA and shall not be considered for vertical progression.

In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.
Programme: CIVIL ENGINEERING
IV SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Theory</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical/ Drawing</th>
<th>Duration in hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BSC 18MAT41</td>
<td>Complex Analysis, Probability And Statistical Methods</td>
<td>Mathematics</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCC 18CV42</td>
<td>Analysis of Determinate Structures</td>
<td>Civil Engg.</td>
<td>3</td>
<td>2</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PCC 18CV43</td>
<td>Applied Hydraulics</td>
<td>Civil Engg.</td>
<td>3</td>
<td>0</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCC 18CV44</td>
<td>Concrete Technology</td>
<td>Civil Engg.</td>
<td>3</td>
<td>0</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCC 18CV45</td>
<td>Advanced Surveying</td>
<td>Civil Engg.</td>
<td>3</td>
<td>0</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PCC 18CV46</td>
<td>Water Supply & Treatment Engineering</td>
<td>Civil Engg.</td>
<td>3</td>
<td>0</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCC 18CVL47</td>
<td>Engineering Geology Laboratory</td>
<td>Geology</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCC 18CVL48</td>
<td>Fluid Mechanics and Hydraulic Machines Laboratory</td>
<td>Civil Engg.</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HSMC 18KVK39/49</td>
<td>Vyavaharika Kannada (Kannada for Communication)/ OR 18KAK39/49 Aadalitha Kannada (Kannada for Administration) OR 18CPC39/49 Constitution of India, Professional Ethics and Cyber Law</td>
<td>HSMC</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td></td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>08</td>
<td>04</td>
<td>24</td>
<td>420</td>
<td>480</td>
<td>900</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR</th>
<th>OR</th>
<th>OR</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>10</td>
<td>26</td>
<td>360</td>
</tr>
</tbody>
</table>

Note: BSC: Basic Science, PCC: Professional Core, HSMC: Humanity and Social Science, NCMC: Non-credit mandatory course.

18KVK39/49Vyavaharika Kannada (Kannada for communication) is for non-Kannada speaking, reading and writing students and 18KAK39/49Aadalitha Kannada (Kannada for Administration) is for students who speak, read and write Kannada.

Course prescribed to lateral entry Diploma holders admitted to III semester of Engineering programs

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Theory</th>
<th>Lecture</th>
<th>Tutorial</th>
<th>Practical/ Drawing</th>
<th>Duration in hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NCMC 18MATDIP41</td>
<td>Additional Mathematics - II</td>
<td>Mathematics</td>
<td>02</td>
<td>01</td>
<td>--</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(a)The mandatory non – credit courses Additional Mathematics I and II prescribed for III and IV semesters respectively, to the lateral entry Diploma holders admitted to III semester of BE/B. Tech programs, shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the University examination. In case, any student fails to register for the said course/fails to secure the minimum 40 % of the prescribed CIE marks, he/she shall be deemed to have secured F grade. In such a case, the students have to fulfill the requirements during subsequent semester/s to appear for SEE.
(b) These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

Courses prescribed to lateral entry B. Sc degree holders admitted to III semester of Engineering programs

Lateral entrant students from B.Sc. Stream, shall clear the non-credit courses Engineering Graphics and Elements of Civil Engineering and Mechanics of the First Year Engineering Programme. These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.
V SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Teaching Hours /Week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>HSMC 18CV51</td>
<td>Construction Management & Entrepreneurship</td>
<td>Civil Engg.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PCC 18CV52</td>
<td>Analysis of Indeterminate Structures</td>
<td>Civil Engg.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>PCC 18CV53</td>
<td>Design of RC Structural Elements</td>
<td>Civil Engg.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>PCC 18CV54</td>
<td>Basic Geotechnical Engineering</td>
<td>Civil Engg.</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>PCC 18CV55</td>
<td>Municipal Wastewater Engineering</td>
<td>Civil Engg.</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>PCC 18CV56</td>
<td>Highway Engineering</td>
<td>Civil Engg.</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>PCC 18CVL57</td>
<td>Surveying Practice</td>
<td>Civil Engg.</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PCC 18CVL58</td>
<td>Concrete and Highway Materials Laboratory</td>
<td>Civil Engg.</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>HSMC 18CIV59</td>
<td>Environmental Studies</td>
<td>Civil/Environmental</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: PCC: Professional Core, HSMC: Humanity and Social Science.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Teaching Hours /Week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>PCC 18CV61</td>
<td>Design of Steel Structural Elements Civil Engg.</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PCC 18CV62</td>
<td>Applied Geotechnical Engineering Civil Engg.</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>PCC 18CV63</td>
<td>Hydrology and Irrigation Engineering Civil Engg.</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>PEC 18CV64X</td>
<td>Professional Elective -I Civil Engg.</td>
<td></td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>OEC 18CV65X</td>
<td>Open Elective - A Civil Engg.</td>
<td></td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>PCC 18CVL66</td>
<td>Software Application Laboratory Civil Engg.</td>
<td></td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>PCC 18CVL67</td>
<td>Environmental Engineering Laboratory Civil Engg.</td>
<td></td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EP 18CVEP68</td>
<td>Extensive Survey project Civil Engg.</td>
<td></td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Internship</td>
<td>Internship To be carried out during the vacation/s of VI and VII semesters and/or VII and VIII semesters.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL | **15** | **12** | **06** | **24** | **320** | **480** | **800** | **24** |

Note: PCC: Professional core, PEC: Professional Elective, OE: Open Elective, MP: Mini-project.

Professional Elective -I

<table>
<thead>
<tr>
<th>Course code under18CV64X</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CV641</td>
<td>Matrix Method of Structural Analysis</td>
</tr>
<tr>
<td>18CV642</td>
<td>Solid Waste Management</td>
</tr>
<tr>
<td>18CV643</td>
<td>Alternate Building Materials</td>
</tr>
<tr>
<td>18CV644</td>
<td>Ground Improvement Techniques</td>
</tr>
<tr>
<td>18CV645</td>
<td>Railway, Harbours, Tunnelling & Airports</td>
</tr>
</tbody>
</table>

Open Elective -A

<table>
<thead>
<tr>
<th>Course code under18CV65X</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CV651</td>
<td>Remote Sensing & GIS</td>
</tr>
<tr>
<td>18CV652</td>
<td>Traffic Engineering</td>
</tr>
<tr>
<td>18CV653</td>
<td>Occupational Health & Safety</td>
</tr>
<tr>
<td>18CV654</td>
<td>Sustainability Concepts in Civil Engineering</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Students can select any one of the open electives offered by other Departments except those that are offered by the parent Department (Please refer to the list of open electives under 18XX65X). Selection of an open elective shall not be allowed if,</td>
<td></td>
</tr>
<tr>
<td>• The candidate has studied the same course during the previous semesters of the programme.</td>
<td></td>
</tr>
<tr>
<td>• The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.</td>
<td></td>
</tr>
<tr>
<td>• A similar course, under any category, is prescribed in the higher semesters of the programme.</td>
<td></td>
</tr>
<tr>
<td>Registration to electives shall be documented under the guidance of Programme Coordinator/Advisor/Mentor.</td>
<td></td>
</tr>
</tbody>
</table>

Internship: All the students admitted to III year of BE/B.Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and/or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2018 – 19)

Programme: CIVIL ENGINEERING

VII SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Hours /Week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teaching Department</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Lecture</td>
</tr>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCC</td>
<td>18CV71</td>
<td>Quality Surveying and Contract Management</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>18CV72</td>
<td>Design of RCC and Steel Structures</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>3</td>
<td>PEC</td>
<td>18CV73X</td>
<td>Professional Elective - 2</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>4</td>
<td>PEC</td>
<td>18CV74X</td>
<td>Professional Elective - 3</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>5</td>
<td>OEC</td>
<td>18CV75X</td>
<td>Open Elective - B</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>6</td>
<td>PCC</td>
<td>18CVL76</td>
<td>Computer Aided Detailing of Structures</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>7</td>
<td>PCC</td>
<td>18CVL77</td>
<td>Geotechnical Engineering Laboratory</td>
<td>Civil Enng.</td>
</tr>
<tr>
<td>8</td>
<td>Project</td>
<td>18CVP78</td>
<td>Project Work Phase - 1</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Internship</td>
<td>--</td>
<td>Internship</td>
<td>(If not completed during the vacation of VI and VII semesters, it shall be carried out during the vacation of VII and VIII semesters)</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>04</td>
<td>06</td>
<td>21</td>
<td>380</td>
<td>420</td>
<td>00</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: PCC: Professional core, PEC: Professional Elective.

Professional Elective - 2

Course code under 18CV73X

- 18CV731 Theory of Elasticity
- 18CV732 Air Pollution and Control
- 18CV733 Pavement Materials & Construction
- 18CV734 Ground Water Hydraulics
- 18CV735 Masonry Structures

Professional Electives - 3

Course code under 18CV74X

- 18CV741 Earthquake Engineering
- 18CV742 Design Concepts of Building Services
- 18CV743 Reinforced Earth Structures
Open Elective -B

<table>
<thead>
<tr>
<th>Course code under 18CV75X</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CV751</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>18CV752</td>
<td>Numerical Methods and Applications</td>
</tr>
<tr>
<td>18CV753</td>
<td>Environmental Protection and Management</td>
</tr>
</tbody>
</table>

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX75X).

Selection of an open elective shall not be allowed if,
- The candidate has studied the same course during the previous semesters of the programme.
- The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.
- A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Project work:
Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary project can be assigned to an individual student or to a group having not more than 4 students. In extraordinary cases, like the funded projects requiring students from different disciplines, the project student strength can be 5 or 6.

CIE procedure for Project Work Phase - 1:
(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of the project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the Project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

Internship: All the students admitted to III year of BE/B.Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and/or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course and Course code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Duration in hours</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC 18CV81</td>
<td>Design of Pre-stressed Concrete</td>
<td>Civil Engg.</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PEC 18CV82X</td>
<td>Professional Elective - 4</td>
<td>Civil Engg.</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Project 18CVP83</td>
<td>Project Work Phase - 2</td>
<td>Civil Engg.</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Seminar 18CVS84</td>
<td>Technical Seminar</td>
<td>Civil Engg.</td>
<td>03</td>
<td>100</td>
<td>--</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Internship 18CVI85</td>
<td>Internship</td>
<td>Completed during the vacation/s of VI and VII semesters and /or VII and VIII semesters.)</td>
<td>03</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 06 -- 18 15 260 240 500 18

Note: PCC: Professional Core, PEC: Professional Elective.

Professional Electives - 4

<table>
<thead>
<tr>
<th>Course code under 18CV82X</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CV821</td>
<td>Bridge Engineering</td>
</tr>
<tr>
<td>18CV822</td>
<td>Prefabricated Structures</td>
</tr>
<tr>
<td>18CV823</td>
<td>Advanced Foundation Engineering</td>
</tr>
<tr>
<td>18CV824</td>
<td>Rehabilitation & Retrofitting</td>
</tr>
<tr>
<td>18CV825</td>
<td>Pavement Design</td>
</tr>
</tbody>
</table>

Project Work

CIE procedure for Project Work Phase - 2:

(i) **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) **Interdisciplinary:** Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide(s), if any, is desirable.

The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Project Work Phase - 2:
(i) **Single discipline:** Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department.

(ii) **Interdisciplinary:** Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belongs to.

Internship: Those, who have not pursued/completed the internship, shall be declared as fail and have to complete during subsequent University examination after satisfying the internship requirements.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.

Activity points of the students who have earned the prescribed AICTE activity Points shall be sent the University along with the CIE marks of 8th semester. In case of students who have not satisfied the AICTE activity Points at the end of eighth semester, the column under activity Points shall be marked NSAP (Not Satisfied Activity Points).
Course Learning Objectives:

- To have an insight into Fourier series, Fourier transforms, Laplace transforms, Difference equations and Z-transforms.
- To develop the proficiency in variational calculus and solving ODE’s arising in engineering applications, using numerical methods.

Module-1

Laplace Transform: Definition and Laplace transforms of elementary functions (statements only). Laplace transforms of Periodic functions (statement only) and unit-step function – problems.

Inverse Laplace Transform: Definition and problems, Convolution theorem to find the inverse Laplace transforms (without Proof) and problems. Solution of linear differential equations using Laplace transforms.

Module-2

Fourier Series: Periodic functions, Dirichlet’s condition. Fourier series of periodic functions period $\frac{2\pi}{2}$ and arbitrary period. Half range Fourier series. Practical harmonic analysis.

Module-3

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms. Problems.

Difference Equations and Z-Transforms: Difference equations, basic definition, z-transform – definition, Standard z-transforms, Damping and shifting rules, initial value and final value theorems (without proof) and problems, Inverse z-transform and applications to solve difference equations.

Module-4

Numerical Solutions of Ordinary Differential Equations (ODE’s):
Numerical solution of ODE’s of first order and first degree- Taylor’s series method, Modified Euler’s method. Runge - Kutta method of fourth order, Milne’s and Adam-Bash forth predictor and corrector method (No derivations of formulae)-Problems.

Module-5

Numerical Solution of Second Order ODE’s: Runge-Kutta method and Milne’s predictor and corrector method. (No derivations of formulae).

Calculus of Variations: Variation of function and functional, variational problems, Euler’s equation, Geodesics, hanging chain, problems.

Course outcomes: At the end of the course the student will be able to:

- CO1: Use Laplace transform and inverse Laplace transform in solving differential/integral equation arising in network analysis, control systems and other fields of engineering.
- CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory.
- CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
- CO4: Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
- CO5: Determine the externals of functional using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
</table>

Textbooks

<table>
<thead>
<tr>
<th>Textbooks</th>
</tr>
</thead>
</table>

Reference Books

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
</table>

Web links and Video Lectures:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
4. [VTU EDUSAT PROGRAMME - 20](http://vtu.ac.in/edusat/programme-20)
Course Learning Objectives: This course will enable students
1. To understand the basic concepts of the stresses and strains for different materials and strength of structural elements.
2. To know the development of internal forces and resistance mechanism for one dimensional and two-dimensional structural elements.
3. To analyse and understand different internal forces and stresses induced due to representative loads on structural elements.
4. To determine slope and deflections of beams.
5. To evaluate the behaviour of torsion members, columns and struts.

Module-1

Module-2

Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame’s equation, radial and hoop stress distribution.

Module-3

Shear Force and Bending Moment in Beams: Introduction to types of beams, supports and loadings. Definition of bending moment and shear force, Sign conventions, relationship between load intensity, bending moment and shear force. Shear force and bending moment diagrams for statically determinate beams subjected to points load, uniformly distributed loads, uniformly varying loads, couple and their combinations.

Module-4

Module-5

Deflection of Beams: Definition of slope, Deflection and curvature, Sign conventions, Derivation of moment-curvature equation. Double integration method and Macaulay’s method: Slope and deflection for standard loading cases and for determinate prismatic beams subjected to point loads, UDL, UVL and couple.

Columns and Struts: Introduction, short and long columns. Euler’s theory; Assumptions, Derivation for Euler’s Buckling load for different end conditions, Limitations of Euler’s theory. Rankine-Gordon’s formula for columns.
Course outcomes: After studying this course, students will be able:
1. To evaluate the basic concepts of the stresses and strains for different materials and strength of structural elements.
2. To evaluate the development of internal forces and resistance mechanism for one dimensional and two dimensional structural elements.
3. To analyse different internal forces and stresses induced due to representative loads on structural elements.
4. To evaluate slope and deflections of beams.
5. To evaluate the behaviour of torsion members, columns and struts.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - III

<table>
<thead>
<tr>
<th>FLUIDS MECHANICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>CIE Marks</td>
</tr>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
</tr>
<tr>
<td>SEE Marks</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>Exam Hours</td>
</tr>
</tbody>
</table>

Course Learning Objectives: The objectives of this course is to make students to learn:
1. The Fundamental properties of fluids and its applications.
2. Hydrostatic laws and application to solve practical problem.
3. Principles of Kinematics and Hydrodynamics for practical applications.
4. Basic design of pipes and pipe networks considering flow, pressure and its losses.
5. The basic flow rate measurements.

Module-1

Fluids & Their Properties: Concept of fluid, Systems of units. Properties of fluid; Mass density, Specific weight, Specific gravity, Specific volume, Viscosity, Newton’s law of viscosity (theory & problems), Cohesion, Adhesion, Surface tension, Pressure inside a water droplet, soap bubble and liquid jet. Numerical problems,& Capillarity. Capillary rise in a vertical tube and between two plane surfaces (theory & problems). Vapor pressure of liquid, compressibility and bulk modulus, Fluid as a continuum.

Fluid Pressure and Its Measurements: Definition of pressure, Pressure at a point, Pascal’s law, Variation of pressure with depth. Types of pressure. Measurement of pressure using simple, differential & inclined manometers (theory & problems). Introduction to Mechanical and electronic pressure measuring devices.

Module-2

Hydrostatic forces on Surfaces: Definition, Total pressure, centre of pressure, total pressure on horizontal, vertical and inclined plane surface, total pressure on curved surfaces, water pressure on gravity dams, Lock gates. Numerical Problems.

Module-3

Fluid Dynamics: Introduction. Forces acting on fluid in motion. Euler’s equation of motion along a streamline and Bernoulli’s equation. Assumptions and limitations of Bernoulli’s equation. Modified Bernoulli’s equation. Problems on applications of Bernoulli’s equation (with and without losses). Momentum equation problems on pipe bends.

Module-4

Orifice and Mouth piece: Introduction, classification, flow through orifice, hydraulic coefficients and Numerical problems. Mouthpiece, classification, Borda’s Mouthpiece (No problems).

Notches and Weirs: Introduction. Classification, discharge over rectangular, triangular, trapezoidal notches, Cippoletti notch, broad crested weirs. Numerical problems. Ventilation of weirs, submerged weirs.

Module-5

Surge Analysis in Pipes: Water hammer in pipes, equations for pressure rise due to gradual valve closure and sudden closure for rigid and elastic pipes. Problems.

Course outcomes: After successful completion of the course, the student will be able to:
1. Possess a sound knowledge of fundamental properties of fluids and fluid Continuum
2. Compute and solve problems on hydrostatics, including practical applications
3. Apply principles of mathematics to represent kinematic concepts related to fluid flow
4. Apply fundamental laws of fluid mechanics and the Bernoulli’s principle for practical applications
5. Compute the discharge through pipes and over notches and weirs

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - III

BUILDING MATERIALS AND CONSTRUCTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV34</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will develop a student;
1. To recognize good construction materials based on properties.
2. To investigate soil properties and design suitable foundation.
3. To understand the types and properties of masonry materials and supervise masonry construction.
4. To gain knowledge of structural components like lintels, arches, staircase and roofs.
5. To understand the finishes in construction like flooring, plastering, painting.

Module-1

Building Materials: Stone as building material; Requirement of good building stones, Dressing of stones, Deterioration and Preservation of stone work. Bricks; Classification, Manufacturing of clay bricks, Requirement of good bricks. Field and laboratory tests on bricks; compressive strength, water absorption, efflorescence, dimension and warpage.
Cement Concrete blocks, Autoclaved Aerated Concrete Blocks, Sizes, requirement of good blocks.
Timber as construction material.
Fine aggregate: Natural and manufactured: Sieve analysis, zoning, specify gravity, bulking, moisture content, deleterious materials.
Coarse aggregate: Natural and manufactured: Importance of size, shape and texture. Grading of aggregates, Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests.

Module-2

Foundation: Preliminary investigation of soil, safe bearing capacity of soil, Function and requirements of good foundation, types of foundation, introduction to spread, combined, strap, mat and pile foundation
Masonry: Definition and terms used in masonry. Brick masonry, characteristics and requirements of good brick masonry, Bonds in brick work, Header, Stretcher, English, Flemish bond, Stone masonry, Requirements of good stone masonry, Classification, characteristics of different stone masonry, Joints in stone masonry. Types of walls; load bearing, partition walls, cavity walls.

Module-3

Lintels and Arches: Definition, function and classification of lintels, Balconies, chejja and canopy. Arches; Elements and Stability of an Arch.
Floors and roofs: Floors; Requirement of good floor, Components of ground floor, Selection of flooring material Procedure for laying of Concrete (VDF), Mosaic, Kota, Slate, Marble, Granite, Tile flooring, Cladding of tiles.
Roof: Requirement of good roof, Types of roof, Elements of a pitched roof, Trussed roof, King post Truss, Queen Post Truss, Steel Truss, Different roofing materials, R.C.C. Roof.

Module-4

Stairs: Definitions, technical terms and types of stairs: Wood, RCC, Metal. Requirements of good stairs. Geometrical design of RCC doglegged and open-well stairs.
Formwork: Introduction to form work, scaffolding, shoring, under pinning.

Module-5
Plastering and Pointing: Mortar and its types. Purpose, materials and methods of plastering and pointing: Sand faced plastering, Stucco plastering, lathe plastering, defects in plastering . Water proofing with various thicknesses.

Damp proofing: causes, effects and methods.

Paints- Purpose, types, technical terms, ingredients and defects, Preparation and applications of paints to new and old plastered surfaces, wooden and steel surfaces.

Course outcomes: After a successful completion of the course, the student will be able to:
1. Select suitable materials for buildings and adopt suitable construction techniques.
2. Decide suitable type of foundation based on soil parameters
3. Supervise the construction of different building elements based on suitability
4. Exhibit the knowledge of building finishes and form work requirements

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.

Textbooks:

Reference Books:
3. Building Materials and Components, CBRI, 1990, India
Course Code | 18CV35 | CIE Marks | 40
Teaching Hours/Week(L:T:P) | (3:0:0) | SEE Marks | 60
Credits | 03 | Exam Hours | 03

Course Learning Objectives: This course will enable students to;
1. Understand the basic principles of Surveying
2. Learn Linear and Angular measurements to arrive at solutions to basic surveying problems.
3. Employ conventional surveying data capturing techniques and process the data for computations.
4. Analyze the obtained spatial data to compute areas and volumes and draw contours to represent 3D data on plane figures.

Module-1

Introduction: Definition of surveying, Objectives and importance of surveying. Classification of surveys. Principles of surveying. Units of measurements, Surveying measurements and errors, types of errors, precision and accuracy. Classification of maps, map scale, conventional symbols, topographic maps, map layout, Survey of India Map numbering systems.

Module-2

Measurement of Directions and Angles: Compass survey: Basic definitions; meridians, bearings, magnetic and True bearings. Prismatic and surveyor’s compasses, temporary adjustments, declination. Quadrantal bearings, whole circle bearings, local attraction and related problems

Traversing: Traverse Survey and Computations: Latitudes and departures, rectangular coordinates, Traverse adjustments, Bowditch rule and transit rule, Numerical Problems.

Module-3

Leveling: Basic terms and definitions, Methods of leveling, Dumpy level, auto level, digital and laser levels. Curvature and refraction corrections. Booking and reduction of levels. Differential leveling, profile leveling, fly leveling, check leveling, reciprocal leveling.

Module-4

Plane Table Surveying: Plane table and accessories, Advantages and limitations of plane table survey, Orientation and methods of orientation, Methods of plotting – Radiation, Intersection, Traversing, Resection method, Two point and three point problems, Solution to two point problem by graphical method, Solution to three point problem Bessel’s graphical method, Errors in plane table survey.

Module-5

Areas and Volumes: Measurement of area by dividing the area into geometrical figures, area from offsets, mid ordinate rule, trapezoidal and Simpson’s one third rule, area from co-ordinates, introduction to planimeter, digital planimeter. Measurement of volumes- trapezoidal and prismoidal formula.

Contouring: Contours, Methods of contouring, Interpolation of contours, contour gradient, characteristics of contours and uses.
Course outcomes:
After a successful completion of the course, the student will be able to:

1. Posses a sound knowledge of fundamental principles Geodetics
2. Measurement of vertical and horizontal plane, linear and angular dimensions to arrive at solutions to basic surveying problems.
3. Capture geodetic data to process and perform analysis for survey problems
4. Analyse the obtained spatial data and compute areas and volumes. Represent 3D data on plane figures as contours

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives: This course will enable students;
1. To inculcate the importance of earth’s interior and application of Geology in civil engineering. Attempts are made to highlight the industrial applications of minerals.
2. To create awareness among Civil engineers regarding the use of rocks as building materials.
3. To provide knowledge on dynamic Geology and its importance in modifying the physical character of rocks which cause rocks suitable or unsuitable in different civil engineering projects such as Dams, bridges, tunnels and highways.
4. To educate the ground water management regarding diversified geological formations, climatically dissimilarity which are prevailed in the country. To highlight the concept of rain water harvesting.
5. To understand the application of Remote Sensing and GIS, Natural disaster and management and environmental awareness.

Module-1
Introduction: Application of Geology in Civil Engineering Practices, Understanding the earth, internal structure and composition.
Mineralogy: Mineral properties, composition and their use in the manufacture of construction materials – Quartz Group (Glass); Feldspar Group (Ceramic wares and Flooring tiles); Kaolin (Paper, paint and textile); Asbestos (AC sheets); Carbonate Group (Cement); Gypsum (POP, gypsum sheets, cement); Mica Group (Electrical industries); Ore minerals - Iron ores (Steel); Chrome (Alloy); Bauxite (aluminum); Chalcopyrite (copper).

Module-2

Module-3

Module-4

Module-5
Seismology and Geodesy: Earthquake - Causes and Effects, Seismic waves, engineering problems related to Earthquakes, Earthquake intensity, Richter scale, Seismograph, Seismic zones- World and India. Tsunami causes and effects, Volcanic Eruptions. Landslides (Mass movements) causes, types and remedial measures –stability assessment for soil and rock slopes. Study of Topographic maps and Contour maps; Remote Sensing – Concept, Application and its Limitations; Geographic Information System (GIS) and Global Positioning System (GPS) –
Course outcomes: After a successful completion of the course, the student will be able to:
1. Apply geological knowledge in different civil engineering practice.
2. Students will acquire knowledge on durability and competence of foundation rocks, and confidence enough
to use the best building materials.
3. Civil Engineers are competent enough for the safety, stability, economy and life of the structures that they
construct.
4. Able to solve various issues related to ground water exploration, build up dams, bridges, tunnels which are
often confronted with ground water problems.
5. Intelligent enough to apply GIS, GPS and remote sensing as a latest tool in different civil engineering
construction.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
1. Earthquake Tips - Learning Earthquake Design and Construction - C V R Murthy Published by National
Information Centre of Earthquake Engineering, Indian Institute of Technology, Kanpur. Dimitri P Krynine
and William R Judd, “Principles of Engineering Geology and Geotechnics”, CBS Publishers and
Distributors, New Delhi.
Hyderabad.
Hyderabad.
Delhi.
University of Mysore, Mysore
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III
COMPUTER AIDED BUILDING PLANNING AND DRAWING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVL37</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(0:2:2)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Total Number of Lecture/Practice Hours</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: Provide students with a basic understanding
1. Achieve skill sets to prepare computer aided engineering drawings
2. Understand the details of construction of different building elements.
3. Visualize the completed form of the building and the intricacies of construction based on the engineering drawings.

Module: 1
Drawing Basics: Selection of scales for various drawings, thickness of lines, dimensioning, abbreviations and conventional representations as per IS: 962.
Simple engineering drawings with CAD drawing tools: Lines, Circle, Arc, Poly line, Multiline, Polygon, Rectangle, Spline, Ellipse, Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet, Using Text: Single line text, Multiline text, Spelling, Edit text, Special Features: View tools, Layers concept, Dimension tools, Hatching, Customizing toolbars, Working with multiple drawings.

Module: 2
Drawings Related to Different Building Elements:
Following drawings are to be prepared for the data given using CAD Software
a) Cross section of Foundation, masonry wall, RCC columns with isolated & combined footings.
b) Different types of bonds in brick masonry.
c) Different types of staircases – Dog legged, Open well.
d) Lintel and chajja.
e) RCC slabs and beams.
f) Cross section of a pavement.
g) Septic Tank and sedimentation Tank.
h) Layout plan of Rainwater recharging and harvesting system.
i) Cross sectional details of a road for a Residential area with provision for all services.
j) Steel truss (connections Bolted).
Note: Students should sketch to dimension the above in a sketch book before doing the computer drawing.

Module -3:
Building Drawings: Principles of planning, Planning regulations and building bye-laws, factors affecting site selection, Functional planning of residential and public buildings, design aspects for different public buildings. Recommendations of NBC.

Drawing of Plan, elevation and sectional elevation including electrical, plumbing and sanitary services using CAD software for:
1. Single and double story residential building.
2. Hostel building.
3. Hospital building.
4. School building.
Submission drawing (sanction drawing) of two storied residential building with access to terrace including all details and statements as per the local bye-laws
Note: Students should sketch to dimension the above in a sketch book before doing the computer drawing
One compulsory field visit/exercise to be carried out.
Single line diagrams to be given in the examination.
Course Outcomes: After studying this course, students will be able to
1. Prepare, read and interpret the drawings in a professional set up.
2. Know the procedures of submission of drawings and develop working and submission drawings for building.
3. Plan and design a residential or public building as per the given requirements.

Question paper pattern:
- There will be four full questions with sub divisions if necessary from Module 2 with each full question carrying twenty-five marks. Students have to answer any two questions.
- There will be two full questions from Module 3 with each full question carrying fifty marks. Students have to answer any one question. The conduction of examination and question paper format of should be in lines of 1st year CAED drawing. It’s a drawing paper but the exam will be conducted by batches in the computer labs. Question papers should be given in batches.

Textbook:

Reference Books:
1. Time Saver Standard by Dodge F. W., F. W. Dodge Corp.
Course Learning Objectives: The objectives of this course is to make students to learn:
1. Ability to apply knowledge of mathematics and engineering in calculating the mechanical properties of structural materials.
2. Ability to function on multi-disciplinary teams in the area of materials testing.
3. Ability to use the techniques, skills and modern engineering tools necessary for engineering.
4. Understanding of professional and ethical responsibility in the areas of material testing.
5. Ability to communicate effectively the mechanical properties of materials.

Experiments:
1. Tension test on mild steel and HYSD bars.
2. Compression test on mild steel, cast iron and wood.
3. Torsion test on mild steel circular sections.
4. Bending Test on Wood Under two point loading.
5. Shear Test on Mild steel- single and double shear.
6. Impact test on Mild Steel (Charpy & Izod).
7. Hardness tests on ferrous and non-ferrous metals- Brinell’s, Rockwell and Vicker’s.
8. Tests on Bricks, Tiles and Concrete Blocks.
9. Tests on Fine aggregates-Moisture content, Specific gravity, Bulk density, Sieve analysis and Bulking.
10. Tests on Coarse aggregates-Absorption, Moisture content, specific gravity, Bulk density and Sieve analysis.
11. Demonstration of Strain gauges and Strain indicators.

NOTE: All tests to be carried out as per relevant latest BIS Codes

Course Outcomes: After successful completion of the course, the students will be able to:
1. Reproduce the basic knowledge of mathematics and engineering in finding the strength in tension, compression, shear and torsion.
2. Identify, formulate and solve engineering problems of structural elements subjected to flexure.
3. Evaluate the impact of engineering solutions on the society and also will be aware of contemporary issues regarding failure of structures due to unsuitable materials.

Question paper pattern:
- Group experiments - Tension test, compression test, torsion test and bending test.
- Individual Experiments – Remaining tests.
- Two questions are to be set - One from group experiments and the other as individual experiment.
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Reference Books:
7. Relevant latest IS Codes.
B. E. (Common to all Programmes)
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
SEMESTER –II & III/IV

Vyavaharika Kannada

Course Code 18KVK28/39/49
Teaching Hours/Week (L:T:P) (0:2:0) CIE Marks 100
Credits 01

Course Learning Objectives:
The course will enable the students to understand Kannada and communicate in Kannada language.

Table of Contents:
Chapter - 1: Vyavaharika kannada – Parichaya (Introduction to Vyavaharika Kannada).
Chapter - 2: Kannada Aksharamale haagu uchcharane (Kannada Alpabets and Pronunciation).
Chapter - 3: Sambhashanegaagi Kannada Padagalu (Kannada Vocabulary for Communication).
Chapter - 4: Kannada Grammar in Conversations (Sambhashaneyalli Kannada Vyakarana).
Chapter - 5: Activities in Kannada.

Course Outcomes:
At the end of the course, the student will be able to understand Kannada and communicate in Kannada language.

Textbook Textbook Textbook Textbook
 Vyavaharika Kannada Textbook

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KVK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week</td>
<td>(0:2:0)</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
</tbody>
</table>
Course Code: 18CPC39/49

Course Learning Objectives:
- To know the fundamental political codes, structure, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens.
- To understand engineering ethics and their responsibilities; identify their individual roles and ethical responsibilities towards society.
- To know about the cybercrimes and cyber laws for cyber safety measures.

Module-1

Module-2

Module-3

Constitutional special provisions: Special Provisions for SC and ST, OBC, Women, Children and Backward Classes.

Module-4

Module-5
Internet Laws, Cyber Crimes and Cyber Laws: Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship. Cybercrimes and enforcement agencies.

Course Outcomes:
- CO1: Have constitutional knowledge and legal literacy.
- CO2: Understand Engineering and Professional ethics and responsibilities of Engineers.
- CO3: Understand the the cybercrimes and cyber laws for cyber safety measures.

Question paper pattern for SEE and CIE:
- The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ).
- For the award of 40 CIE marks, refer the University regulations 2018.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
</table>

| Course Outcomes: On completion of this course, students will be able to, |
|----------------|----------------|----------------|----------------|
| CO1: Have constitutional knowledge and legal literacy. |
| CO2: Understand Engineering and Professional ethics and responsibilities of Engineers. |
| CO3: Understand the the cybercrimes and cyber laws for cyber safety measures. |

Question paper pattern for SEE and CIE:
- The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ).
- For the award of 40 CIE marks, refer the University regulations 2018.
<table>
<thead>
<tr>
<th>Textbooks</th>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Constitution of India, Professional Ethics and Human Rights</td>
<td>3 Introduction to the Constitution of India</td>
</tr>
<tr>
<td>Cengage Learning India</td>
<td></td>
</tr>
<tr>
<td>2 Cyber Security and Cyber Laws</td>
<td>4 Engineering Ethics</td>
</tr>
<tr>
<td>Alfred Basta and et al</td>
<td>M. Govindarajan, S. Natarajan, V. S. Senthilkumar</td>
</tr>
</tbody>
</table>
B. E. Common to all Programmes

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III

ADDITIONAL MATHEMATICS – I
(Mandatory Learning Course: Common to All Programmes)
(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech programmes)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MATDIP31</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(2:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>0</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course objectives:
- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE’s.

Module-1

Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand’s diagram, De-Moivre’s theorem (without proof).

Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

Module-2

Module-3

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

Module-4

Integral Calculus: Review of elementary integral calculus. Reduction formulae for $\sin^n x, \cos^n x$ (with proof) and $\sin^m x \cos^n x$ (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.

Module-5

Ordinary differential equations (ODE’s). Introduction-solutions of first order and first degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli’s equation.

Course outcomes: At the end of the course the student will be able to:
- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued functions.
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
 - Each full question will be for 20 marks.
 - There will be two full questions (with a maximum of four sub-questions) from each module.
 - Each full question will have sub-question covering all the topics under a module.
 - The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference Books</td>
<td>Author(s)</td>
<td>Publisher</td>
<td>Edition, Year</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Course Code</td>
<td>18MAT41</td>
<td>CIE Marks</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(2:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
<td>Exam Hours</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Module-2

Conformal transformations: Introduction. Discussion of transformations: \(w = z^2 \), \(w = e^z \), \(w = z + \frac{1}{z}, (z \neq 0) \). Bilinear transformations- Problems.

Complex integration: Line integral of a complex function-Cauchy’s theorem and Cauchy’s integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions- problems (No derivation for mean and standard deviation)-Illustrative examples.

Module-4

Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form- \(y = ax + b \), \(y = ax^b \) & \(y = ax^2 + bx + c \).

Statistical Methods: Correlation and regression-Karl Pearson’s coefficient of correlation and rank correlation-problems. Regression analysis- lines of regression –problems.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance.

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student’s t-distribution, Chi-square distribution as a test of goodness of fit.

Course outcomes: At the end of the course the student will be able to:
- CO1: Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- CO2: Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- CO3: Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- CO4: Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO5: Construct joint probability distributions and demonstrate the validity of testing the hypothesis.
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbooks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Advanced Engineering Mathematics</td>
<td>Chandrika Prasad and Reena Garg</td>
<td>Khanna Publishing,</td>
<td>2018</td>
</tr>
</tbody>
</table>

Web links and Video Lectures:
2. http://www.class-central.com/subject/math(MOOCs)
4. VTU EDUSAT PROGRAMME - 20
B. E. CIVIL ENGINEERING
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
SEMESTER – IV
ANALYSIS OF DETERMINATE STRUCTURES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV42</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>04</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
This course will enable students to
1. To understand different forms of structural systems.
2. To understand concept of ILD and moving loads.
3. To determine slopes and deflections of beams and trusses.
4. To analyse arches and cables.

Module-1
Introduction and Analysis of Plane Trusses:
Structural forms, Conditions of equilibrium, Compatibility conditions, Degree of freedom, Linear and non-linear analysis, Static and kinematic indeterminacies of structural systems.

Influence Lines:
Concepts of influence lines-ILD for reactions, SF and BM for determinate beams-ILD for axial forces in determinate trusses and numerical problems.

Module-2
Moving Loads:
Reactions, BM and SF in determinate beams, axial forces in determinate trusses for rolling loads using ILD (Max. values and absolute max. values for beams subjected to multiple loads).

Module-3
Deflection of Beams:
Moment area method: Derivation, Mohr’s theorems, Sign conventions, Application of moment area method for determinate prismatic beams, Beams of varying section, Use of moment diagram by parts. Conjugate beam method: Real beam and conjugate beam, conjugate beam theorems, Application of conjugate beam method of determinate beams of variable cross sections

Module-4
Energy Principles and Energy Theorems:
Principle of virtual displacements, Principle of virtual forces, Strain energy and complimentary energy, Strain energy due to axial force, bending, shear and torsion, Deflection of determinate beams and trusses using total strain energy, Deflection at the point of application of single load, Castigliano’s theorems and its application to estimate the deflections of trusses, bent frames, Special applications-Dummy unit load method.

Module-5
Arches and Cable Structures:
Three hinged parabolic and circular arches with supports at the same and different levels. Determination of normal thrust, radial shear and bending moment. Analysis of cables under point loads and UDL. Length of cables for supports at same and at different levels- Stiffening trusses for suspension cables.

Course Outcomes:
After studying this course, students will be able to:
1. Identify different forms of structural systems.
2. Construct ILD and analyse the beams and trusses subjected to moving loads
3. Understand the energy principles and energy theorems and its applications to determine the deflections of trusses and beams.
4. Determine the stress resultants in arches and cables.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives: The objectives of this course is to make students to learn:

1. Principles of dimensional analysis to design hydraulic models and Design of various models.
2. Design the open channels of various cross sections including design of economical sections.
3. Energy concepts of fluid in open channel, Energy dissipation, Water surface profiles at different conditions.
4. The working principles of the hydraulic machines for the given data and analyzing the performance of Turbines for various design data.

Module-1
Dimensional analysis: Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham ð theorem, dimensional analysis, choice of variables, examples on various applications. **Model analysis:** Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude’s model, Euler’s Model, Webber’s model, Mach model, scale effects, Distorted models. Numerical problems on Reynolds’s, and Froude’s Model

Buoyancy and Flotation: Buoyancy, Force and Centre of Buoyancy, Meta centre and Meta centric height, Stability of submerged and floating bodies, Determination of Meta centric height, Experimental and theoretical method, Numerical problems.

Module-2
Open Channel Flow Hydraulics: Uniform Flow: Introduction, Classification of flow through channels, Chezy’s and Manning’s equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems. Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Numerical Problems

Module-3
Non-Uniform Flow: Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles, Mild, steep, critical, horizontal and adverse slope profiles, Numerical problems on identifying the flow profiles

Module-4
Impact of jet on Curved vanes: Introduction, Impulse-Momentum equation. Direct impact of a jet on stationary and moving curved vanes, Introduction to concept of velocity triangles, impact of jet on a series of curved vanes- Problems.

Module-5
Reaction Turbines and Pumps: Radial flow reaction turbines: (i) Francis turbine- Descriptions, working proportions and design, Numerical problems. (ii) Kaplan turbine- Descriptions, working proportions and design, Numerical problems. Draft tube theory and unit quantities. (No problems)

Centrifugal pumps: Components and Working of centrifugal pumps, Types of centrifugal pumps, Work done by the impeller, Heads and Efficiencies, Minimum starting speed of centrifugal pump, Numerical problems, Multi-stage pumps.
Course outcomes:
After a successful completion of the course, the student will be able to:

1. Apply dimensional analysis to develop mathematical modeling and compute the parametric values in prototype by analyzing the corresponding model parameters
2. Design the open channels of various cross sections including economical channel sections
3. Apply Energy concepts to flow in open channel sections, Calculate Energy dissipation,
4. Compute water surface profiles at different conditions
5. Design turbines for the given data, and to know their operation characteristics under different operating conditions

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives:
This course will enable students to:

1. To recognize material characterization of ingredients of concrete and its influence on properties of concrete.
2. Proportion ingredients of Concrete to arrive at most desirable mechanical properties of Concrete.
3. Ascertain and measure engineering properties of concrete in fresh and hardened state which meet the requirement of real time structures.

Module-1
Concrete Ingredients

Module-2
Fresh Concrete

Module-3
Hardened Concrete

Module-4
Concrete Mix Proportioning
Concept of Mix Design with and without admixtures, variables in proportioning and Exposure conditions, Selection criteria of ingredients used for mix design, Procedure of mix proportioning. Numerical Examples of Mix Proportioning using IS-10262:2019.

Module-5
Special Concretes
RMC- manufacture and requirement as per QCI-RMCPUCS, properties, advantages and disadvantages. Self- Compacting concrete- concept, materials, tests, properties, application and typical mix Fiber reinforced concrete - Fibers types, properties, application of FRC. Light weight concrete-material properties and types. Typical light weight concrete mix and applications, materials, requirements, mix proportion and properties of Geo polymer Concrete, High Strength Concrete and High Performance Concrete.

Course outcomes:
After studying this course, students will be able to:

1. Relate material characteristics and their influence on microstructure of concrete.
2. Distinguish concrete behavior based on its fresh and hardened properties.
3. Illustrate proportioning of different types of concrete mixes for required fresh and hardened properties using professional codes.
4. Adopt suitable concreting methods to place the concrete based on requirement.
5. Select a suitable type of concrete based on specific application.
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
2. M.S. Shetty, Concrete Technology - Theory and Practice Published by S. Chand and Company, New Delhi.

Reference Books:
ADVANCED SURVEYING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV45</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Objectives: This course will enable students to
1. Apply geometric principles to arrive at solutions to surveying problems.
2. Analyze spatial data using appropriate computational and analytical techniques.
3. Design proper types of curves for deviating type of alignments.
4. Use the concepts of advanced data capturing methods necessary for engineering practice

Module-1
Theodolite Survey and Instrument Adjustment: Theodolite and types, Fundamental axes and parts of Transit theodolite, uses of theodolite, Temporary adjustments of transit theodolite, measurement of horizontal and vertical angles, step by step procedure for obtaining permanent adjustment of Transit theodolite.

Trigonometric Levelling: Trigonometric leveling (heights and distances-single plane and double plane methods).

Module-2
Tacheometry: Basic principle, types of tacheometry, distance equation for horizontal and inclined line of sight in fixed hair method, problems.

Geodetic Surveying: Principle and Classification of triangulation system, Selection of base line and stations, Orders of triangulation, Triangulation figures, Reduction to Centre, Selection and marking of stations.

Module-3
Curve Surveying:

Module-4
Aerial Photogrammetry
Introduction, Uses, Aerial photographs, Definitions, Scale of vertical and tilted photograph (simple problems), Ground Co-ordinates (simple problems), Relief Displacements (Derivation), Ground control, Procedure of aerial survey, overlaps and mosaics, Stereoscopes, Derivation Parallax.

Module-5
Modern Surveying Instruments
Introduction, Electromagnetic spectrum, Electromagnetic distance measurement, Total station, Lidar scanners for topographical survey.

Remote Sensing: Introduction, Principles of energy interaction in atmosphere and earth surface features, Image interpretation techniques, visual interpretation. Digital image processing, Global Positioning system

Geographical Information System: Definition of GIS, Key Components of GIS, Functions of GIS, Spatial data, spatial information system Geospatial analysis, Integration of Remote sensing and GIS and Applications in Civil Engineering(transportation, town planning).
Course outcomes: After a successful completion of the course, the student will be able to:

1. Apply the knowledge of geometric principles to arrive at surveying problems.
2. Use modern instruments to obtain geo-spatial data and analyse the same to appropriate engineering problems.
3. Capture geodetic data to process and perform analysis for survey problems with the use of electronic instruments;
4. Design and implement the different types of curves for deviating type of alignments.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

3. David Clerk, Plane and Geodetic Surveying Vol1 and Vol2, CBSpublishers
5. T.M Lillesand, R.W Kiefer,. and J.W Chipman, Remote sensing and Image interpretation , 5th edition, John Wiley and SonsIndia
B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - IV

WATER SUPPLY AND TREATMENT ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Marks</th>
<th>Teaching Hours/Week(L:T:P)</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CV46</td>
<td>40</td>
<td>(3:0:0)</td>
<td>60</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Analyze the variation of water demand and to estimate water requirement for a community.
2. Evaluate the sources and conveyance systems for raw and treated water.
3. Study drinking water quality standards and to illustrate qualitative analysis of water.
4. Design physical, chemical and biological treatment methods to ensure safe and potable water Supply.

Module -1

Introduction: Need for protected water supply. Demand of Water: Types of water demands - domestic demand, industrial, institutional and commercial, public use, fire demand estimation, factors affecting per capita demand, Variations in demand of water, Peak factor.

Design period and factors governing design period. Methods of population forecasting and numerical problems

Module -2

Water Treatment: Objectives, Unit flow diagrams – significance of each unit: Sources and Characteristics of surface and subsurface sources and Suitability. Sampling: Objectives, methods and preservation techniques. Drinking water quality standards as per BIS. Effect of water quality parameters.

Intake structures – types. Factors to be considered in selection of site for intake structures. Aeration process, limitations, types and two film theory.

Module -3

Filtration: mechanism, theory of filtration, types of filters: slow sand, rapid sand and pressure filters. Operation, cleaning. Operational problems in filters. Design of slow and rapid sand filter without under drainage system

Module -4

Disinfection: Theory of disinfection. Methods of disinfection with merits and demerits. Chlorination: Break point chlorination and determination of chlorine demand. Estimation of quantity bleaching powder.

Miscellaneous treatment Process: Softening: Lime soda and Zeolite process. Estimation of Hardness. Fluoridation and De-fluoridation, Nalagonda Technique. RO and Nano filtration process with merits and demerits.

Module -5

Collection and Conveyance of water: Types of pumps with working principles and numerical Problems. Design of the economical diameter for the rising main.

Pipe appurtenances, Valves, Fire hydrants and different Pipe materials with their advantages and disadvantages. Factors affecting selection of pipe material.

Distribution system: Methods: Gravity, Pumping and Combined gravity and pumping system. Types of Distribution system. Service reservoirs and their capacity determination plant units and distribution system with population forecasting for the given city.

Course Outcomes: After studying this course, students will be able to:

1. Estimate average and peak water demand for a community.
2. Evaluate available sources of water, quantitatively and qualitatively and make appropriate choice for a community.
3. Evaluate water quality and environmental significance of various parameters and plan suitable treatment system.
4. Design a comprehensive water treatment and distribution system to purify and distribute water to the required quality standards.
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - IV

ENGINEERING GEOLOGY LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVL47</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(0:2:2)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>12</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students

1. To expose the students to identify the minerals and rocks based on their inherent properties and uses in civil engineering,
2. To educate the students in the interpretation of the geological maps related to civil engineering projects.
3. Students will learn the dip and strike, thickness of strata, Bore hole problems related to geological formation related to foundation, tunnels, reservoirs and mining.
4. Students will understand the Field knowledge by visiting the site like problems Faults, Folds, Joints, Unconformity etc.

Experiments

1. Physical properties of minerals: Identification of
 i. Rock Forming minerals - Quartz group, Feldspar group, Garnet group, Mica group & Talc, Chlorite, Olivine, Asbestos, Calcite, Gypsum, etc
 ii. Ore forming minerals - Magnetite, Hematite, Pyrite, Pyralusite, Graphite, Chromite, etc

2. Engineering Properties of Rocks: Identification of
 i. Igneous rocks- Types of Granites, Dolerite, Granite Porphyry, Basalt, Pumice etc
 ii. Sedimentary rocks- Sandstone, Lime stone, Shale, Laterite, Breccia etc
 iii. Metamorphic rocks- Gneiss, Slate, Schist, Marble, Quartzite etc

3. Borehole problems: Determination of subsurface behavior of rocks, their attitude related to foundation, tunnels, reservoirs and mining. Triangular and Square methods. (2 methods)

4. Dip and Strike problems. Determine Apparent dip and True dip. (2 methods)

5. Calculation of Vertical, True thickness and width of the outcrops. (3 methods)

6. Study of Toposheets and Interpretation, Extraction of Drainage Basin and its Morphometric Analysis. (3Toposheets)

7. Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc. (10 Maps)

8. Interpretation of Satellite Images. (2 Satellite images)

9. Field work– To identify Minerals, Rocks, Geomorphology and Structural features with related to the Civil Engineering projects.

Course outcomes: During this course, students will develop expertise in;

1. The students able to identify the minerals, rocks and utilize them effectively in civil engineering practices.
2. The students will interpret and understand the geological conditions of the area for implementation of civil engineering projects.
3. The students will interpret subsurface information such as thickness of soil, weathered zone, depth of hard rock and saturated zone by using geophysical methods.
4. The students will learn the techniques in the interpretation of LANDSAT Imageries to find out the lineaments and other structural features for the given area.
5. The students will be able to identify the different structures in the field.

Scheme of Examination

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Experiment</th>
<th>Marks (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identification of Minerals (5 minerals)</td>
<td>20 (5x4)</td>
</tr>
<tr>
<td>2</td>
<td>Identification of Rocks (5 minerals)</td>
<td>20 (5x4)</td>
</tr>
<tr>
<td>3</td>
<td>Bore hole problems</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Deep and strike problems</td>
<td>06</td>
</tr>
<tr>
<td>5</td>
<td>Thickness of Strata problems</td>
<td>04</td>
</tr>
<tr>
<td>6</td>
<td>Interpretation of Toposheets</td>
<td>05</td>
</tr>
<tr>
<td>7</td>
<td>Geological maps</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Satellite Images</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>9</td>
<td>Viva-voce</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Out of 40 internal Assessment Marks (10 marks for Record, 10 marks for Field report and 20 mark for Lab test

Lab should be taught by the qualified candidates with M. Sc. Geolgy/earth science

Reference Books:

1. MP Billings, Structural Geology, CBS Publishers and Distributors, New Delhi.
3. LRA Narayan, remote sensing and its applications, University Press.
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - IV

FLUID MECHANICS AND HYDRAULIC MACHINES LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVL48</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>40</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to;
1. calibrate flow measuring devices
2. determine the force exerted by jet of water on vanes
3. measure discharge and head losses in pipes
4. understand the fluid flow pattern

Experiments:
1. Verification of Bernoulli’s equation.
2. Determination of Cd for Venturi meter and Orifice meter.
3. Determination of hydraulic coefficients of small vertical orifice.
5. Determination of C_d for Ogee and Broad crested weir.
7. Determination of force exerted by a jet on flat and curved vanes.
11. Determination of efficiency of centrifugal pump.
13. Determination of Minor losses in pipe due to sudden enlargement, sudden contraction and bend.

Course outcomes: During the course of study students will develop understanding of:
1. Properties of fluids and the use of various instruments for fluid flow measurement.
2. Working of hydraulic machines under various conditions of working and their characteristics.

- All experiments are to be included in the examination except demonstration exercises.
- Candidate to perform experiment assigned to him.
- Marks are to be allotted as per the split up of marks shown on the cover page of answer script.

Reference Books:
B. E. CIVIL ENGINEERING
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
SEMESTER - IV
ADDITIONAL MATHEMATICS – II
(Mandatory Learning Course: Common to All Branches)
(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech programmes)

Course Code: 18MATDIP41
CIE Marks: 40
Teaching Hours/Week (L:T:P): (2:1:0)
SEE Marks: 60
Credits: 00
Exam Hours: 03

Course Learning Objectives:
- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Module-2

Module-3
Higher order ODE’s: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators.[Particular Integral restricted to \(R(x) = e^{ax}, \sin(ax), \cos(ax), x^n f(D)y = R(x) \).]

Module-4
Partial Differential Equations (PDE’s): Formation of PDE’s by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Course Outcomes: At the end of the course the student will be able to:
- Solve systems of linear equations using matrix algebra.
- Apply the knowledge of numerical methods in modelling and solving of engineering problems.
- Classify partial differential equations and solve them by exact methods.
- Apply elementary probability theory and solve related problems.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V
CONSTRUCTION MANAGEMENT AND ENTREPRENEURSHIP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV51</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(2:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to
1. Understand the concept of planning, scheduling, cost and quality control, safety during construction, organization and use of project information necessary for construction project.
2. Inculcate Human values to grow as responsible human beings with proper personality.
3. Keep up ethical conduct and discharge professional duties.

Module -1
Management: Characteristics of management, functions of management, importance and purpose of planning process, types of plans.
Construction Project Formulation: Introduction to construction management, project organization, management functions, management styles.
Construction Planning and Scheduling: Introduction, types of project plans, work breakdown structure, Grant Chart, preparation of network diagram- event and activity based and its critical path method, PERT method, concept of activity on arrow and activity on node.

Module -2
Resource Management: Basic concepts of resource management, class of lab our, Wages & statutory requirement, Labour Production rate or Productivity, Factors affecting labour output or productivity.
Materials: material management functions, inventory management.

Module -3
Construction Quality, safety and Human Values:
Construction quality process, inspection, quality control and quality assurance, cost of quality, ISO standards. Introduction to concept of Total Quality Management
HSE: Introduction to concepts of HSE as applicable to Construction. Importance of safety in construction, Safety measures to be taken during Excavation, Explosives, drilling and blasting, hot bituminous works, scaffolds / platforms / ladder, form work and equipment operation. Storage of materials. Safety through legislation, safety campaign. Insurances.
Ethics: Morals, values and ethics, integrity, trustworthiness, work ethics, need of engineering ethics, Professional Duties, Professional and Individual Rights, Confidential and Proprietary Information, Conflict of Interest Confidentiality, Gifts and Bribes, Price Fixing, Whistle Blowing.

Module -4
Introduction to engineering economy: Principles of engineering economics, concept on Micro and macro analysis, problem solving and decision making.
Interest and time value of money: concept of simple and compound interest, interest formula for: single payment, equal payment and uniform gradient series. Nominal and effective interest rates, deferred annuities, capitalized cost.
Comparison of alternatives: Present worth, annual equivalent, capitalized and rate of return methods, Minimum Cost analysis and break even analysis.

Module -5
Entrepreneurship: Evolution of the concept, functions of an entrepreneur, concepts of entrepreneurship, stages in entrepreneurial process, different sources of finance for entrepreneur, central and state level financial institutions.

Micro, Small & Medium Enterprises (MSME): definition, characteristics, objectives, scope, role of MSME in economic development, advantages of MSME, Introduction to different schemes: TECKSOK, KIADB, KSSIDC, DIC, Single Window Agency: SISI, NSIC, SIDBI, KSFC.

Business Planning Process: Business planning process, marketing plan, financial plan, project report and feasibility study, guidelines for preparation of model project report for starting a new venture. Introduction to international entrepreneurship opportunities, entry into international business, exporting, direct foreign investment, venture capital.

Course Outcomes: After studying this course, students will be able to:

1. Prepare a project plan based on requirements and prepare schedule of a project by understanding the activities and their sequence.
2. Understand labour output, equipment efficiency to allocate resources required for an activity / project to achieve desired quality and safety.
3. Analyze the economics of alternatives and evaluate benefits and profits of a construction activity based on monetary value and time value.
4. Establish as an ethical entrepreneur and establish an enterprise utilizing the provisions offered by the federal agencies.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

5. Bureau of Indian standards – IS 7272 (Part-1)- 1974 : Recommendations for labour output constant for building works:

Reference Books:

3. Frank Harris, Ronald McCaffer with Francis Edum-Fotwe, “ Modern Construction Management”, Wiley-Blackwell
Course Code: 18CV52
CIE Marks: 40
Teaching Hours/Week (L:T:P): (3:2:0)
SEE Marks: 60
Credits: 04
Exam Hours: 03

Course Learning Objectives: This course will enable students to
1. Apply knowledge of mathematics and engineering in calculating slope, deflection, bending moment and shear force using slope deflection, moment distribution method and Kani’s method.
2. Identify, formulate and solve problems in structural analysis.
3. Analyze structural system and interpret data.
4. use the techniques, such as stiffness and flexibility methods to solve engineering problems
5. communicate effectively in design of structural elements

Module-1
Slope Deflection Method: Introduction, sign convention, development of slope deflection equation, analysis of continuous beams including settlements, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤3.

Module-2
Moment Distribution Method: Introduction, Definition of terms, Development of method, Analysis of continuous beams with support yielding, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤3.

Module-3
Kani’s Method: Introduction, Concept, Relationships between bending moment and deformations, Analysis of continuous beams with and without settlements, Analysis of frames with and without sway.

Module-4
Matrix Method of Analysis (Flexibility Method): Introduction, Axes and coordinates, Flexibility matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤3.

Module-5
Matrix Method of Analysis (Stiffness Method): Introduction, Stiffness matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with kinematic indeterminacy ≤3.

Course Outcomes: After studying this course, students will be able to:
1. Determine the moment in indeterminate beams and frames having variable moment of inertia and subsidence using slope deflection method
2. Determine the moment in indeterminate beams and frames of no sway and sway using moment distribution method.
3. Construct the bending moment diagram for beams and frames by Kani’s method.
4. Construct the bending moment diagram for beams and frames using flexibility method.
5. Analyze the beams and indeterminate frames by system stiffness method.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives: This course will enable students to
1. Identify, formulate and solve engineering problems of RC elements subjected to different kinds of loading.
2. Follow a procedural knowledge in designing various structural RC elements.
3. Impart the usage of codes for strength, serviceability and durability.
4. Provide knowledge in analysis and design of RC elements.

Module-1

Introduction to working stress and limit State Design: Introduction to working stress method, Difference between Working stress and Limit State Method of design, Modular Ratio and Factor of Safety and evaluation of design constants for working stress method.

Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section.

Module-2

Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear.

Module-3

Limit State Design of Beams: Design of singly and doubly reinforced beams, Design of flanged beams, design for combined bending, shear and torsion as per IS-456.

Module-4

Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases. Importance of bond, anchorage length and lap length.

Module-5

Limit State Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load and also for axial load & moment.

Course outcomes: After studying this course, students will be able to:
1. Understand the design philosophy and principles.
2. Solve engineering problems of RC elements subjected to flexure, shear and torsion.
3. Demonstrate the procedural knowledge in designs of RC structural elements such as slabs, columns and footings.
4. Owns professional and ethical responsibility.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V

BASIC GEOTECHNICAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV54</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Appreciate basic concepts of soil mechanics as an integral part in the knowledge of civil engineering.
2. Comprehend basic engineering and mechanical properties of different types of soil.
3. Become broadly familiar with geotechnical engineering problems such as, flow of water through soil medium and terminologies associated with geotechnical engineering.
4. Assess the improvement in mechanical behaviour by densification of soil deposits using compaction.
5. Model and measure strength-deformation characteristics of soils.

Module-1

Introduction: Origin and formation of soil, Regional soil deposits in India, Phase Diagram, phase relationships, definitions and their interrelationships.

Determination of Index properties: Specific gravity, water content, in-situ density, relative density, particle size analysis(sieve and Hydrometer analysis), Atterberg’s Limits, consistency indices. Activity of clay, Field identification tests, Plasticity chart, BIS soil classification (IS: 1498-1970).

Module-2

Soil Structure and Clay Mineralogy: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite, and Montmorillonite and their application in Engineering

Compaction of Soils: Definition, Principle of compaction, Standard and Modified proctor’s compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control-compactive effort & method of compaction, lift thickness and number of passes, Proctor’s needle, Compacting equipments and their suitability.

Module-3

Flow through Soils: Darcy’s law-assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage velocity, superficial velocity and coefficient of percolation, Capillary Phenomena.

Seepage Analysis: Laplace equation, assumptions, limitation and its derivation. Flow nets-characteristics and applications. Flow nets for sheet piles and below the dam section. Unconfined flow, phreatic line (Casagrande’s method–with and without toe filter), flow through dams, design of dam filters.

Effective Stress Analysis:
Geostatic stresses, Effective stress concept-total stress, effective stress and Neutral stress and impact of the effective stress in construction of structures, quick sand phenomena.

Module-4

Shear Strength of Soil: Concept of shear strength, Mohr–Coulomb Failure Criterion, Modified Mohr–Coulomb Criterion Total and effective shear strength parameters, factors affecting shear strength of soils, Thixotrophy and sensitivity, Measurement of shear strength parameters - Direct shear test, unconfined compression test, triaxial compression test and field Vane shear test, Test under different drainage conditions.

Module-5

Consolidation of Soil: Definition, Mass-spring analogy, Terzaghi’s one dimensional consolidation theory-assumptions and limitations. Governing differential Equation and solution (No derivation).
Consolidation characteristics of soil (C, α, m, and C), Laboratory one dimensional consolidation test, characteristics of e-log (’ curve, Pre-consolidation pressure and its determination by Casagrande’s method. Over consolidation ratio, normally consolidated, under consolidated and over consolidated soils.
Determination of consolidation characteristics of soils—compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method). Primary and secondary consolidation.

Course outcomes: On the completion of this course students are expected to attain the following outcomes:

1. Ability to plan and execute geotechnical site investigation program for different civil engineering projects
2. Understanding of stress distribution and resulting settlement beneath the loaded footings on sand and clayey soils
3. Ability to estimate factor of safety against failure of slopes and to compute lateral pressure distribution behind earth retaining structures
4. Ability to determine bearing capacity of soil and achieve proficiency in proportioning shallow isolated and combined footings for uniform bearing pressure
5. Capable of estimating load carrying capacity of single and group of piles

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
4. Braja, M. Das, Geotechnical Engineering; Thomson Business Information India (P) Ltd., India.

Reference Books:
Course Code: 18CV55
CIE Marks: 40
Teaching Hours/Week (L:T:P): (3:0:0)
SEE Marks: 60
Credits: 03
Exam Hours: 03

Course Learning Objectives: This course will enable students to;
1. Understand the various water demands and population forecasting methods.
2. Understand and design different unit operations and unit process in involved in wastewater treatment process
3. Understand the concept and design of various physicochemical treatment units
4. Understand the concept and design of various biological treatment units
5. Understand the concept of various advance waste water and low cost treatment processes for rural areas.

Module-1
Introduction: Need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow, factors affecting dry and wet weather flow on design of sewerage system, estimation of storm water flow, time of concentration flow, numericals.

Sewer appurtenances: Manholes, catch basins, oil and grease traps. P, Q and S traps. Material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers basic principles of house drainage.

Module-2
Design of sewers: Hydraulic formula to determine velocity and discharge. Self cleansing and non scouring velocity. Design of hydraulic elements for circular sewers for full flow and half flow conditions.

Waste water characteristics: Sampling, significance and techniques, physical, chemical and biological characteristics, flow diagram for municipal waste water.

Treatment unit operations and process. Estimation of BOD. Reaction kinetics (zero order, 1st order and 2nd order).

Module-3
Treatment of municipal waste water: Screens: types, disposal. Grit chamber, oil and grease removal. Primary and secondary settling tanks.

Disposal of effluents: Dilution, self-purification phenomenon, oxygen sag curve, zones of purification, sewage farming, sewage sickness, numerical problems on disposal of effluents. Streeter-Phelps equation.

Module-4

Module-5
Advanced Wastewater Treatment: Need and technologies used. Nitrification and Denitrification Processes, Phosphorous removal. Advance oxidation processes (AOPs), Electro coagulation.

Rural sanitation: Low cost treatment process: Working principal and design of septic tanks for small community in rural and urban areas, two-pit latrines, eco-toilet and soak pits.

Course outcomes: After studying this course, the students will be able to:
1. Select the appropriate sewer appurtenances and materials in sewer network.
2. Design the sewers network and understand the self purification process in flowing water.
3. Design the various physico-chemical treatment units
4. Design the various biological treatment units
5. Design various AOPs and low cost treatment units.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks
<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CPHEEO manual on sewage treatment, Ministry of Urban Development, Government of India, New Delhi, 1999</td>
</tr>
</tbody>
</table>
Course Learning Objectives: This course will enable students to:

1. Gain knowledge of different modes of transportation systems, history, development of highways and the organizations associated with research and development of the same in INDIA.
2. Understand Highway planning and development considering the essential criteria’s (engineering and financial aspects, regulations and policies, socio economic impact).
3. Get insight to different aspects of geometric elements and train them to design geometric elements of a highway network.
4. Understand pavement and its components, pavement construction activities and its requirements.
5. Gain the skills of evaluating the highway economics by B/C, NPV, IRR methods and also introduce the students to highway financing concepts.

Module -1
Principles of Transportation Engineering: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute.
Highway Development and Planning: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCCL) Road development plan - vision 2021.
Highway Alignment and Surveys: Ideal Alignment, Factors affecting the alignment, Engineering surveys- Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects.

Module -2

Module -3
Pavement Materials: Sub grade soil - desirable properties-HRB soil classification-determination of CBR and modulus of sub grade reaction with Problems Aggregates- Desirable properties and tests, Bituminous materials- Explanation on Tar, bitumen, cutback and emulsion-tests on bituminous material Pavement Design: Pavement types, component parts of flexible and rigid pavements and their functions, ESWL and its determination (Graphical method only)-Examples.

Module -4

Module -5
Highway Drainage: Significance and requirements, Surface drainage system and design-Examples, subsurface drainage system, design of filter materials, Types of cross drainage structures, their choice and location.

Course Outcomes: After studying this course, students will be able to:
1. Acquire the capability of proposing a new alignment or re-alignment of existing roads, conduct necessary field investigation for generation of required data.
2. Evaluate the engineering properties of the materials and suggest the suitability of the same for pavement construction.
3. Design road geometrics, structural components of pavement and drainage.
4. Evaluate the highway economics by few select methods and also will have a basic knowledge of various highway financing concepts.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
1. Relevant IRC Codes.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CVL57</td>
<td>40</td>
<td>60</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
This course will enable students to
1. Apply the basic principles of engineering surveying and measurements
2. Follow effectively field procedures required for a professional surveyor
3. Use techniques, skills and conventional surveying instruments necessary for engineering practice.

1.
1. a) Measurements of distances using tape along with horizontal planes and slopes, direct ranging.
2. Setting out perpendiculars. Use of cross staff, optical square.

2.

3.
- Determination of distance between two inaccessible points using compass and

4.
- Determination of reduced levels of points using dumpy level/auto level (simple)

5.
- Determination of reduced levels of points using dumpy level/auto level (differential leveling and inverted leveling).

6.
- To determine the difference in elevation between two points using Reciprocal leveling and to determine the collimation error.

7.
- To conduct profile leveling, cross sectioning and block leveling. Plotting profile and cross sectioning in excel. Block contour on graph paper to scale.

8.

9.
- Determination of horizontal distance and vertical height to a base in accessible object using theodolite by single plane and double plane method.

10.
- To determine distance and elevation using tachometric surveying with horizontal and inclined line of sight.

11.
- Closed traverse surveying using Theodolite and applying corrections for error of closure by transit rule and Bowditch rule.

12.
- To locate the points using Radiation and Intersection method of Plane table surveying.

13.
- To solve three point problem in plane table using Bessel’s graphical solution.

14.
- Demonstration of Minor instruments like Clinometer, Ceylon Ghatt tracer, Box sextant, Hand level, Planimeter, nautical extant and Penta graph.

Course Outcomes:
After a successful completion of the course, the student will be able to:
1. Apply the basic principles of engineering surveying and for linear and angular measurements.
2. Comprehend effectively field procedures required for a professional surveyor.
3. Use techniques, skills and conventional surveying instruments necessary for engineering practice.

Question paper pattern:
- All are individual experiments.
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Textbooks:
Reference Books:

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V

CONCRETE AND HIGHWAY MATERIALS LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVL58</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(0:2:2)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students
1. To learn the procedure of testing concrete ingredients and properties of concrete as per standard code recommendations.
2. To learn the procedure of testing bituminous materials as per standard code recommendations.
3. To relate material characteristics to various application of construction.

Modules

Part A: Concrete Lab
1. Tests on Cement:
 a. Normal Consistency
 b. Setting time
 c. Compressive strength
 d. fineness by air permeability test
 e. specific gravity
2. Tests on Concrete:
 a. Design of concrete mix as per IS-10262
 b. Tests on fresh concrete:
 i. slump,
 ii. compaction factor and
 iii. Vee Bee test
 c. Tests on hardened concrete:
 i. compressive strength test,
 ii. split tensile strength test,
 iii. flexural strength test
 d. NDT tests by rebound hammer and pulse velocity test.
3. Tests on Self Compacting Concrete:
 a. Design of self compacting concrete, As per Is 10262:2019
 b. slump flow test,
 c. V-funnel test,
 d. J-Ring test,
 e. U Box test and
 f. L Box test

Part B: Highway materials Lab
1. Tests on Aggregates
 a. Aggregate Crushing value
 b. Los Angeles abrasion test
 c. Aggregate impact test
 d. Aggregate shape tests(combined index and angularity number)
2. Tests on Bituminous Materials
 a. Penetration test
 b. Ductility test
 c. Softening point test
 d. Specific gravity test
 e. Viscosity test by tarviscometer
 f. Bituminous Mix Design by Marshal Method (Demonstration only)
3. Tests on Soil
 a. Wet sieve analysis
 b. CBR test
Course Outcomes:
During this course, students will develop expertise in

1. Able to interpret the experimental results of concrete and highway materials based on laboratory tests.
2. Determine the quality and suitability of cement.
3. Design appropriate concrete mix using professional codes.
5. Evaluate the strength of structural elements using NDT techniques.
6. Test the soil for its suitability as subgrade soil for pavements.

Question paper pattern:
- All are individual experiments
- Instructions as printed on the cover page of answer script for split up of marks to be strictly followed.
- All exercises are to be included for practical examination.

Reference Books:

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Shetty M.S.</td>
<td>“Concrete Technology”, S. Chand &Co. Ltd, New Delhi</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Relevant BIS codes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Studies

Course Code: 18CIV59

CIE Marks: 40

Teaching Hours/Week (L:T:P): (1:0:0)

SEE Marks: 60

Credits: 01

Exam Hours: 02

Module - 1

Ecosystems (Structure and Function): Forest, Desert, Wetlands, Riverine, Oceanic and Lake.

Biodiversity: Types, Value; Hot-spots; Threats and Conservation of biodiversity, Forest Wealth, and Deforestation.

Module - 2

Natural Resource Management (Concept and case-studies): Disaster Management, Sustainable Mining, Cloud Seeding, and Carbon Trading.

Module - 3

Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Surface and Ground Water Pollution; Noise pollution; Soil Pollution and Air Pollution.

Waste Management & Public Health Aspects: Bio-medical Wastes; Solid waste; Hazardous wastes; E-wastes; Industrial and Municipal Sludge.

Module - 4

Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology.

Module - 5

Field work: Visit to an Environmental Engineering Laboratory or Green Building or Water Treatment Plant or Waste water treatment Plant; ought to be Followed by understanding of process and its brief documentation.

Course outcomes: At the end of the course, students will be able to:

- CO1: Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale.
- CO2: Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
- CO3: Demonstrate ecology knowledge of a complex relationship between biotic and a biotic components.
- CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.

Question paper pattern:

- The Question paper will have 100 objective questions.
- Each question will be for 01 marks
- Student will have to answer all the questions in an OMR Sheet.
- The Duration of Exam will be 2 hours.

Sl. No.	**Title of the Book**	**Name of the Author/s**	**Name of the Publisher**	**Edition and Year**
<table>
<thead>
<tr>
<th></th>
<th>Environmental Studies</th>
<th>S M Prakash</th>
<th>Pristine Publishing House, Mangalore</th>
<th>3rd Edition 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Environmental Studies – From Crisis to Cure</td>
<td>R Rajagopalan</td>
<td>Oxford Publisher</td>
<td>2005</td>
</tr>
</tbody>
</table>

Reference Books

|---|---|-----------------|---------------------------|-------------------|
Course Learning Objectives:
This course will enable students to
1. Understand advantages and disadvantages of steel structures, steel code provisions, and plastic behaviour of structural steel.
2. Learn Bolted connections and Welded connections.
3. Design of compression members, built-up columns and columns splices.
4. Design of tension members, simple slab base and gusseted base.
5. Design of laterally supported and un-supported steel beams.

Module -1
Introduction: Advantages and Disadvantages of Steel Structures, Limit state method Limit State of Strength, Structural Stability, Serviceability Limit states, Failure Criteria of steel, Design Consideration, Loading and load combinations, IS code provisions, Specification and Section classification.

Plastic Behavior of Structural Steel: Introduction, Plastic theory, Plastic Hinge Concept, Plastic collapse load, load factor, Shape factor, Theorem of plastic collapse, Methods of Plastic analysis, Plastic analysis of Continuous Beams.

Module -2
Bolted Connections: Introduction, Types of Bolts, Behavior of bolted joints, Design of High Strength friction Grip (HSFG) bolts, Design of Simple bolted Connections (Lap and Butt joints) and bracket connections.

Welded Connections: Introduction, Types and properties of welds, Effective areas of welds, Weld Defects, Simple welded joints for truss member and bracket connections, Advantages and Disadvantages of Bolted and Welded Connections.

Module -3
Design of Compression Members: Introduction, Failure modes, Behavior of compression members, Sections used for compression members, Effective length of compression members, Design of compression members and built up Compression members, Design of Laced and Battened Systems.

Module -4
Design of Tension Members: Introduction, Types of Tension members, Slenderness ratio, Modes of Failure, Factors affecting the strength of tension members, Design of Tension members and Lug angles, Splices, Gussets.

Design of Column Bases: Design of Simple Slab Base and Gusseted Base.

Module -5
Design of Beams: Introduction, Beam types, Lateral Stability of beams, factors affecting lateral stability, Behavior of Beams in Bending, Design strength of laterally supported beams in Bending, Design of Laterally unsupported Beams [No Numerical Problems], Shear Strength of Steel Beams, Beam to Beam Connections, Beam to Column Connection and Column Splices [No Numerical Problems].

Course Outcomes:
After studying this course, students will be able to:
1. Possess knowledge of Steel Structures Advantages and Disadvantages of Steel structures, steel code provisions and plastic behaviour of structural steel.
2. Understand the Concept of Bolted and Welded connections.
3. Understand the Concept of Design of compression members, built-up columns and columns splices.
4. Understand the Concept of Design of tension members, simple slab base and gusseted base.
5. Understand the Concept of Design of laterally supported and un-supported steel beams.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

Course Learning Objectives: This course will enable students to
1. Appreciate basic concepts of soil mechanics as an integral part in the knowledge of Civil Engineering. Also to become familiar with foundation engineering terminology and understand how the principles of Geotechnology are applied in the design of foundations
2. Learn introductory concepts of Geotechnical investigations required for civil engineering projects emphasizing in situ investigations
3. Conceptually learn various theories related to bearing capacity of soil and their application in the design of shallow foundations and estimation of load carrying capacity of pile foundation
4. Estimate internal stresses in the soil mass and application of this knowledge in proportioning of shallow and deep foundation fulfilling settlement criteria
5. Study about assessing stability of slopes and earth pressure on rigid retaining structures

Module-1
Soil Exploration: Introduction, Objectives and Importance, Stages and Methods of exploration- Test pits, Borings, Geophysical methods, stabilization of boreholes, Sampling techniques, Undisturbed, disturbed and representative samples, Geophysical exploration and Bore hole log. Drainage and Dewatering methods, estimation of depth of GWT (Hvorslev’s method).

Module-2
Stress in Soils: Introduction, Boussinesq’s and Westergaard’s theory concentrated load, circular and rectangular load, equivalent point load method, pressure distribution diagrams and contact pressure, Newmark’s chart.

Foundation Settlement: Types of settlements and importance, Computation of immediate and consolidation settlement, permissible differential and total settlements (IS 8009 part 1).

Module-3
Lateral Earth Pressure: Active, Passive and earth pressure at rest, Rankine’s theory for cohesionless and cohesive soils, Coulomb’s theory, Rebhann’s and Culmann’s graphical construction.

Module-4
Bearing Capacity of Shallow Foundation: Types of foundations, Determination of bearing capacity by Terzaghi’s and BIS method (IS: 6403), Modes of shear failure, Factors affecting Bearing capacity of soil. Effect of water table and/or eccentricity on bearing capacity of soil, field methods of determining bearing capacity of soil: SPT and plate load test.

Module-5
Pile Foundations: Types and classification of piles, single loaded pile capacity in cohesionless and cohesive soils by static and Dynamic formulas, efficiency of Pile group, group capacity of piles in cohesionless and cohesive soils, negative skin friction, pile load tests, Settlement of piles, under reamed piles (only introductory concepts – no derivation).

Course outcomes: On the completion of this course students are expected to attain the following outcomes:
1. Ability to plan and execute geotechnical site investigation program for different civil engineering projects
2. Understanding of stress distribution and resulting settlement beneath the loaded footings on sand and clayey soils
3. Ability to estimate factor of safety against failure of slopes and to compute lateral pressure distribution behind earth retaining structures
4. Ability to determine bearing capacity of soil and achieve proficiency in proportioning shallow isolated and combined footings for uniform bearing pressure
5. Capable of estimating load carrying capacity of single and group of piles

Question paper pattern:
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

HYDROLOGY AND IRRIGATION ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV63</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>04</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Understand the concept of hydrology and components of hydrologic cycle such as precipitation, infiltration, evaporation, and transpiration.
2. Quantify runoff and use concept of unit hydrograph.
3. Demonstrate different methods of irrigation, methods of application of water and irrigation procedure.
4. Design canals and canal network based on the water requirement of various crops.
5. Determine the reservoir capacity.

Module -1

Hydrology: Introduction, Importance of hydrology, Global distribution of water and Indian water availability, Practical application of hydrology, Hydrologic cycle (Horton’s) qualitative and engineering representation.

Precipitation: Definition, Forms and types of precipitation, measurement of rainfall using Symon’s and Syphon type of rain gauges, optimum number of rain gauge stations, consistency of rainfall data (double mass curve method), computation of mean rainfall, estimation of missing data, presentation of precipitation data, moving average curve, mass curve, rainfall hyetographs.

Module -2

Losses: Evaporation: Introduction, Process, factors affecting evaporation, measurement using IS class-A Pan, estimation using empirical formulae (Meyer’s and Rohwer’s equations) Reservoir evaporation and control.

Evapo-transpiration: Introduction, Consumptive use, AET, PET, Factors affecting, Measurement, Estimation by Blaney-Criddle equation.

Infiltration: Introduction, factors affecting infiltration capacity, measurement by double ring infiltrometer, Horton’s infiltration equation, infiltration indices.

Module -3

Runoff: Definition, concept of catchment, factors affecting runoff, rainfall – runoff relationship using regression analysis.

Hydrographs: Definition, components of hydrograph, base flow separation, unit hydrograph, assumption, application and limitations, derivation from simple storm hydrographs, S curve and its computations, Conversion of UH of different durations.

Module -4

Irrigation: Definition, Benefits and ill effects of irrigation. System of irrigation: surface and ground water, flow irrigation, lift irrigation, Bandhara irrigation.

Water Requirements of Crops: Duty, delta and base period, relationship between them, factors affecting duty of water crops and crop seasons in India, irrigation efficiency, frequency of irrigation.

Module -5

Reservoirs: Definition, investigation for reservoir site, storage zones determination of storage capacity using mass curves, economical height of dam.

Course outcomes: After studying this course, students will be able to:

1. Understand the importance of hydrology and its components.
2. Measure precipitation and analyze the data and analyze the losses in precipitation.
3. Estimate runoff and develop unit hydrographs.
4. Find the benefits and ill-effects of irrigation.
5. Find the quantity of irrigation water and frequency of irrigation for various crops.
6. Find the canal capacity, design the canal and compute the reservoir capacity.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives: This course will enable students to
1. Gain basic knowledge of structural systems and application of concepts of flexibility and stiffness matrices for simple elements.
2. Understand flexibility and stiffness matrices to solve problems in beams, frames and trusses.
3. Gain knowledge of direct stiffness method to solve problems in beams, frames and trusses.
4. Gain knowledge of solving problems involving temperature changes and lack of fit.

Module -1
Introduction: Structural systems, geometric and material non-linearity, principle of superposition, equilibrium and compatibility conditions, static and kinematic indeterminacy, principle of minimum potential energy and minimum complementary energy, concepts of stiffness and flexibility, flexibility and stiffness matrices of beam and truss elements.

Module -2
Element Flexibility Method: Force transformation matrix, global flexibility matrix, analysis of continuous beams, rigid frames and trusses.

Module -3
Element Stiffness Method: Displacement transformation matrix, global stiffness matrix, analysis of continuous beams, rigid frames and trusses.

Module -4
Effects of Temperature Changes and Lack of Fit: Related numerical problems by flexibility and stiffness method as in Module 2 and Module 3.

Module -5
Direct Stiffness Method: Local and global coordinates systems, principle of contra gradience, global stiffness matrices of beam and truss elements, analysis of continuous beams and trusses.

Course Outcomes: After studying this course, students will be able to:
1. Evaluate the structural systems to application of concepts of flexibility and stiffness matrices for simple problems.
2. Identify, formulate and solve engineering problems with respect to flexibility and stiffness matrices as applied to continuous beams, rigid frames and trusses.
3. Identify, formulate and solve engineering problems by application of concepts of direct stiffness method as applied to continuous beams and trusses.
4. Evaluate secondary stresses.

Question paper pattern:

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives:

- Study the present methods of solid waste management system and to analyze their drawbacks comparing with statutory rules.
- Understand different elements of solid waste management from generation of solid waste to disposal.
- Analyze different processing technologies and to study conversion of municipal solid waste to compost or biogas.
- Evaluate landfill site and to study the sanitary landfill reactions.

Module -1

Sources: Sources of Solid waste, Types of solid waste, Physical and Chemical composition of municipal solid waste. Generation rate, Numerical Problems.

Collection: Collection of solid waste- services and systems, equipments,

Transportation: Need of transfer operation, transfer station, transport means and methods, route optimization. Solid waste management 2000 rules with, 2016 amendments.

Module -2

Processing techniques: Purpose of processing, Volume reduction by incineration, Process description, Mechanical volume reduction (compaction), Mechanical size reduction (shredding), component separation (manual and mechanical methods).

Module -3

Composting Aerobic and anaerobic method - process description, process microbiology, design consideration, Mechanical composting, Vermi composting, Numerical Problems.

Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Design of sanitary landfill. Numerical Problems.

Module -4

Sources, collection, treatment and disposal: Biomedical waste, E-waste, construction and demolition waste.

Module -5

Incineration -3Ts factor affecting incineration, types of incinerations, Pyrolsis, Energy recovery technique from solid waste management. Hazardous waste.

Course outcomes:

- Analyse existing solid waste management system and to identify their drawbacks.
- Evaluate different elements of solid waste management system.
- Suggest suitable scientific methods for solid waste management elements.
- Design suitable processing system and evaluate disposal sites.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

Course Learning Objectives: This Course will enable students to:
1. understand environmental issues due to building materials and the energy consumption in manufacturing building materials
2. study the various masonry blocks, masonry mortar and structural behavior of masonry under compression.
3. Study the alternative building materials in the present context.
4. understand the alternative building technologies which are followed in present construction field.

Module -1

Module -2
Elements of Structural Masonry: Elements of Structural Masonry, Masonry materials, requirements of masonry units’ characteristics of bricks, stones, clay blocks, concrete blocks, stone boulders, laterite Blocks, Fal-G blocks and Stabilized mud block. Manufacture of stabilized blocks.
Structural Masonry Mortars: Mortars, cementations materials, sand, natural & manufactured, types of mortars, classification of mortars as per BIS, characteristics and requirements of mortar, selection of mortar. Uses of masonry, masonry bonding, Compressive strength of masonry elements, Factors affecting compressive strength, Strength of Prisms/wallets and walls, Effect of brick bond on strength, Bond strength of masonry: Flexure and shear, Elastic properties of masonry materials and masonry, Design of masonry compression elements subjected to axial load.

Module -3

Module -4

Module -5
Equipment for Production of Alternate Materials: Machines for manufacture of concrete, Equipments for production of stabilized blocks, Moulds and methods of production of precast elements, Cost concepts in buildings, Cost saving techniques in planning, design and construction, Cost analysis: Case studies using alternatives.

Course Outcomes: After studying this course, students will be able to:

1. Solve the problems of Environmental issues concerned to building materials and cost effective building technologies;
2. Select appropriate type of masonry unit and mortar for civil engineering constructions; also they are able to Design Structural Masonry Elements under Axial Compression.
3. Analyse different alternative building materials which will be suitable for specific climate and in an environmentally sustainable manner. Also capable of suggesting suitable agro and industrial wastes as a building material.
4. Recommend various types of alternative building materials and technologies and design a energy efficient building by considering local climatic condition and building material.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
1. RJS Spence and DJ Cook, “Building Materials in Developing Countries”, Wiley pub.
2. LEED India, Green Building Rating System, IGBC pub.
3. IGBC Green Homes Rating System, CII pub.
4. Relevant IS Codes.
Course Learning Objectives:
This course will enable students to

1. Understand the fundamental concepts of ground improvement techniques
2. Apply knowledge of mathematics, Science and Geotechnical Engineering to solve problems in the field of modification of ground required for construction of civil engineering structures.
3. Understand the concepts of chemical compaction, grouting and other miscellaneous methods.
4. Impart the knowledge of geosynthetics, vibration, grouting and Injection.

Module -1
Formation and Development of Ground: Introduction, Formation of Rock, soil and soil profile, Soil distribution in India, Alterations of ground after formation, Reclaimed soils, Natural offshore deposits; Ground Improvement Potential – Hazardous ground conditions, poor ground conditions, favourable ground conditions, Alternative Approaches, Geotechnical processes.

Compaction: Introduction, compaction mechanics, Field procedure, surface compaction, Dynamic Compaction, selection of field compaction procedures, compaction quality control.

Module -2
Drainage Methods: Introduction, Seepage, filter requirements, ground water and seepage control, methods of dewatering systems, Design of dewatering system including pipe line effects of dewatering. Drains, different types of drains.

Pre-compression and Vertical Drains: Importance, Vertical drains, Sand drains, Drainage of slopes, Electro kinetic dewatering, Preloading.

Module -3

Chemical Modification-II: Lime stabilization – suitability, process, criteria for lime stabilization. Other chemicals like chlorides, hydroxides, lignin and hydrofluoric acid. Properties of chemical components, reactions and effects. Bitumen, tar or asphalt in stabilization.

Module -4
Vibration Methods: Introduction, Vibro compaction – blasting, vibratory probe, Vibro displacement compaction – displacement piles, vibro flotation, sand compaction piles, stone columns, heavy tamping

Grouting And Injection: Introduction, Effect of grouting. Chemicals and materials used. Types of grouting. Grouting procedure, Applications of grouting.

Module -5
Geosynthetics: Introduction, Geosynthetic types, properties of Geosynthetics – materials and fibre properties, Geometrical aspects, mechanical properties, Hydraulic properties, Durability ; Applications of Geosynthetics - Separation, Filtration and Fluid Transmission, Reinforcement,

Course Outcomes:
After studying this course, students will be able to:

1. Give solutions to solve various problems associated with soil formations having less strength.
2. Use effectively the various methods of ground improvement techniques depending upon the requirements.
3. utilize properly the locally available materials and techniques for ground improvement so that economy in the design of foundations of various civil engineering structures

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
Each full question will be for 20 marks.
There will be two full questions (with a maximum of four sub-questions) from each module.
Each full question will have sub-question covering all the topics under a module.
The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
Course Learning Objectives: This course will enable students to
1. Understand the history and development, role of railways, railway planning and development based on essential criteria’s.
2. Learn different types of structural components, engineering properties of the materials, to calculate the material quantities required for construction
3. Understand various aspects of geometrical elements, points and crossings, significance of maintenance of tracks.
4. Design and plan airport layout, design facilities required for runway, taxiway and impart knowledge about visual aids
5. Apply design features of tunnels, harbors, dock and necessary navigational aids; also expose them to various methods of tunneling and tunnel accessories.

Module-1
Railway Planning: Significance of Road, Rail, Air and Water transports – Coordination of all modes to achieve sustainability – Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, – Track Stress, coning of wheels, creep in rails, defects in rails – Route alignment surveys, conventional and modern methods – Soil suitability analysis – Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings(Explanation & Sketches of Right and Left hand turnouts only).

Module-2

Module-3
Tunneling: Introduction, size and shape of the tunnel, tunneling methods in soils, tunnel lining, tunnel drainage and ventilation.

Module-4
Airport Planning: Air transport characteristics, airport classification, airport planning: objectives, components, layout characteristics, and socio-economic characteristics of the catchment area, criteria for airport site selection and ICAO stipulations, typical airport layouts, Parking and circulation area.

Module-5

Course outcomes: After studying this course, students will be able to:
1. Acquires capability of choosing alignment and also design geometric aspects of railway system, runway and taxiway.
2. Suggest and estimate the material quantity required for laying a railway track and also will be able to determine the hauling capacity of a locomotive.
3. Develop layout plan of airport, harbor, dock and will be able relate the gained knowledge to identify required type of visual and/or navigational aids for the same.
4. Apply the knowledge gained to conduct surveying, understand the tunneling activities.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

Textbook:

Reference Books:

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI
REMOTE SENSING AND GIS

Course Code: 18CV651
CIE Marks: 40
Teaching Hours/Week (L:T:P): (3:0:0)
SEE Marks: 60
Credits: 03
Exam Hours: 03

Course Learning Objectives: This course will enable students to
1. Understand the basic concepts of remote sensing.
2. Analyze satellite imagery and extract the required units.
3. Extract the GIS data and prepare the thematic maps.
4. Use the thematic camps for various applications.

Module-1

Module-2

Module-3

Module-4
Data Models: Vector data model: Representation of simple features – Topology and its importance; coverage and its data structure, Shape file; Relational Database, Raster Data Model: Elements of the Raster data model, Types of Raster Data, Raster Data Structure, and Data conversion.

Module-5
Integrated Applications of Remote sensing and GIS: Applications in land use land cover analysis, change detection, water resources, urban planning, environmental planning, Natural resource management and Traffic management. Location Based Services And Its Applications.

Course outcomes: After studying this course, students will be able to:
1. Collect data and delineate various elements from the satellite imagery using their spectral signature.
2. Analyze different features of ground information to create raster or vector data.
3. Perform digital classification and created different thematic maps for solving specific problems
4. Make decision based on the GIS analysis on thematic maps.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

TRAFFIC ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV652</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Understand fundamental knowledge of traffic engineering, scope and its importance.
2. Describe basic techniques for collecting and analyzing traffic data, diagnosing problems, designing appropriate remedial treatment, and assessing its effectiveness.
3. Apply probabilistic and queuing theory techniques for the analysis of traffic flow situations and emphasis the interaction of flow efficiency and traffic safety.
4. Understand and analyse traffic issues including safety, planning, design, operation and control.
5. Apply intelligent transport system and its applications in the present traffic scenario.

Module-1

Traffic Planning and Characteristics: Road Characteristics-Road user characteristics, PIEV theory, Vehicle Performance characteristics, Fundamentals of Traffic Flow, Urban Traffic problems in India, Integrated planning of town, country, regional and all urban infrastructures, Sustainable approach- land use & transport and modal integration.

Module-2

Traffic Surveys: Traffic Surveys- Speed, journey time and delay surveys, Vehicles Volume Survey including non-motorized transports, Methods and interpretation, Origin Destination Survey, Methods and presentation, Parking Survey, Accident analyses-Methods, interpretation and presentation, Statistical applications in traffic studies and traffic forecasting, Level of service-Concept, applications and significance.

Module-3

Traffic Design and Visual Aids: Intersection Design- channelization, Rotary intersection design, Signal design, Coordination of signals, Grade separation, Traffic signs including VMS and road markings, Significant roles of traffic control personnel, Networking pedestrian facilities & cycle tracks.

Module-4

Traffic Safety and Environment: Road accidents, Causes, effect, prevention, and cost, Street lighting, Traffic and environment hazards, Air and Noise Pollution, causes, abatement measures, Promotion and integration of public transportation, Promotion of non-motorized transport.

Module-5

Traffic Management: Area Traffic Management System, Traffic System Management (TSM) with IRC standards, Traffic Regulatory Measures, Travel Demand Management (TDM), Direct and indirect methods, Congestion and parking pricing, All segregation methods- Coordination among different agencies, Intelligent Transport System for traffic management, enforcement and education.

Course outcomes: After studying this course, students will be able to:

1. Understand the human factors and vehicular factors in traffic engineering design.
2. Conduct different types of traffic surveys and analysis of collected data using statistical concepts.
3. Use an appropriate traffic flow theory and to comprehend the capacity & signalized intersection analysis.
4. Understand the basic knowledge of Intelligent Transportation System.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
3. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management

Reference Books:

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI
OCCUPATIONAL HEALTH AND SAFETY

Course Code: 18CV653
CIE Marks: 40
Teaching Hours/Week (L:T:P): (3:0:0)
SEE Marks: 60
Credits: 03
Exam Hours: 03

Course Learning Objectives:
This course will enable students to
1. Gain an historical, economic, and organizational perspective of occupational safety and health;
2. Investigate current occupational safety and health problems and solutions.
3. Identify the forces that influence occupational safety and health.
4. Demonstrate the knowledge and skills needed to identify workplace problems and safe work practice.

Module-1

Module-2

Module-3

Module-4
Health Considerations at Work Place: types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and sustainability.

Module-5
Occupational Health and Safety Considerations: Water and wastewater treatment plants, Handling of chemical and safety measures in water and wastewater treatment plants and labs, Construction material manufacturing industries like cement plants, RMC Plants, precast plants and construction sites. Policies, roles and responsibilities of workers, managers and supervisors.

Course outcomes:
After studying this course, students will be able to:
1. Identify hazards in the workplace that pose a danger or threat to the safety of others.
2. Control/unsafe/healthier hazards and propose methods to eliminate the hazard.
3. Present a coherent analysis of a potential safety or health hazard both verbally and in writing, citing the occupational Health and Safety Regulations as well as supported legislation.
4. Discuss the role of health and safety in the workplace pertaining to the responsibilities of workers, managers, supervisors.
5. Identify the decisions required to maintain protection of the environment, workplace as well as personal health and safety.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-questions covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI
SUSTAINABILITY CONCEPTS IN CIVIL ENGINEERING

Course Code
18CV654
CIE Marks
40
Teaching Hours/Week(L:T:P)
(3:0:0)
SEE Marks
60
Credits
03
Exam Hours
03

Course Learning Objectives: This course will enable students to
1. Learn about the principles, indicators and general concept of sustainability.
2. Apprehend the local, regional and global impacts of unsustainable designs, products and processes.
3. Student shall be able to apply the sustainability concepts in engineering
4. Know built environment frame work sand their use
5. Understand how building and design is judged and valued by clients and stakeholders and how to implement sustainability.

Module-1

Module-2

Module-3
Sustainable Design: Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification- GRIHA & IGBC Certification for buildings, Energy efficient building design- Passive solar design technique, Thermal storage, Cooling strategies, high performance insulation. Sustainable cities, Sustainable transport.

Module-4

Module-5

Course Outcomes: After studying this course, students will be able to:
1. Learn the sustainability concepts; understand the role and responsibility of engineers in sustainable development.
2. Quantify sustainability, and resource availability, Rationalize the sustainability based on scientific merits.
3. Understand and apply sustainability concepts in construction practices, designs, product developments and processes across various engineering disciplines.
4. Make a decision in applying green engineering concepts and become a lifelong advocate of sustainability in society.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

2. Bradley, A.S; Adebayo, A. O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.

Reference Books:

5. Malcolm Dowden, Climate Change and Sustainable Development: Law, Policy and Practice.
7. Sustainable Engineering Practice: An Introduction, Committee on Sustainability, American Society of Civil Engineers.
Course Learning Objectives: This course will enable students to
1. Use industry standard software in a professional set up.
2. Understand the elements of finite element modeling, specification of loads and boundary condition, performing analysis and interpretation of results for final design.
3. Develop customized automation tools.

Module -1
Use of civil engineering software’s:
Use of software’s for:
1. Analysis of plane trusses, continuous beams, portal frames.
2. 3D analysis of multistoried frame structures.

Module -2
1. Project Management- Exercise on Project planning and scheduling of a building project using any project management software:
a. Understanding basic features of Project management software
b. Constructing Project: create WBS, Activities, and tasks and Computation Time using Excel spread sheet and transferring the same to Project management software.
c. Identification of Predecessor and Successor activities with constrain
d. Constructing Network diagram (AON Diagram) and analyzing for Critical path, Critical activities and Othernon Critical paths, Project duration, Floats.
e. Study on various View options available
f. Basic understanding about Resource Creation and allocation
g. Understanding about Splitting the activity, Linking multiple activity, assigning Constrains, Merging Multiple projects, Creating Baseline Project

1. GIS applications using open source software:
a. To create shape files for point, line and polygon features with a map as reference.
b. To create decision maps for specific purpose.

Module -3
Use of EXCEL spread sheets:
Design of singly reinforced and doubly reinforced rectangular beams, design of one way and two way slabs, computation of earthwork, Design of horizontal curve by offset method, Design of super elevation.

Course Outcomes: After studying this course, students will be able to:
use software skills in a professional set up to automate the work and thereby reduce cycle time for completion of the work

Question paper pattern:
- The question paper will have 6 questions under 3 modules.
- There will be two full questions (with a maximum of three subdivisions, if necessary) from each module.
- Each full question shall cover the topics under a module.
- Module-1: 40 Marks, Module-2: 30 Marks, Module-3: 30 Marks.
- The students shall answer three full questions, selecting one full question from each module.

Reference Books: Training manuals and User manuals and Relevant course reference books
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

ENVIRONMENTAL ENGINEERING LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/Week (L:T:P)</th>
<th>SEE Marks</th>
<th>Credits</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CVL67</td>
<td>40</td>
<td>(0:2:2)</td>
<td>60</td>
<td>02</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students,
1. To learn different methods of water & waste water quality
2. To conduct experiments to determine the concentrations of water and waste water
3. To determine the degree and type of treatment
4. To understand the environmental significance and application in environmental engineering practice

1. Preparation chemical solutions required for analysis and sampling methodologies
2. Determination of pH, Conductivity, TDS and Turbidity.
3. Determination of Acidity and Alkalinity
4. Determination of Calcium, Magnesium and Total Hardness.
5. Determination of Dissolved Oxygen
6. Determination of BOD.
7. Determination of Chlorides
8. Determination of percentage of % of available chlorine in bleaching powder sample, Determination of Residual Chlorine and chlorine demand.
11. Determination Nitrates and Iron by spectrophotometer
12. Determination of COD (Demonstration)
13. Air Quality Monitoring (Demonstration)
14. Determination of Sound by Sound level meter at different locations (Demonstration)

Course Outcomes: After studying this course, students will be able to:
1. Acquire capability to conduct experiments and estimate the concentration of different parameters.
2. Compare the result with standards and discuss based on the purpose of analysis.
3. Determine type of treatment, degree of treatment for water and waste water.
4. Identify the parameter to be analyzed for the student project work in environmental stream.

Question paper pattern:
- Two experiments shall be asked from the above set of experiments.
- One experiment to be conducted and for the other student should write detailed procedure.

Reference Books:
1. IS codes-3025 series
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI
EXTENSIVE SURVEY PROJECT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVEP68</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(0:2:2)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Total Number of Practice Hours</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Understand the practical applications of Surveying.
2. Use Total station and other Measurement Equipments.
3. Work in teams and learn time management, communication and presentation skills

Note:
- To be conducted between 5th & 6th Semester for a period of 2 weeks including training on total station.
- Viva voce conducted along with 6th semester exams
- An extensive project preparation training involving investigation, collection of data is to be conducted.

Use of Total Station is compulsory for minimum of TWO projects.

- The student shall submit a project report consisting of designs and drawings.
- Drawings should be done using CAD and survey work using total station.
- Students should learn data download from total station, generation of contours, block leveling, longitudinal and cross sectional diagrams, and capacity volume calculation by using relevant softwares.
- The course coordinators should give exposure and simulate activities to achieve the course outcomes.

1. **NEW TANK PROJECTS:** The work shall consist of;
 a. Reconnaissance survey for selection of site and conceptualization of project.
 b. Alignment of center line of the proposed bund, Longitudinal and cross sections of the center line.
 c. Detailed survey required for project execution like Capacity surveys, Details at Waste weir and sluice points, Canal alignment etc. as per requirement
 d. Design and preparation of drawing with report.

2. **WATER SUPPLY AND SANITARY PROJECT:** The work shall consist of;
 a. Reconnaissance survey for selection of site and conceptualization of project.
 b. Examination of sources of water supply, Calculation of quantity of water required based on existing and projected population.
 c. Preparation of village map by using total station.
 d. Survey work required for laying of water supply and UGD
 e. Location of sites for water tank. Selection of type of water tank to be provided. (ground level, overhead and underground)
 f. Design of all elements and preparation of drawing with report.

3. **HIGHWAY PROJECT:** The work shall consist of;
 a. Reconnaissance survey for selection of site and conceptualization of project.
 b. Preliminary and detailed investigations to align a new road (min. 1 to 1.5 km stretch) between two obligatory points. The investigations shall consist of topographic surveying of strip of land for considering alternate routes and for final alignment. Surveying by using total station.
 c. Report should justify the selected alignment with details of all geometric designs for traffic and design speed assumed.
 d. Drawing shall include key plan initial alignment, final alignment, longitudinal section along final alignment, typical cross sections of road.

4. **RESTORATION OF AN EXISTING TANK:** The work shall consist of;
 a. Reconnaissance survey for selection of site and conceptualization of project.
 b. Alignment of center line of the existing bund, Longitudinal and cross sections of the center line.
 c. Detailed survey required for project execution like Capacity surveys, Details at Waste weir and sluice points, Canal alignment etc. as per requirement
 d. Design of all elements and preparation of drawing with report.
5. **TOWN/HOUSING / LAYOUT PLANNING:** The work shall consist of:
 a. Reconnaissance survey for selection of site and conceptualization of project.
 b. Detailed survey required for project execution like contour surveys
 c. Preparation of layout plans as per regulations
 d. Centerline marking-transfer of centre lines from plan to ground
 e. Design of all elements and preparation of drawing with report as per regulations

Course outcomes: After studying this course, students will be able to:
1. Apply Surveying knowledge and tools effectively for the projects
2. Understanding Task environment, Goals, responsibilities, Task focus, working in Teams towards common goals, Organizational performance expectations, technical and behavioral competencies.
3. Application of individual effectiveness skills in team and organizational context, goal setting, time management, communication and presentation skills.
4. Professional etiquettes at workplace, meeting and general
5. Establishing trust based relationships in teams & organizational environment
6. Orientation towards conflicts in team and organizational environment, Understanding sources of conflicts, Conflict resolution styles and techniques

Reference Books:
- Training manuals and User manuals
- Relevant course reference books
B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

QUANTITY SURVEYING AND CONTRACT MANAGEMENT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV71</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
This course will enable students to:
1. Estimate the quantities of work, develop the bill of quantities and arrive at the Cost of civil engineering Project
2. Understand and apply the concept of Valuation for Properties
3. Understand, Apply and Create the Tender and Contract document.

Module -1

Quantity Estimation for Building: study of various drawing attached with estimates, important terms, units of measurements, abstract, Types of estimates. Estimation of building by Short wall and long wall method - centre line method.

Estimate of R.C.C structures including Slab, beam, column, footings.

Module -2

Estimate of Steel truss, manhole and septic tanks and slab culvert.

Quantity Estimation for Roads: Computation of volume of earthwork fully in banking, cutting, partly cutting and partly Filling by mid-section, trapezoidal and Prismatic Method.

Module -3

Specification for Civil Engineering Works: Objective of writing specifications essentials in specifications, general and detail specifications of different items of works in buildings and roads.

Analysis of Rates: Factors Affecting Cost of Civil Works, Concept of Direct Cost, Indirect Cost and Project Cost

Rate analysis and preparation of bills, Data analysis of rates for various items of Works, Sub-structure components, Rate analysis for R.C.C. slabs, columns and beams.

Module -4

Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture.

Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC.

Module -5

Contract Management-Post award: Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion, Liquidated damages and bonus, measurement and payment, additions and alterations or variations and deviations, breach of contract, Escalation, settlement of account or final payment, claims, Delay’s and Compensation, Disputes & its resolution mechanism, Contract management and administration.

Course outcomes:
After studying this course, students will be able to:
1. Taking out quantities and work out the cost and preparation of abstract for the estimated cost for various civil engineering works.
2. Prepare detailed and abstract estimates for various road works, structural works and water supply and sanitary works.
3. Prepare the specifications and analyze the rates for various items of work.
4. Assess contract and tender documents for various construction works.
5. Prepare valuation reports of buildings.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
8. PWD Data Book, CPWD Schedule of Rates (SoR), and NH SoR – Karnataka FIDIC Contract forms.
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

DESIGN OF RCC AND STEEL STRUCTURES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV72</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to
1. Provide basic knowledge in the areas of limit state method and concept of design of RC and Steel structures
2. Identify, formulate and solve engineering problems in RC and Steel Structures
3. Give procedural knowledge to design a system, component or process as per needs and specifications of RC Structures like Retaining wall, Footing, Water tanks, Portal Frames and Steel Structures like Roof Truss, Plate Girder and Gantry Girder.
4. Imbibe the culture of professional and ethical responsibilities by following codal provisions in the analysis, design of RC and Steel Structures.
5. Provide factual knowledge on analysis and design of RC Structural elements, who can participate and succeed in competitive examinations.

Module -1

Footings: Design of rectangular slab, slab-beam type combined footing.
Retaining Walls: Design of cantilever Retaining wall and counter fort retaining wall.
Water Tanks: Design of circular water tanks resting on ground (Rigid and Flexible base). Design of rectangular water tanks resting on ground. **As per IS: 3370 (Part IV)**. Design of portal frames with fixed and hinged based supports.

Module -2

Roof Truss: Design of roof truss for different cases of loading, forces in members to given.
Plate Girder: Design of welded plate girder with intermediate stiffener, bearing stiffener and necessary checks
Gantry Girder: Design of gantry girder with all necessary checks.

Course Outcomes: After studying this course, students will be able to:
1. Students will acquire the basic knowledge in design of RCC and Steel Structures.
2. Students will have the ability to follow design procedures as per codal provisions and skills to arrive at structurally safe RC and Steel members.

Question Paper Pattern:
- Two questions shall be asked from each module. There can be maximum of three subdivisions in each question, if necessary.
- One full question should be answered from each module.
- Each question carries 50 marks.
- Code books – IS 456, IS 800, IS 3370 (Part IV), SP-16, SP (6) – Steel Tables, shall be referred for designing. The same will be provided during examination.

Textbooks:
1. N Krishna Raju, “Structural Design and Drawing of Reinforced Concrete and Steel”, University Press

Reference Books:
THEORY OF ELASTICITY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV731</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. This course advances students from the one-dimensional and linear problems conventionally treated in courses of strength of materials into more general, two and three-dimensional problems.
2. The student will be introduced to rectangular and polar coordinate systems to describe stress and strain of a continuous body.
3. Introduction to the stress–strain relationship, basic principles and mathematical expressions involved in continuum mechanics. Also solution of problems in 2-dimensional linear elasticity.

Module-1

Rigid and deformable bodies, body and surface forces, concept of stress, state of stress at a point, Cartesian stress components, Cauchey’s stress formula, stress transformation, principal stresses and principal planes, stress invariants, equations of equilibrium in 2D and 3D (Cartesian coordinates).

Module-2

Types of strain, strain displacement relations, state of strain at a point, strain tensor, strain transformation, strain along a linear element, principal strains, strain invariants, octahedral strains, spherical and deviatoric strains.

Module-3

Generalized Hook’s Law, Stress-strain relationships, Equilibrium equations in terms of displacements and Compatibility equations in terms of stresses, Plane stress and plane strain problems, St. Venant’s principle, Principle of superposition, Uniqueness theorem, Airy’s stress function, Stress polynomials (Two Dimensional cases only). Equations of equilibrium in polar coordinate, compatibility equation, stress function.

Module-4

Axisymmetric stress distribution - Rotating discs, Lame’s equation for thick cylinder, Effect of circular hole on stress distribution in plates subjected to tension, compression and shear, stress concentration factor.

Module-5

Torsion: Inverse and Semi-inverse methods, stress function, torsion of circular, elliptical, triangular sections.

Course outcomes: After studying this course, students will be able to:

1. Ability to apply knowledge of mechanics and mathematics to model elastic bodies as continuum.
2. Ability to formulate boundary value problems; and calculate stresses and strains.
3. Ability to comprehend constitutive relations for elastic solids and compatibility constraints.
4. Ability to solve two-dimensional problems (plane stress and plane strain) using the concept of stress function.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

AIR POLLUTION AND CONTROL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV732</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

1. Study the sources and effects of air pollution
2. Learn the meteorological factors influencing air pollution.
3. Analyze air pollutant dispersion models
4. Illustrate particular and gaseous pollution control methods.

Module-1

Introduction: Definition, Sources, classification and characterization of air pollutants. Effects of air pollution on health, vegetation & materials. Types of inversion, photochemical smog.

Module-2

Meteorology: Temperature lapse rate & stability, wind velocity & turbulence, plume behavior, measurement of meteorological variables, wind rose diagrams, Plume Rise, estimation of effective stack height and mixing depths.

Module-3

Sampling: Sampling of particulate and gaseous pollutants (Stack, Ambient & indoor air pollution), Monitoring and analysis of air pollutants (PM$_{2.5}$, PM$_{10}$, SO$_x$, NO$_x$, CO, NH$_3$). Development of air quality models-Gaussian dispersion model-Including Numerical problems.

Module-4

Control Techniques: Particulate matter and gaseous pollutants- settling chambers, cyclone separators, scrubbers, filters & ESP - Including Numerical problems. Site selection for industrial plant location.

Module-5

Course outcomes: After studying this course, students will be able to:

1. Identify the major sources of air pollution and understand their effects on health and environment.
2. Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models.
3. Ascertain and evaluate sampling techniques for atmospheric and stack pollutants.
4. Choose and design control techniques for particulate and gaseous emissions.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

1. Noel De Nevers, “Air Pollution Control Engineering”, Waveland Pr Inc.
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

PAVEMENT MATERIALS AND CONSTRUCTION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV733</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>40</td>
</tr>
<tr>
<td>Teaching Hours/Week</td>
<td>(3:0:0)</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
1. Expose students to different materials which are used in pavement construction, impart knowledge about the engineering properties required.
2. To train students to perform various types of bituminous mix designs as per the guidelines (MORTH).
3. Student will get knowledge about different highway construction equipment with their suitability and adaptability in various field scenarios.
4. Expose students to construction practice and quality control aspects of embankment, flexible and rigid pavement as per the required specifications (MORTH).
5. To introduce students to possible improvisation in various layers of pavement to increase the structural strength by the use of non basic materials (DLC, polythene sheets).

Module-1
Pavement Materials
- Aggregates- Origin, Classification, Requirements, properties and tests on Road aggregates, Concepts of size and gradation- design gradation, maximum aggregate size, aggregate blending by different methods to meet specification.
- Bitumen and Tar- Origin, Preparation, Properties and Chemical Constitution of bituminous road binders, Requirements.

Module-2
Bituminous emulsion and Cutbacks- Preparation, Characteristics, uses and test. Adhesion of bitumen binders to road aggregates, Adhesion failure, Mechanism of stripping, tests and methods of improving adhesion.

Module-3
Bituminous mixes: Mechanical properties, dense and open textured mixes, flexibility and brittleness, (No Hveemstabilo meter and Hubbar- field tests) bituminous mixes, Design methods using Rothfutch’s method only and specification, Marshall mix design criteria, voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen. Problems on above.

Module-4
Equipments in highway construction: Various types of equipments for excavation, grading and compaction- their working principles, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

Sub grade: Earthwork grading and Construction of embankments and cuts for roads, Preparation of subgrade, quality control tests.

Module-5
Flexible Pavements: Specifications of materials, Construction method and field control checks for various types of flexible pavement layers.
Cement Concrete Pavements: Specifications and method of cement concrete pavement construction (PQC, importance of providing DLC as sub base and polythene thin layer between PQC and sub base). Quality control tests, Construction of various types of joints.

Course outcomes: At the end of the course the student will be able to:
1. Students will be able to evaluate and assess the suitability of any pavement material to be used in various components of pavement by conducting required tests as per IS,IRC specifications
2. Students will be able to formulate the proportions of different sizes of aggregates to suit gradation criteria for various mixes as per MORTH and also design bituminous mixes.
3. Students will be competent to adapt suitable modern technique and equipment for speedy and economic construction.
4. Student will be able to execute the construction of embankment, flexible, rigid pavement and perform required quality control tests at different stages of pavement construction.
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books
2. RRL, DSIR, ‘Soil Mechanics for Road Engineers’, HMSO Publication.
3. Relevant IRC codes and MoRT&H specifications.

Web links and Video Lectures:
1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
4. VTU EDUSAT PROGRAMME - 20
Ground Water Hydraulics

Course Code: 18CV734
IA Marks: 40
Teaching Hours/Week (L:T:P): (3:0:0)
Exam Marks: 60
Credits: 3
Exam Hours: 03

Course Learning Objectives:
1. To characterize the properties of ground water and aquifers.
2. To quantify the ground water flow.
3. To locate occurrence of ground water and augment ground water resources.
4. To synthesize ground water development methods.

Module -1
Introduction: Importance, vertical distribution of subsurface water, occurrence in different types of rocks and soils, definitions-aquifers, aquifuge, aquitard, aquiclude, confined and Unconfined aquifers.

Module -2
Fundamentals of Ground Water Flow: Aquifer parameters, specific yield and specific retention, porosity, storage coefficient, derivation of the expression, Darcy’s law, hydraulic conductivity, coefficient of permeability and intrinsic permeability, transmissibility, permeability in isotropic, anisotropic layered soils.

Module -3
Well Hydraulics: Steady Flow, Radial flow in confined and unconfined aquifers, pumping test Unsteady Flow, General equation, derivation; thesis method, Cooper and Jacob method, Chow’s method, solution of unsteady flow equations, leaky aquifers (only introduction), interference of well, image well theory.

Module -4
Ground Water Exploration: Seismic method, electrical resistively method, Geo-physical techniques, electrical logging, radioactive logging, induction logging, sonic and fluid logging.

Module -5
Ground Water Development: Types of wells, methods of construction, tube well design, dug wells, pumps for lifting water, working principles, power requirement, Conjunctive use, necessity, techniques and economics.
Ground Water Recharge: Artificial recharge, Rainwater harvesting for ground water recharge.

Course outcomes:
After studying this course, students will be able to:
1. Find the characteristics of aquifers.
2. Estimate the quantity of ground water by various methods.
3. Locate the zones of ground water resources.
4. Select particular type of well and augment the ground water storage.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII
MASONRY STRUCTURES

Course Code: 18CV735
CIE Marks: 40
Teaching Hours/Week(L:T:P): 3:0:0
SEE Marks: 60
Credits: 03
Exam Hours: 03

Course Learning Objectives: This course will enable students to
1. Understand properties of masonry units, strength and factors affecting strength.
2. Understand design criteria of various types of wall subjected to different load system.
3. Impart the culture of following the codes for strength, serviceability and durability as an ethics.
4. Provide knowledge in analysis and design of masonry elements for the success in competitive examinations.

Module-1

Module-2
Permissible stresses: Types of walls, permissible compressive stress, stress reduction and shape modification factors, increase in permissible stresses for eccentric vertical and lateral load, permissible tensile stress and shear stresses.
Design Considerations: Effective height of wall sand columns, openings in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action in lintels. Problems on design considerations for solid walls, cavity walls, wall with pillars.

Module-3
Load considerations and design of Masonry subjected to axial loads: Design criteria, design examples of walls under UDL, solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers.

Module-4
Design of walls subjected to concentrated axial loads: Solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers, design of wall with openings.
Design of walls subjected to eccentric loads: Design criteria – stress distribution under eccentric loads – Problems on eccentrically loaded solid walls, cavity walls, walls with piers.

Module-5
Design of Laterally and transversely loaded walls: Design criteria, design of solid wall under wind loading, design of shear wall – design of compound walls.
Introduction to reinforced brick masonry, lintels and slabs.
In-filled frames: Types – modes of failures – design criteria of masonry retaining walls.

Course outcomes: After studying this course, students will be able to:
1. Select suitable material for masonry construction by understanding engineering properties.
2. Compute loads, load combinations and analyze the stresses in masonry.
3. Design masonry under compression (Axial load) for various requirements and conditions.
4. Design masonry under bending (Eccentric, lateral, transverse load) for various requirements and conditions.
5. Assess the behavior of shear wall and reinforced masonry.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.
<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Course Learning Objectives: This course will enable students to learn about

1. Fundamentals of engineering seismology
2. Irregularities in building which are detrimental to its earthquake performance
3. Different methods of computation seismic lateral forces for framed and masonry structures
4. Earthquake resistant design requirements for RCC and Masonry structures
5. Relevant clauses of IS codes of practice pertinent to earthquake resistant design of structures

Module -1

Engineering Seismology: Terminologies (Focus, Focal depth, Epicenter, etc.); Causes of Earthquakes; Theory of plate tectonics; Types and characteristics faults; Classification of Earthquakes; Major past earthquakes and their consequences; Types and characteristics of seismic waves; Magnitude and intensity of earthquakes; local site effects; Earthquake ground motion characteristics: Amplitude, frequency and duration; Seismic zoning map of India; (Problems on computation of wave velocities. Location of epicenter, Magnitude of earthquake).

Module -2

Response Spectrum: Basics of structural dynamics; Free and forced vibration of SDOF system; Effect of frequency of input motion and Resonance; Numerical evaluation of response of SDOF system (Linear acceleration method), Earthquake Response spectrum: Definition, construction, Characteristics and application; Elastic design spectrum.

Module -3

Seismic Performance of Buildings and Overview of IS-1893 (Part-1): Types of damages to building observed during past earthquakes; Plan irregularities; mass irregularity; stiffness irregularity; Concept of soft and weak storey; Torsional irregularity and its consequences; configuration problems; continuous load path; Architectural aspects of earthquake resistant buildings; Lateral load resistant systems. Seismic design philosophy; Structural modeling; Code based seismic design methods.

Module -4

Module -5

Earthquake Resistant Analysis and Design of RC Buildings: Typical failures of RC frame structures, Ductility in Reinforced Concrete, Design of Ductile Reinforced Concrete Beams, Seismic Design of Ductile Reinforced Concrete column, Concept of weak beam-strong column, Detailing of Beam-Column Joints to enhance ductility, Detailing as per IS-13920. Retrofitting of RC buildings

Course outcomes: After studying this course, students will be able to:
1. Acquire basic knowledge of engineering seismology.
2. Develop response spectra for a given earthquake time history and its implementation to estimate response of a given structure.
3. Understanding of causes and types of damages to civil engineering structures during different earthquake scenarios.
4. Analyze multi-storied structures modeled as shear frames and determine lateral force distribution due to earthquake input motion using IS-1893 procedures.
5. Comprehend planning and design requirements of earthquake resistant features of RCC and Masonry
structures thorough exposure to different IS-codes of practices.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
1. Pankaj Agarwal and Manish Shrikande, “Earthquake resistant design of structures”, PHI India.

Reference Books:
1. David Dowrick, “Earthquake resistant design and risk reduction”, John Wiley and Sons Ltd.
Course Learning Objectives: This course will enable students to
1. Learn the importance of sanitation, domestic water supply, and plumbing and fire services.
2. Understand the concepts of heat, ventilation and air conditioning.
3. Develop technical and practical knowledge in Building Services.

Module -1
Water Supply and its Services.
Water requirements for different types of buildings, simple method of removal of impurities, water saving practices and their potential Service connection from mains, sump and storage tank, types and sizes of pipes, special installation in multistoried buildings. Material, types of fixtures and fitting for a contemporary bathroom—taps—quarter turn, half turn, ceramic, foam flow etc, hot water mixer, hand shower Rainwater harvesting to include roof top harvesting, type of spouts, sizes of rainwater pipes and typical detail of a water harvesting pit.

Module -2
Heat Ventilation and Air Conditioning (HVAC):

Module -3
Electrical and Fire Fighting Services:
Electrical systems, Basics of electricity, single/Three phase supply, protective devices in electrical installation, Earthing for safety, Types of earthing, ISI Specifications. Electrical installations in buildings, Types of wires, Wiring systems and their choice, planning electrical wiring for building, Main and distribution boards, Principles of illumination. Classification of buildings based on occupancy, causes of fire and spread of fire, Standard fire, Fire fighting, protection and fire resistance, Firefighting equipment and different methods of fighting fire., means of escape, alarms, etc., Combustibility of materials, Structural elements and fire resistance, Fire escape routes and elements, planning and design. Wet risers, dry risers, sprinklers, heat detector, smoke detectors, fire dampers, fire doors, etc. Provisions of NBC.

Module -4
Plumbing and Fire Fighting Layout of Simple Buildings:
Application of above studies in preparing layout and details - Plumbing layout of residential and public buildings, Fire fighting layout, Reflected ceiling plan of smoke detectors / sprinklers, etc.

Module -5
Engineering Services: engineering services in a building as a system, Lifts, escalators, cold and hot water systems, waste water systems and electrical systems. Pumps and Machineries: Reciprocating, Centrifugal, Deep well, Submersible, Automatic pumps, Sewerage pumps, Compressors, Vacuum pump – their selection, installation and maintenance – Hot water boilers – Classification and types of lifts, lift codes, rules structural provision: escalators, their uses, types and sizes, safety norms to be adopted – Social features required for physically handicapped and elderly, DC/AC motors, Generators,

Course Outcomes: After studying this course, students will be able to:
1. Describe the basics of house plumbing and waste water collection and disposal.
2. Discuss the safety and guidelines with respect to fire safety.
3. Describe the issues with respect to quantity of water, rain water harvesting and roof top harvesting.
4. Understand and implement the requirements of thermal comfort in buildings.
Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Reference Books:
2. Charangith shah, Water supply and sanitary engineering, Galgotia publishers.
8. E. G. Butcher, Smoke control in Fire-safety Design.
REINFORCED EARTH STRUCTURES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV743</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:

This course will enable students to:

1. Create an understanding of the latest technique such as reinforcing the soil;
2. Analyze the concept of RE so as to ascertain stability of RE structures;
3. Understand the different reinforcing materials that can be used efficiently in soils.
4. Understand design concepts of different RE structures including introductory concepts of Foundations resting on RE soil bed.

Module -1

Basics of Reinforced Earth Construction: Definition, Historical Background, Components, Mechanism and Concept, Advantages and Disadvantage of reinforced earth Construction, Sandwich technique for clayey soil.

Geosynthetics and Their Functions: Historical developments, Recent developments, manufacturing process woven & non-woven, Raw materials – Classification based on materials type – Metallic and Non-metallic, Natural and Man-made, Geosynthetics.

Module -2

Design of Reinforced Earth Retaining Walls: Concept of Reinforced earth retaining wall, Internal and external stability, Selection of materials, Typical design problems

Soil Nailing Techniques: Concept, Advantages & limitations of soil nailing techniques, comparison of soil nailing with reinforced soil, methods of soil nailing, Construction sequence, Components of system, Design aspects and precautions to be taken.

Module -3

Design of Reinforced Earth Foundations: Modes of failure of foundation, Determination of force induced in reinforcement ties – Location of failure surface, tension failure and pull out resistance, length of tie and its curtailment, Bearing capacity improvement in soft soils, General guidelines.

Module -4

Geosynthetics for Roads and Slopes: Roads - Applications to Temporary and Permanent roads, Role of Geosynthetic in enhancing properties of road, control of mud pumping, Enhancing properties of subgrade, Design requirements Slopes – Causes for slope failure, Improvement of slope stability with Geosynthetic, Drainage requirements, Construction technique. Simple Numerical Stability Checking Problems on Reinforced Slopes.

Module -5

Geosynthetics - filter, drain and landfills: Filter & Drain – Conventional granular filter design criteria, Geosynthetic filter design requirements, Drain and filter properties, Design criteria – soil retention, Geosynthetic permeability, anti clogging, survivability and durability (No Numerical Problems)

Landfills – Typical design of Landfills – Landfill liner & cover, EPA Guidelines, Barrier walls for existing landfills and abandoned dumps (No Numerical Problems).

Course outcomes:

After studying this course, students will be able to:

1. identify, formulate reinforced earth techniques that are suitable for different soils and in different structures;
2. understand the laboratory testing concepts of Geosynthetics
3. design RE retaining structures and Soil Nailing concepts
4. Determine the load carrying capacity of Foundations resting on RE soil bed.
5. assess the use of Geosynthetics in drainage requirements and landfill designs

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:

Course Information

Course Code: 18CV744
CIE Marks: 40
Teaching Hours/Week(L:T:P): (3:0:0)
SEE Marks: 60
Credits: 03
Exam Hours: 03
CREDITS – 03

Course Learning Objectives:
This course will enable students to:
1. Analyze and design gravity dams.
2. Find the cross-section of earth dam and estimate the seepage loss.
3. Design spillways and aprons for diversion works.
4. Design CD works and choose appropriate canal regulation works.

Course Outline

Module - 1
Gravity Dams: Introduction, forces acting on dam, cause of failure, design principles, principal and shear stresses. Elementary profile and practical profile of a gravity dam. Drainage galleries, joints in gravity dams.

Module - 2
Earth Dams: Introduction, causes of failure of earth dams, preliminary section, Determination of parametric line by Casagrande’s method. Estimation of seepage.

Module - 3
Spillways: Types, Design of Ogee spillway. Upstream and downstream profiles, Energy dissipation devices.
Diversion Headworks: Design of aprons - Bligh’s and Koshla’s theory, Simple Problems.

Module - 4
Cross Drainage Works: Introduction, Type of C.D works, Design considerations for C.D works. Transition formula design of protection works, Design of only aqueduct.

Module - 5
Canal Regulation Works: Introduction, Function of a regulator.
Canal falls: Necessity and types.
Canal outlets: Necessity and types.

Course Outcomes:
After studying this course, students will be able to:
1. Check the stability of gravity dams and design the dam.
2. Estimate the quantity of seepage through earth dams.
3. Design spillways and aprons for various diversion works.
4. Select particular type of canal regulation work for canal network.

Question Paper Pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

URBAN TRANSPORT PLANNING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV745</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to;
5. Understand and apply basic concepts and methods of urban transportation planning.
6. Apprise about the methods of designing, conducting and administering surveys to provide the data required for transportation planning.
7. Understand the process of developing an organized mathematical modelling approach to solve select urban transportation planning problem.
8. Excel in use of various types of models used for travel forecasting, prediction of future travel patterns.

Module -1

Urban transport planning: Urbanization, urban class groups, transportation problems and identification, impacts of transportation, urban transport system planning process, modeling techniques in planning. Urban mass transportation systems: urban transit problems, travel demand, types of transit systems, public, private, para-transit transport, mass and rapid transit systems, BRTS and Metro rails, capacity, merits and comparison of systems, coordination, types of coordination.

Module -2

Module -3

Module -4

Module -5

Traffic Assignment: Diversion Curves; Basic Elements of Transport Networks, Coding, Route Properties, Path Building Criteria, Skimming Tree, All-or-Nothing Assignment, Capacity Restraint Techniques, Reallocation of Assigned Volumes, Equilibrium Assignment. Numerical problems on Traffic Assignment. Introduction to land use planning models, land use and transportation interaction.

Course outcomes: After studying this course, students will be able to:
5. Design, conduct and administer surveys to provide the data required for transportation planning.
6. Supervise the process of data collection about travel behavior and analyze the data for use in transport planning.
7. Develop and calibrate modal split, trip generation rates for specific types of land use developments.
8. Adopt the steps that are necessary to complete a long-term transportation plan.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
</table>
Finite Element Method

Course Code: 18CV751
CIE Marks: 40
Teaching Hours/Week (L:T:P): 3:0:0
SEE Marks: 60
Credits: 3
Exam Hours: 3

Course Learning Objectives:
This course will enable students to:
1. Develop analytical skills.
2. Learn principles of analysis of stress and strain.
3. Develop problem solving skills.
4. Understand the principles of FEM for one and two dimensional problems.

Module 1
- Theory of elasticity concepts, Energy principles, Rayleigh - Ritz Method, Galerkin method and finite element method, steps in finite element analysis, displacement approach, stiffness matrix and boundary conditions.

Module 2
- Discritisation; finite representation of infinite bodies and discritisation of very large bodies, Natural Coordinates, Shape functions; polynomial, LaGrange and Serendipity, one dimensional formulations; beam and truss with numerical examples.

Module 3
- 2D formulations; Constant Strain Triangle, Linear Strain Triangle, 4 and 8 noded quadrilateral elements, Numerical Evaluation of Element Stiffness - Computation of Stresses, Static Condensation of nodes, degradation technique, Axisymmetric Element.

Module 4
- Isoparametric concepts; isoparametric, sub parametric and super parametric elements, Jacobian transformation matrix, Stiffness Matrix of Isoparametric Elements, Numerical integration by Gaussian quadrature rule for one, two and three dimensional problems.

Module 5
- Techniques to solve nonlinearities in structural systems; material, geometric and combined non linearity, incremental and iterative techniques.

Structure of computer program for FEM analysis, description of different modules, exposure to FEM softwares.

Course outcomes: The student will have the knowledge on advanced methods of analysis of structures.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

NUMERICAL METHODS AND APPLICATIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV752</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

Module -1

Module -2

Interpolation and Approximation: Interpolation with unequal intervals - Lagrange's interpolation – Newton’s divided difference interpolation – Cubic Splines - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

Module -3

Numerical Differentiation and Integration: Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Module -4

Module -5

Boundary Value Problems in Ordinary and Partial Differential Equations: Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Course Outcomes: After studying this course, The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from Industry, management and other engineering fields.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

ENVIRONMENTAL PROTECTION AND MANAGEMENT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV753</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to gain knowledge in Environmental protection and Management systems

Module -1

Module -2

Module -3

Module -4

Module -5

Course outcomes: After studying this course, students will be able to:
1. Appreciate the elements of Corporate Environmental Management systems complying to international environmental management system standards.
2. Lead pollution prevention assessment team and implement waste minimization options.
3. Develop, Implement, maintain and Audit Environmental Management systems for Organizations.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Reference Books:
2. ISO 14001/14004: Environmental management systems – Requirements and Guidelines – International
Course Learning Objectives: This course will enable students to

1. Be aware of the Scale Factors, Sections of drawings,
2. Draft the detailing of RC and Steel Structural member.

Module -1 Detailing of RCC Structures

- Beams – Simply supported, Cantilever and Continuous.
- Slab – One way, Two way and One-way continuous.
- Staircase – Doglegged
- Cantilever Retaining wall
- Counter Fort Retaining wall
- Circular Water Tank, Rectangular Water Tank.

Module -2 Detailing of Steel Structures

1. Connections – Beam to beam, Beam to Column by Bolted and Welded Connections.
2. Built-up Columns with lacings and battens
3. Column bases and Gusseted bases with bolted and welded connections.
4. Roof Truss – Welded and Bolted
5. Welded Plate girder
6. Gantry Girder

Course outcomes: After studying this course, students will be able to:
- Prepare detailed working drawings

Question paper pattern:

1. Two questions shall be asked from each Module.
2. One full question should be answered from each Module.
3. Each question carries 50 marks.

Textbooks:

1. N Krishna Raju, “Structural Design and Drawing of Reinforced Concrete and Steel”, University Press

Reference Books:

1. SP 34: Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards.
2. IS 13920, Ductile Design And Detailing Of Reinforced Concrete Structures Subjected To Seismic Forces - Code Of Practice, Bureau of Indian Standard.
B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

GEOTECHNICAL ENGINEERING LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CVL77</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(0:2:2)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:
1. To carry out laboratory tests and to identify soil as per IS codal procedures
2. To perform laboratory tests to determine index properties of soil
3. To perform tests to determine shear strength and consolidation characteristics of soils

Modules

1. **Field identification of soil, Specific gravity test (pycnometer and density bottle method). Water content determination by oven drying and Pycnometer method, rapid moisture meter method.**
2. **Grain size analysis**
 - i. Sieve analysis
 - ii. Hydro meter analysis
3. **In-situ density tests**
 - i. Core-cutter method
 - ii. Sand replacement method
4. **Consistency limits**
 - i. Liquid limit test (by Casagrande’s and cone penetration method)
 - ii. Plastic limit test
 - iii. Shrinkage limit test
5. **Standard compaction test (light and heavy compaction)**
6. **Co-efficient of permeability test**
 - i. Constant head test
 - ii. Variable head test
7. **Shear strength tests**
 - i. Unconfined compression test
 - ii. Direct shear test
 - iii. Triaxial test (unconsolidated undrained test only)
8. **Consolidation test**: To determine pre consolidation pressure only (half an hour per loading-test).
9. **Laboratory vane shear test**
10. **Demonstration of Swell pressure test, Standard penetration test and boring equipment**

Course outcomes: Students will be able to conduct appropriate laboratory/field experiments and interpret the results to determine
1. Physical and index properties of the soil
2. Classify based on index properties and field identification
3. To determine OMC and MDD, plan and assess field compaction program
4. Shear strength and consolidation parameter to assess strength and deformation characteristics
5. In-situ shear strength characteristics (SPT-Demonstration)

Question paper pattern:
- All experiments are to be included in the examination except demonstration exercises.
- Candidate to perform experiment assigned to him.
- Marks are to be allotted as per the split up of marks shown on the cover page of answer script.

Reference Books:
5. Relevant BIS Codes of Practice: IS-2720 series
Course Learning Objectives: This course will enable students to learn Design of Pre Stressed Concrete Elements.

Module -1

Module -2

Module -3

Design of Sections for Flexure: Analysis of members at ultimate strength - Preliminary Design - Final Design for Type 1 members.

Module -4

Module -5

Different anchorage system and design of end block by latest IS codes.

Course outcomes: After studying this course, students will be able to:
1. Understand the requirement of PSC members for present scenario.
2. Analyse the stresses encountered in PSC element during transfer and at working.
3. Understand the effectiveness of the design of PSC after studying losses.
4. Capable of analyzing the PSC element and finding its efficiency.
5. Design PSC beam for different requirements.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
3. Rajagopalan N, “Pre - stressed Concrete”, Narosa Publishing House, New Delhi

Reference Books:
1. Praveen Nagarajan, “Advanced Concrete Design”, Person Publishers
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VIII

BRIDGE ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV821</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to understand the analysis and design of concrete Bridges.

Note: All designs have to be done by Working Stress Method

Module -1
Introduction to bridges, classification, selection of bridge site and preliminary and detailed survey work computation of discharge, linear waterway, economic span, afflux, scour depth.
Design loads for bridges, introduction to I.R.C. loading standards, Load Distribution Theory, Bridge slabs, Effective width, Introduction to methods as per I.R.C.

Module -2
Design of Slab Bridges: Straight and skew slab bridges.

Module -3
Design of T beam bridges(up to three girder only)
Proportioning of components, analysis of slab using IRC Class AA tracked vehicle, structural design of slab, analysis of cross girder for dead load & IRC Class AA tracked vehicle, structural design of cross girder, analysis of main girder using Courbon’s method, calculation of dead load BM and SF, calculation of live load BM & SF using IRC Class AA Tracked vehicle. Structural design of main girder.

Module -4
Other Bridges:
Design of Box culvert (Single vent only).
Design of Pipe culverts.

Module -5
Substructures - Design of Piers and abutments,
Introduction to Bridge bearings, Hinges and Expansion joints.(No design).

Course outcomes: After studying this course, students will be able to:
1. Understand the load distribution and IRC standards.
2. Design the slab and T beam bridges.
3. Design Box culvert, pipe culvert
4. Use bearings, hinges and expansion joints and
5. Design Piers and abutments.

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub- questions) from each module.
• Each full question will have sub- question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
3. T R Jagadeesh and M A Jayaram, “Design of bridge structures”, Prentice Hall of India

Reference Books:
2. Standard specifications and code of practice for road bridges. IRC section I,II, III and IV.
3. “Concrete Bridges”, The Concrete Association of India
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII
PREFABRICATED STRUCTURES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV822</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week(L:T:P)</td>
<td>(3:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to
1. Understand modular construction, industrialized construction
2. Design prefabricated elements.
3. Understand construction methods.

Module -1

Module -2

Module -3
Design Principles: Disuniting of structures-Design of cross section based on efficiency of material used–Problems in design because of joint flexibility–Allowance for joint deformation.

Module -4
Joint In Structural Members: Joints for different structural connections–Dimensions and detailing–Design of expansion joints.

Module -5
Design For Abnormal Loads: Progressive collapse–Code provisions–Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc.–Importance of avoidance of progressive collapse.

Course Outcomes: After studying this course, students will be able to:
1. Use modular construction, industrialized construction
2. Design prefabricated elements
3. Design some of the prefabricated elements
4. Use the knowledge of the construction methods and prefabricated elements in buildings

Question paper pattern:
• The question paper will have ten full questions carrying equal marks.
• Each full question will be for 20 marks.
• There will be two full questions (with a maximum of four sub-questions) from each module.
• Each full question will have sub-question covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
1. CBRI, Building materials and components, India, 1990

Reference Books:
<table>
<thead>
<tr>
<th>Course Learning Objectives:</th>
<th>This course will enable students to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gain knowledge of about advanced topics of foundation design and analyses, supplementing their comprehensive knowledge acquired in basic foundation engineering course.</td>
</tr>
<tr>
<td>2.</td>
<td>Develop profound understanding of shallow and deep foundation analyses.</td>
</tr>
<tr>
<td>3.</td>
<td>Develop understanding of choice of foundation design parameters.</td>
</tr>
<tr>
<td>4.</td>
<td>Learn about cause and effect of dynamic loads on foundation.</td>
</tr>
</tbody>
</table>

Module -1

General bearing capacity equation – Terzaghi’s, Brinch Hansen’s and Mayerhof’s analyses, bearing capacity of footings according to BIS, eccentrically loaded footing, footing on layered soil. Settlement of shallow Foundations: Immediate, consolidation, & differential settlements. Principles of design of footing, Proportioning of footings for equal settlement.

Module -2

Design of combined footings by Rigid method, Combined footings (rectangular & trapezoidal), strap footings. Types of rafts, bearing capacity & settlements of raft foundation, Design of raft foundation – Conventional rigid method, Elastic methods, Coefficient of sub-grade reaction, IS code (IS-2950) procedure.

Module -3

Introduction Necessity of pile foundations, Classification, Load bearing capacity of single pile by Static formula, Dynamic formula, Pile load test and Penetration tests. Introduction, Pile groups, group action of piles in sand and clay, group efficiency of piles, settlement of piles, negative skin friction, laterally loaded piles and under reamed piles.

Module -4

Module -5

Course outcomes: After studying this course, students will be able to:
- Estimate the size of isolated and combined foundations to satisfy bearing capacity and settlement criteria.
- Estimate the load carrying capacity and settlement of single piles and pile groups including laterally loaded piles.
- Understand the basics of analysis and design principles of well foundation, drilled piers and caissons.
- Understand basics of analysis and design principles of machine foundations.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:
Reference Books:

B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII
REHABILITATION AND RETROFITTING

Course Code: 18CV824
CIE Marks: 40
Teaching Hours/Week (L:T:P): (3:0:0)
SEE Marks: 60
Credits: 03
Exam Hours: 03

Course Learning Objectives:
This course will enable students to:
1. Investigate the cause of deterioration of concrete structures.
2. Strategies different repair and rehabilitation of structures.
3. Evaluate the performance of the materials for repair.

Module -1

Module -2
Damage Assessment: Purpose of assessment, Rapid assessment, Investigation of damage, Evaluation of surface and structural cracks, Damage assessment procedure, destructive, non-destructive and semi destructive testing systems.

Module -3
Influence on Serviceability and Durability: Effects due to climate, temperature, chemicals, wear and erosion, Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings, and cathodic protection.

Module -4
Maintenance and Retrofitting Techniques: Definitions: Maintenance, Facts of Maintenance and importance of Maintenance Need for retrofitting, retrofitting of structural members i.e., column and beams by Jacketing technique, Externally bonding(ERB) technique, near surface mounted (NSM) technique, External post-tensioning, Section enlargement and guidelines for seismic rehabilitation of existing building.

Module -5

Course outcomes: After studying this course, students will be able to:
1. Identify the causes for structural (Concrete) deterioration.
2. Assess the type and extent of damage and carry out damage assessment of structures through various types of tests.
3. Recommend maintenance requirements of the buildings and preventive measures against influencing factors.
4. Select suitable material and suggest an appropriate method for repair and rehabilitation.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

Reference Books:
1. R.T. Allen and S.C. Edwards, “Repair of Concrete Structures”- Blakie and Sons
3. CPWD Manual
Course Learning Objectives: This course will enable students to

1. Gain knowledge about the process of collecting data required for design, factors affecting pavement design, and maintenance of pavement.
2. Excel in the path of analysis of stress, strain and deflection in pavement.
3. Understand design concepts of flexible pavement by various methods (CBR, IRC 37-2001, Mcleods, Kansas) and also the same of rigid pavement by IRC 58-2002
4. Understand the various causes leading to failure of pavement and remedies for the same.
5. Develop skills to perform functional and structural evaluation of pavement by suitable methods.

Module -1

Introduction: Desirable characteristics of pavement, Types and components, Difference between Highway pavement and Air field pavement, Design strategies of variables, Functions of sub grade, sub base, Base course, surface course, comparison between Rigid and flexible pavement

Module -2

Design Factors: Design wheel load, contact pressure, Design life, Traffic factors, climatic factors, Road geometry, Subgrade strength and drainage, ESWL concept Determination of ESWL by equivalent deflection criteria, Stress criteria, EWL concept, and problems on above.

Module -3

Flexible Pavement Failures, Maintenance and Evaluation: Types of failures, Causes, Remedial/Maintenance measures in flexible pavements, Functional Evaluation by Visual inspection and unevenness measurements, Structural evaluation by Benkleman beam deflection method, Falling weight deflecto meter, GPR method. Design factors for runway pavements, Design methods for Airfield pavement and problems on above.

Module -4

Stresses in Rigid Pavement: Types of stress, Analysis of Stresses, Westergaard’s Analysis, Modified Westergaard equations, Critical stresses, Wheel load stresses, Warping stress, Frictional stress, combined stresses (using chart / equations), problems on above.

Design of Rigid Pavement: Design of CC pavement by IRC: 58-2002 for dual and Tandem axle load, Reinforcement in slabs, Design of Dowel bars, Design of Tie bars, Design factors for Runway pavements, Design methods for airfield pavements, problems of the above.

Module -5

Rigid Pavement Failures, Maintenance and Evaluation: Types of failures, causes, remedial/maintenance measures in rigid pavements, Functional evaluation by Visual inspection and unevenness measurements, wheel load and its repetition, properties of sub grade, properties of concrete. External conditions, joints, Reinforcement, Requirements of joints, Types of joints, Expansion joint, contraction joint, warping joint, construction joint, longitudinal joint, Design of joints.

Course outcomes: After studying this course, students will be able to:

1. Systematically generate and compile required data’s for design of pavement (Highway & Airfield).
2. Analyze stress, strain and deflection by boussinesq’s, bur mister’s and westergaard’s theory.
4. Evaluate the performance of the pavement and also develops maintenance statement based on site specific requirements.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. L.R.Kadiyali and Dr.N.B.Lal, “Principles and Practices of Highway Engineering”, Khanna publishers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SubhaRao, “Principles of Pavement Design”.</td>
</tr>
<tr>
<td>4. Relevant recent IRC codes</td>
</tr>
</tbody>
</table>
Course Code: 18CVP83

Teaching Hours/Week(L:T:P): -

CIE Marks: 40

SEE Marks: 60

Credits: 08

Exam Hours: 03

Course objectives:
- To support independent learning.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes: At the end of the course the student will be able to:
- Describe the project and be able to defend it.
- Develop critical thinking and problem solving skills.
- Learn to use modern tools and techniques.
- Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
- Develop skills to work in a team to achieve common goal.
- Develop skills of project management and finance.
- Develop skills of self learning, evaluate their learning and take appropriate actions to improve it.
- Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Evaluation Procedure:
- As per University guidelines
- **Internal Marks:** The Internal marks (100 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.
- **Semester End Examination:** SEE marks for the project (100 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the University norms by the examiners appointed VTU.
Course Code: 18CVS84
CIE Marks: 100
Teaching Hours/Week (L:T:P): --
SEE Marks: --
Credits: 01
Exam Hours: 03

Course Learning Objectives:
The objective of the seminar is to inculcate self-learning, face audience confidently, enhance communication skill, involve in group discussion and present and exchange ideas. Each student, under the guidance of a Faculty, is required to choose, preferably, a recent topic of his/her interest relevant to the course of specialization. Carry out literature survey; organize the Course topics in a systematic order.

- Conduct literature survey in the domain area to find appropriate topic.
- Prepare the synopsis report with own sentences in a standard format.
- Learn to use MS word, MS power point, MS equation and Drawing tools or any such facilities in the preparation of report and presentation.
- Present the seminar topic orally and/or through power point slides.
- Communicate effectively to answer the queries and involve in debate/discussion.
- The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course Outcomes: At the end of the course the student will be able to:

- Develop knowledge in the field of Civil Engineering and other disciplines through independent learning and collaborative study.
- Identify and discuss the current, real-time issues and challenges in engineering & technology.
- Develop written and oral communication skills.
- Explore concepts in larger diverse social and academic contexts.
- Apply principles of ethics and respect in interaction with others.
- Develop the skills to enable life-long learning.

Evaluation Procedure:

- As per University guidelines.
- The Internal Assessment marks for the seminar shall be awarded based on the relevance of the seminar topic, quality of the report, presentation skills, participation in the question and answer, and attendance in the seminar classes/sessions.
B. E. CIVIL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII

INTERNSHIP/PROFESSIONAL PRACTICE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CV185</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>Industry Oriented</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to get the field exposure and experience.

Note: Internship /Professional Practice:

1. This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations like ACCE/ICI/INSTRUCT/RMCMA/QCI, PMI, CIDC etc. and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.

2. The professional certification programs like ACCE(I)- SMP, ICI-BMTPC certifications, NSTRUCT- certifications, CIDC certifications, RMC-QCI’s RMPCS Certification Programs, RMCMA-NRMCA’S Concrete Technologist India(CTI) programs and such similar programs by professional bodies with adequate industry exposures at sites/RMC plants can be considered as Internship /Professional Practice with due approvals from the guide/HOD /internship committees of the institutions.

3. The industry/organization should issue certificates of internship offer and its completion. The offer letter should clearly have the nature of work to be done by the student and the supervisor’s name and duration of internship.

4. The student shall make a midterm and final presentation of the activities undertaken during the first 6 weeks and at the end of 12th week of internship respectively, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.

5. Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor from industry or industry professional approved by university and internship guide from the institute.

6. The College shall facilitate and monitor the student internship program.

7. The internship should be completed during vacation after VI and VII semesters.