Estimation of Dynamic Derivatives Aircraft Stability and Control
Module - 4

ESTIMATION OF DYNAMIC DERIVATIVES

The static stability is a tendency of the aircraft to return to its equilibrium position.
In addition to static stability, the aircraft also must be dynamically stable. An airplane can
be considered to be dynamically stable if after being disturbed from its equilibrium flight
condition the ensuing motion diminishes with time. Of particular interest to the pilot and
designer is the degree of dynamic stability. The required degree of dynamic stability usually
is specified by the time it takes the motion to damp to half of its initial amplitude or in the
case of an unstable motion the time it takes for the initial amplitude or disturbance to

double. Also of interest is the frequency or period of the oscillation.

An understanding of the dynamic characteristics of an airplane is important in
assessing its handling or flying qualities as well as for designing autopilots. The flying
qualities of an airplane are dependent on pilot opinion; that is, the pilot’s likes or dislikes
with regard to the various vehicle motions. It is possible to design an airplane that has
excellent performance but is considered unsatisfactory by the pilot. Since the early 1960s,
considerable research has been directed toward quantifying pilot opinion in terms of aircraft
motion characteristics, such as frequency and damping ratio of the aircraft s various modes
of motion. Therefore, it is important to understand the dynamic characteristics of an
airplane and the relationship of the motion to the vehicle's aerodynamic characteristics and

pilot opinion.

Before developing the equations of motion, it is important to review the axis system
specified earlier. Figure 3.1 shows the body axis system fixed to the aircraft and the inertial

axis system that is fixed to the Earth.

Fixed frame Xq
Y1 [

Iy

FIGURE 3.1
Body and inertial axis systems.
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4.1 Derivation of Rigid Body Equations of Motion

The rigid body equations of motion are obtained from Newton’s second law, which
states that the summation of all external forces acting on a body is equal to the time
rate of change of the momentum of the body; and the summation of the external
moments acting on the body is equal to the time rate of change of the moment of
momentum (angular momentum). The time rates of change of linear and angular
momentum are referred to an absolute or inertial reference frame. For many
problems in airplane dynamics, an axis system fixed to the Earth can be used as an
inertial reference frame. Newton’s second law can be expressed in the following
vector equations:

>F-= % (mv) (3.1)
M= g-rﬂ (3.2)

The vector equations can be rewritten in scalar form and then consist of three

force equations and three moment equations. The force equations can be expressed
as follows:

Fo=3my  F=30m) F=30mw (33)
where F,, F,, F, and u, v, w are the components of the force and velocity along the
x, y, and z axes, respectively. The force components are composed of contributions
due to the aerodynamic, propulsive, and gravitational forces acting on the airplane.

The moment equations can be expressed in a similar manner:

d d d
L & H, M & H, N ar H, (3.4)
where L, M, N and H,, H,, H, are the components of the moment and moment of
momentum along the x, y, and z axes, respectively.

Consider the airplane shown in Figure 3.2. If we let m be an element of mass
of the airplane, v be the velocity of the elemental mass relative to an absolute or
inertial frame, and 8F be the resulting force acting on the elemental mass, then
Newton’s second law yields

dv
6F = ém @ (3.5)

and the total external force acting on the airplane is found by summing all the
elements of the airplane:

> 8F =F (3.6)

The velocity of the differential mass ém is

=v, +— .
vEvet o 3.7)

where v, is the velocity of the center of mass of the airplane and dr/dr is the velocity
of the element relative to the center of mass. Substituting this expression for the
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t oz,
FIGURE 3.2
An element of mass on an airplane.
velocity into Newton's second law yields
d dr
EEF—F—EE(I;+E)§#: (3.8)

If we assume that the mass of the vehicle is constant, Equation (3.8) can be
rewritten as

dv, d dr
F_mﬁwtd;zmsm (3.9)
dv, d°
or F=mE+FErEm (3.10)

Because r is measured from the center of mass, the summation Z r ém is equal to
0. The force equation then becomes

dv,

F=m yy (3.11)
which relates the external force on the airplane to the motion of the vehicle's center
of mass.

In a similar manner, we can develop the moment equation referred to a moving
center of mass. For the differential element of mass, &m, the moment equation can
be written as

d d
3M—aﬁﬂ—a[r>{v] &m (3.12)

The velocity of the mass element can be expressed in terms of the velocity of the
center of mass and the relative velocity of the mass element to the center of mass:
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v:v;+$=\rr+m}<r (3.13)

where  is the angular velocity of the vehicle and r is the position of the mass
element measured from the center of mass. The total moment of momentum can
be written as

H=26H=2(rxXv)dm+ 2 [rX (wXr)]ém (3.14)

The velocity v, is a constant with respect to the summation and can be taken outside
the summation sign:

H=2rdmxv, + 2 [rX (wXr)]ém (3.15)

The first term in Equation (3.15) is 0 because the term Z r m = 0, as explained
previously. If we express the angular velocity and position vector as

w= pi+gj+rk (3.16)

and r=xi+ yj+zk (3.17)
then after expanding Equation (3.15), H can be written as

H = (pi + gi + rk) >, (x> + y* + z%) &m

= 2 (xi + yi + zk)(px + qy + rz) &m (3.18)

The scalar components of H are

H.=p2 (y? +29) 8m — q 2, xy 8m — r 2, xz ém
H=-pXxydm+qg o (x*+2)ém—r 2 yzdm  (3.19)
H =-p2 xzdm— g2 yz m + r 2 (x* + y?) 8m

The summations in these equations are the mass moment and products of inertia
of the airplane and are defined as follows:

f,=jJJ-{y2+zz}5m IIF=JJ’J-1}'Bm
r .

I, =j I{f + 22) &m I,:=JJI xz 8m (3.20)
J

r r
fa=fj{xi+yziﬁm I, = [jyzﬁm

The terms [, ,, and /, are the mass moments of inertia of the body about the x, y,
and z axes, respectively. The terms with the mixed indexes are called the products
of inertia. Both the moments and products of inertia depend on the shape of the
body and the manner in which its mass is distributed. The larger the moments of
inertia, the greater will be the resistance to rotation. The scaler equations for the
moment of momentum follow:

H,=pl, —ql, —rl,.
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H,=—pl,+ql — 1, (3.21)
H: = _p'r«t: - qu,vz + r'rz

If the reference frame is not rotating, then as the airplane rotates the moments and
products of inertia will vary with time. To avoid this difficulty we will fix the axis
syst=m to the aircraft (body axis system). Now we must determine the derivatives
of the vectors v and H referred to the rotating body frame of reference.

It can be shown that the derivative of an arbitrary vector A referred to a
rotating body frame having an angular velocity w can be represented by the
following vector identity:

dA

dr

_dA

+w XA (3.22)

B

!

where the subscripts I and B refer to the inertial and body fixed frames of reference.
Applying this identity to the equations derived earlier yields

F=m3| & mlexv) (3.23)
dr |,
M= | wxH (3.24)
ar |,

The scalar equations are

F, = m{u + gqw = rv) F,=m(o + ru — pw) F, = m(w + pv — qu)

L=H +qH,—rH, M=H +rH, — pH, N = H. + pH, — gH,
(3.25)

The components of the force and moment acting on the airplane are composed of
aerodynamic, gravitational, and propulsive contributions.

By proper positioning of the body axis system, one can make the products of
inertia [, = I,, = 0. To do this we are assuming that the xz plane is a plane of
symmetry of the airplane. With this assumption, the moment equations can be
written as

L = f,ﬂ - Lzr + qri-r;_ - -li‘;.-] - L'zp'q
M=1g+rm(—1)+ L{p*—r? (3.26)
N=-—-I,p+ It + pg(l, — 1) + I qr

4.2 Orientation and Position of The Airplane

The equations of motion have been derived for an axis system fixed to the airplane.
Unfortunately, the position and orientation of the airplane cannot be described
relative to the moving body axis frame. The orientation and position of the airplane
can be defined in terms of a fixed frame of reference as shown in Figure 3.3. At
time r = (), the two reference frames coincide.

The orientation of the airplane can be described by three consecutive rotations,
whose order is important. The angular rotations are called the Euler angles. The
orientation of the body frame with respect to the fixed frame can be determined in
the following manner. Imagine the airplane to be positioned so that the body axis
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system is parallel to the fixed frame and then apply the following rotations:

1. Rotate the x;, ¥, z; frame about Oz, through the yaw angle  to the frame to
Xiy ¥iro &i»

2. Rotate the x,, y,, z, frame about Oy, through the pitch angle # bringing the
frame to x4, ys, 25,

3. Rotate the x;, y;, z; frame about Ox; through the roll angle @ to bring the frame
to X3, ¥, 3, the actual orientation of the body frame relative to the fixed frame.

Remember that the order of rotation is extremely important.

Having defined the Euler angles, one can determine the flight velocities compo-
nents relative to the fixed reference frame. To accomplish this, let the velocity
components along the x;, y,, z, frame be dx/dr, dy/dr, dz/dr and similarly let the

FIGURE 3.3
Relationship between body and
inertial axes systems.

Ko X3 = Xy
@
™ ¥1: ¥z
Yi=Y¥p
z,2,¢ FirstRotation 2,2, Second Rotation 3=7% 1’:2 Third Rotation

subscripts 1 and 2 denote the components along x,, ¥, z, and x;, v;, z;, respectively.
Examining Figure 3.3, we can show that

dx . d . dz
E=u]c0$aﬁ—v.mn¢? E};=u1sm¢+u1cm¢ E:w‘ (3.27)

Before proceeding further, let us use the shorthand notation §, = sin ¢, C, =
cos P, §; = sin #, and so forth. In a manner similar to Equation (3.27), u,,v,, and
w, can be expressed in terms of u,, v;, and w;:

= u Cy + wy 5 U = 1y wp =~ Sy T w, Gy (3.28)
and Uy = U vy = vCy — WSy Wy = 0Sg + WwCq (3.29)

where u, v, and w are the velocity components along the body axes x,, ¥, Z,.
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If we back-substitute the preceding equations, we can determine the absolute
velocity in terms of the Euler angles and velocity components in the body frame:

[dx] ~
a| [€,C, $08,C, = CuS, CoSyC,+ So5,||"

% =1 CoSy 508,S, + CoCy CsSs Sy — SoCy ||v (3.30)

dz —Sg SsCe CoCy "

_df_ o T

Integration of these equations yields the airplane’s position relative to the fixed
frame of reference.

The relationship between the angular velocities in the body frame (p, g, and r)

and the Euler rates (¢, 8, and $) also can be determined from Figure 3.3:

p 10 =5 |
g|=]0 Co CiSol|l 6 (3.31)
r D _Sq. Ca C.p III

Equation (3.31) can be solved for the Euler rates in terms of the body angular
velocities:
¢ I Sytan® Cytan@|[p
gl=10 C, —Sa q (3.32)
W 0 Sesech Cgpsech|| r

By integrating these equations, one can determine the Euler angles , 8, and &.

4.3 Gravitational and Thrust Forces

The gravitational force acting on the airplane acts through the center of gravity of
the airplane. Because the body axis system is fixed to the center of gravity, the
gravitational force will not produce any moments. It will contribute to the external
force acting on the airplane, however, and have components along the respective
body axes. Figure 3.4 shows that the gravitational force components acting along
the body axis are a function of the airplane’s orientation in space. The gravitational

FIGURE 34
Components of gravitational
force acting along the body axis.
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—— -

FIGURE 3.5
Force and moments due to

propulsion system.

T
MT = TIT
TE
-— -
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|
¥r
Ty
Ny = (T,-Talyy

force components along the x, y, and z axes can be easily shown to be
(F)graviy = —mg sin 8
(F))graviey = mg cos@ sin P (3.33)
(F.)geaviy = mg cos @ cos P

The thrust force due to the propulsion system can have components that act along
each of the body axis directions. In addition, the propulsive forces also can create
moments if the thrust does not act through the center of gravity. Figure 3.5 shows
some examples of moments created by the propulsive system.

The propulsive forces and moments acting along the body axis system are
denoted as follows:

[Fz}n’npulﬁw = xf [Fy}pmpu'l.piut = YT (Fz}whiu = Z." (3'34)
and {L}Fﬂ'ﬂﬂlﬂ"\‘f— = LT [M]pmpulsiu = MT [H}pmpulh'w = N‘.I" (335)
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Table 3.1 gives a summary of the rigid body equations of motion.

TABLE 3.1
Summary of kinematic and dynamic equations

X — mgSy = mlg + gw — ru)
¥ + mgC,Sq = m(d + ru — pw) Force equations
Z + mgC,Cy = miw + pv — qu)

L=1p={;f+aqgrl —1)~-1I_pg

M=1g+nrll - 1)+ Lip'—rY) Moment equations
N=-Il.p+Li+ pgll, = 1)+ Lgr

p == S, Body angular velocities
g = 0C, + JC,5, in terms of Euler angles
r= o, Co — 85, and Euler rates

!'3 = gCq — rip Euler rates in terms of
P =p+ g8 Ty + rCyT, Euler angles and body
i = (g854 + rCq)sec 8 angular velocities
Velocity of aireraft in the fixed frame in terms of Euler angles and
body velocity components

[ dx]

E CoCy '5@5!‘:4 - c¢5r cﬁslci + Sisi H

dx| =

7 CoS, Sa8.5,+ CoC, Co5.5, - 5,C.|v

d

E‘ -5, SaCy CoCy w

4.4 Small Disturbance Theory

The equations developed in the previous section can be linearized using the small-
disturbance theory. In applying the small-disturbance theory we assume that the

motion of the airplane consists of small deviations about a steady flight condition.
Obviously, this theory cannot be applied to problems in which large-amplitude
motions are to be expected (e.g., spinning or stalled flight). However, in many cases
the small-disturbance theory yields sufficient accuracy for practical engineering

purposes.
All the variables in the equations of motion are replaced by a reference value
plus a perturbation or disturbance:

u=uy + Au v =uv, + Ao W= w, + Aw
p=p, + Ap g =gy, + Ag r=nr+ Ar
X=X +AX Y=Y +AY Z=Z,+ AZ
M=M,+ AM N=N,+AN L=1L,+ AL
d=8 + Ab

For convenience, the reference flight condition is assumed to be symmetric and the
propulsive forces are assumed to remain constant. This implies that

Vo= Po=Go=ro=DPo=14y =0 (3.37)

Furthermore, if we initially align the x axis so that it is along the direction of the
airplane’s velocity vector, then w, = 0.

(3.36)
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Now, if we introduce the small-disturbance notation into the equations of
motion, we can simplify these equations. As an example, consider the X force
equation:

X — mgsin @ = m(u + gw — rv) (3.38)
Substituting the small-disturbance variables into this equation yields

Xo + AX — mg sin(f, + A6)

d (3.39)
=m [E (up + Au) + (g + Ag)(wy + Aw) = (ry + Ar)(v, + ﬁvl]

If we neglect products of the disturbance and assume that

Wn=ﬂn=Pn=¢?n=ru=‘I‘n=¢‘n=ﬂ (3.40)
then the X equation becomes

X, + AX — mg sin(6, + AF) = m Au (3.41)
This equation can be reduced further by applying the following trigonometric
identity:
sin(8, + A8) = sin 6, cos A9 + cos &, sin AP = sin §, + Afcos 6,

Therefore, X, + AX — mg(sin 6, + Afcos 6,) = m Au (3.42)

If all the disturbance quantities are set equal to 0 in these equation, we have the
reference flight condition

Xo —mgsin@, =10 (3.43)
This reduces the X-force equation to
AX — mg A cos 6, = m Au (3.44)

The force AX is the change in aerodynamic and propulsive force in the x direction
and can be expressed by means of a Taylor series in terms of the perturbation
variables. If we assume that AX is a function only of u, w, 8,, and &, then AX can
be expressed as

aX d X dX d X
AX = — Au + — Aw + — + — 45
au Bt G T 35, A0t g5, A (34
where dX/du, dX/ow, dX/38,, and aX/a8,, called stability derivatives, that are
evaluated at the reference flight condition. The variables 8, and &; are the change
in elevator angle and throttle setting, respectively. If a canard or all-moveable
stabilator is used for longitudinal control, then the control term would be re-
placed by
dX aX

92X A5
25, Mon Of oF

A8,
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Substituting the c;xprnssiun for AX into the force equation yields:
ax ax X
du aw abr

Or On rearranging

ﬁ&-_.- mg Af cos 6, = m Au (3.46)

d dX aXx aX

- —— - | — + AR = — A8, + _— &
(m -5 e (..Jf-w s on 00 89 = 5 88, + 35 00
The equation can be rewritten in a more convenient form by dividing through by
the mass m:

(d% - Jlj,) Au — X, Aw + (g cos &) A8 = X, A8, + Xz AS; (3.47)
where X, = dX/du/m, X, = dX/dw/m, and so on are aerodynamic derivatives
divided by the airplane’s mass.

The change in aerodynamic forces and moments are functions of the motion
variables Au, Aw, and so forth. The aerodynamic derivatives usually the most
important for conventional airplane motion analysis follow:

= pu+ Eaw + Pps, + 22
AX a."ln ﬂwﬁw &ﬁﬂuﬁ arﬁr

M=%m+ﬂ@+¥m+ﬂm

aZ azZ
AZ ™ ﬂu ﬁw P W 3 Ag

> (3.48)

dZ aZ

-

ol al AS,

= Av+ —Ap+—Ar+ +
AL auﬂu a‘& ﬂr& a&,M’ as,

aM
&M—i—”hu+a—ﬁw+a—ﬂw+—ﬂq

}uw}

aM
M s M
a8, 36, o7

aN aN aN aN aN

AN = anﬂ‘ + ap Ap + ar'ﬁ‘ + aﬁ,M’+ aﬁ,M'

The aerodynamic forces and moments can be expressed as a function of all the
motion variables; however, in these equations only the terms that are usually
significant have been retained. Note also that the longitudinal aerodynamic control
surface was assumed to be an elevator. For aircraft that use either a canard or
combination of longitudinal controls, the elevator terms in the preceding equations
can be replaced by the appropriate control derivatives and angular deflections.
The complete set of linearized equations of motion is presented in Table 3.2,

o
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TABLE 3.2

The linearized small-disturbance longitudinal and lateral rigid body equation
of motion

Longitudinal equations

(%—x)m;—x,m+{gcmﬂgu=x,,a5,+x,,a57
=Z, Au + [{1—2.;15—2.}%'—[iuu+2.,‘]£—gsin&,,]&ﬂ=zhﬁﬁe+zh&5?

Ed
—M_ﬁu—(.h‘ ;+M).ﬁ.w+(;: w)m M, A5, + My, AS;

Lateral equations

(d%—}:_)&u—l‘,,ﬁ.p-l-[un—i',}ﬁr—{gmsﬂdﬁ:#-l’,,&ﬁ

d . d
~L, Av + (I - L,.) Ap — (?TE + L,) Ar = Ly A8, + Ly AS,

—NLM—(;T£+N)ﬁp+(E—N)ﬁr=h';,.ﬁ.ﬁ_,+ﬂ,,ﬁﬁ,

T

4.5 Aerodynamic Force and Moment Representation

In previous sections we represented the aerodynamic force and moment contribu-
tions by means of the aerodynamic stability coefficients. We did this without
explaining the rationale behind the approach.

The method of representing the aerodynamic forces and moments by stability
coefficients was first introduced by Bryan over three-quarters of a century ago
[3.1, 3.3]. The technique proposed by Bryan assumes that the acrodynamic forces
and moments can be expressed as a function of the instantaneous values of the
perturbation variables. The perturbation variables are the instantaneous changes
from the reference conditions of the translational velocities, angular velocities,
control deflection, and their derivatives. With this assumption, we can express
the aerodynamic forces and moments by means of a Taylor series expansion of the
perturbation variables about the reference equilibrium condition. For example, the
change in the force in the x direction can be expressed as follows:

AX(u, i, w, W, . . .. 5., .)

) ¢ (3.50)
= — Au + — .ﬁ. + ﬂﬁ + H.O.T. (higher order terms)
du &-5
The term 8X/du, called the stability derivative, is evaluated at the reference flight
condition.

The contribution of the change in the velocity u to the change AX in the X
force is just [4X/du] Au. We can also express dX/du in terms of the stability

coefficient C_,_ as follows:

X _c.Llos 3.51)
du “ g
aC,
where C, = &[ufu.]} (3.52)
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Note that the stability derivative has dimensions, whereas the stability coefficient
is defined so that it is nondimensional.

The preceding discussion may seem as though we are making the aerodynamic
force and moment representation extremely complicated. However, by assuming
that the perturbations are small we need to retain only the linear terms in Equa-
tion (3.50). Even though we have retained only the linear terms, the expressions
still may include numerous first-order terms. Fortunately, many of these terms also
can be neglected because their contribution to a particular force or moment is
negligible. For example, we have examined the pitching moment in detail in Chap-
ter 2. If we express the pitching moment in terms of the perturbation variables, as
indicated next,

M(u, v, w, u, ¢, W, p, q,r,8,, 8, 8)

aM dM aM aM (3.53)
= — o A+ — ce e — + ...
- Au n Au ™ ow + ap Ap

it should be quite obvious that terms such as (3M/av) Av and (9M/3p) Ap are not
going to be significant for an airplane. Therefore, we can neglect these terms in our
analysis.

In the following sections, we shall use the stability derivative approach to
represent the aerodynamic forces and moments acting on the airplane. The expres-
sions developed for each of the forces and moments will include only the
terms usually important in studying the airplane’s motion. The remaining portion
of this chapter is devoted to presentation of methods for predicting the longitudi-
nal and lateral stability coefficients. We will confine our discussion to methods that
are applicable to subsonic flight speeds. Note that many of the stability coefficients
vary significantly with the Mach number. This can be seen by examining the data
on the A-4D airplane in Appendix B or by examining Figure 3.6.

We have developed a number of relationships for estimating the various stabil-
ity coefficients; for example, expressions for some of the static stability coefficients
such as C,, . C,, and C; were formulated in Chapter 2. Developing prediction
methods for all of the stability derivatives necessary for performing vehicle motion
analysis would be beyond the scope of this book. Therefore, we shall confine our
attention to the development of several important dynamic derivatives and simply
refer the reader to the US Air Force Stability and Control DATCOM [3.4). This
report is a comprehensive collection of aerodynamic stability and control predic-
tion techniques, which is widely used through the aviation industry.

Variation of selected longitudinal and lateral stability derivatives

Symbaol | Derivative | Variation with Mach number Symbol | Derivative | Variation with Mach number
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FIGURE 3.6
Variation of selected longitudinal and lateral derivatives with the Mach number.
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4.6 Derivatives Due To Change in Forward Speed

The drag, lift, and pitching moments vary with changes in the airplane’s forward
speed. In addition the thrust of the airplane is also a function of the forward speed.
The aerodynamic and propulsive forces acting on the airplane along the X body
axes are the drag force and the thrust. The change in the X force, that is, AX due
to a change in forward speed, can be expressed as

AX = ﬁﬁu = _9D Au + E4‘.‘1.;«: (3.54)
du ou du
aX ab aT
—_— e — e .
or du ou ou (3.55)

The derivative 3X/du is called the speed damping derivative. Equation (3.55) can
be rewritten as

ax pS ( , 8Cp ) arT
9 - (%, + 3.56
u 7 \Mo g, T 2Co, ) + o (3.56)

where the subscript 0 indicates the reference condition. Expressing aX/du in
coefficient form yields

Cx" = _{C'Du + zcﬂ.n] + E.T. {3;5?]

ﬂCD a['---“'."
here C, = and Cy = —— 3.58
whe % = 3ufue) T o ufuo) (3-58)

are the changes in the drag and thrust coefficients with forward speed. These
coefficients have been made nondimensional by differentiating with respect to

(1/u,). The coefficient Cp, can be estimated from a plot of the drag coefficient
versus the Mach number:

_m S
Co, aM
where M is the Mach number of interest. The thrust term C; is 0 for gliding flight;
it also is a good approximation for jet powered aircraft. For a variable pitch
propeller and piston engine power plant, C;. can be approximated by assuming it
to be equal to the negative of the reference drag coefficient (i.e., C;. = —Cp ).

The change in the Z force with respect to forward speed can be shown to be

aZ 1

a = —E pSHﬂ[C;_' + ZCLD] (3.60)

(3.59)

or in coefficient form as
C;_ = —[GL_ + lﬂ}lﬂ] (3.61)

The coefficient C, arises form the change in lift coefficient with the Mach number.
C,_can be estimated from the Prandtl-Glavent formula, which corrects the incom-
pressible lift coefficient for the Mach number effects:

= I":.[,|i'l'=lil
“TVi-w 262
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Differentiating the list coefficient with respect to the Mach number yields
aC, ~ M
oM 1 — M?

BCL " aC]_

C. (3.63)

but C, = == (3.64
“ = Sl a 0 ]
a -
i
e 0C;
=M P (3.65)
where a is the speed of sound.
C,_ therefore can be expressed as
MI
'C;__ = -]_—Pl'lz Cf-.;. {Eﬁﬁ}

This coefficient can be neglected at low flight speeds but can become quite large
near the critical Mach number for the airplane.

The change in the pitching moment due to variations in the forward speed can
be expressed as

AM = Z—M Au (3.67)
M
or E:i_u = C, p Sty (3.68)

The coefficient C,, can be estimated as follows:

aCm
Cn, = M

M (3.69)

The coefficient C,, depends on the Mach number but also is affected by the elastic
properties of the airframe. At high speeds aeroelastic bending of the airplane can
cause large changes in the magnitude of C,, .

4.7 Derivatives Due To The Pitching Velocity, q

The stability coefficients C. and C,, represent the change in the Z force and
pu,chmg moment coefficients with rcspe-:t to the pitching velocity g . The aerody-
namic characteristics of both the wing and the horizontal tail are affected by the
pitching motion of the airplane. The wing contribution usually is quite small in
comparison to that produced by the tail. A common practice is to compute the tail
contribution and then increase it by 10 percent to account for the wing. Figure 3.7
shows an airplane undergoing a pitching motion.

As illustrated in Figure 3.7, the pitching rate g causes a change in the angle of
attack at the tail, which results in a change in the lift force acting on the tail:
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AL, = C,_Aa, 0,5, (3.70)
I
or AZ=-AL = —C,, Eg,s, (3.71)
z
C: =55 (3.72)
ql, S,

Ac, = -¢, & 373

z 'E'ur uﬂ S ( ]
aC 2uy 3C

“ 3(gc/my) T dq {

C, = —2C, nVy (3.75)

AL, FIGURE 3.7

Mechanism for aerodynamic force due (o
pitch rate.

The pitching moment due to the change in lift on the tail can be calculated as
follows:

AM,, = —I, AL, (3.76)
AC. = —V.nc, T 3.77)
my a1 L"u_n (3.
c, = —9C 24y 3Cm (3.78)

* algc/m) T dq
I,

Ca, = —2C0, MV - (3.79)

Equations (3.75) and (3.79) represent the tail contribution to C:_ and Cmq, respec-

tively. The coefficients for the complete airplane are obtained by increasing the tail
values by 10 percent to account for the wing and fuselage contributions.

4.8 Derivatives Due To The Time Rate of Change of Angle of
Attack

The stability coefficients C, and C,_ arise because of the lag in the wing downwash
getting to the tail. As the wing angle of attack changes, the circulation around the
wing will be altered. The change in circulation alters the downwash at the tail;
however, it takes a finite time for the alteration to occur. Figure 3.8 illustrates the
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lag in flow field development. If the airplane is traveling with a forward velocity u,
then a change in circulation imparted to the trailing vortex wake will take the
increment in time Ar = [/u, to reach the tail surface.

The lag in angle of attack at the tail can be expressed as

de
Ao, = — 3.80
Sl At (3.80)
where Ar = 1 fu, (3.81)
de | de da [
Ag, = — —+ = — — L )
or Yodr oy da drou (3:82)
_de 1L
= da&un (3.83)
\.\ﬂ'< - r
{ : Tailplane
Steady state condition
angle of attack is constant
atba  T+AT I+Ar
\< - r
< [_.;7 Tail Unsteady flow created
plane . .
by change in wing angle
of attack; change in wing
r circulation is convected
downstream
FIGURE 3.8
Mechanism for aerodynamic force due to the lag in flow field
development.
The change in the lift force can be expressed as
AL, = C,_ Aa, Q,S, (3.84)
or in terms of the z force coefficient
AL S
AC, = ——= = —C,_ Aa,n= :
I Qs Lnf r M S {3 35:'
de I, S
= Ciga s (3.86)
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C,, (3.87)

(3.88)

The pitching moment due to the lag in the downwash field can be calculated as
follows:

AM,, = —|, AL, = ~LC;_ Aq, 0,5, (3.89)
AC,, = —VymCy, :—E @ ni:. (3.90)
= ~2C,, nVy %j—; (3.92)

Equations (3.89) and (3.92) yield only the tail contribution to these stability
coefficients. To obtain an estimate for the complete airplane these coefficients are
increased by 10 percent. A summary of the equations for estimating the longitudi-
nal stability coefficients is included in Table 3.3.

TABLE 33
Equations for estimating the longitudinal stability coefficients
X-force Z-force Pitching moment
derivatives derivatives derivatives
M? ac,,
u Cy, = “[CB\. + ZCGB] + Cr, C.,= -WC;_H = 2C;, Co = mMo
:'-Cl, C,L_ X xn d.E

a Cy, = Cop — meﬁ Cz, = -1, + Cog q.,-r:.,_(%' -7 + Oy — 'TVHC:.., 1 - da

de I, de
& o Co = ~20C Vu o Cra = —27C, Vu ;’E

IJ

g 0 €, = —2nCy, Vu Cay = ~2C0 Vi~

5, dc, dc,,
a 0 Cz,,=—cu,=—3’r;d—& C""-=_"v"d_a,

Subscript 0 indicates reference values and M is the Mach number.

AR Aspect ratio Vy  Horizontal tail volume ratio

Cp, Reference drag coefficient M  Flight mach number

C,;, Reference lift coefficient I Wing area

C,, Airplane lift curve slope 5,  Horizontal tail area

C,,, Wing lift curve slope de . .

Ce Tail lift curve slope - Change in downwash due to a change in angle of auack
¢ Mean aerodynamic chord w  Efficiency factor of the horizontal tail

e Oswald's span efficiency factor

Ead

Distance from center of gravity to tail quarter chord
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4.9 Derivative Due To The Rolling Rate, p

The stability coefficients C, , C, , and C, arise due to the rolling angular velocity,
p. When an airplane rolls about its longitudinal axis, the roll rate creates a linear
velocity distribution over the vertical, horizontal, and wing surfaces. The velocity
distribution causes a local change in angle of attack over each of these surfaces that
results in a change in the lift distribution and, consequently, the moment about the
center of gravity. In this section we will examine how the roll rate creates a rolling
moment. Figure 3.9 shows a wing planform rolling with a positive rolling velocity.
On the portion of the wing rolling down, an increase in angle of attack is created
by the rolling motion. This results in an increase in the lift distribution over the
downward-moving wing. If we examine the upward-moving part of the wing we
observe that the rolling velocity causes a decrease in the local angle of attack and

Relative velocity normal
to the wing due to the
rolling motion

©) -~ O]

4]
Relative valocity
components A Lift
. o2t
W atin A a4
Uo
Station 2 Station 1

FIGURE 3.9
Wing planform undergoing a rolling motion.

the lift distribution decreases. The change in the lift distribution across the wing
produces a rolling moment that opposes the rolling motion and is proportional to
the roll rate, p. In Figure 3.9 the negative rolling velocity induces a positive rolling
moment.

An estimate of the rolling damping derivative, €, , due to the wing surface can
be developed in the following manner. The incremental lift force created by rolling
motion can be expressed as

d(Lift) = C, AaQc dy (3.93)

where Aa = py/u,.
The incremental roll moment can be estimated by multiplying the incremental
lift by the moment arm y:
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dL = —C, (‘:")Qcy dy (3.94)

o

The total roll moment now can be calculated by integrating the moment contribu-
tion across the wing:

o
L= -:r c, (ﬂ) Qey dy (3.95)
o R
or in coefficient form
2p r” )
= — 3.96
G Shitg A C; cy” dy ( )

To simplify this integral, the sectional lift curve slope is approximated by the wing
lift curve slope as follows:

2C, (p b2
= ———= < 2 3.97
G % (uﬂ) J; cy” dy (3.97)
The roll damping coefficient C,F is defined in terms of a nondimensional roll rate:
c, = (3.98)

Differentiating Equation (3.98) yields

4.5- b2
— 2
C’; Sb‘ cy® dy (3.99)

o

which provides an estimate to C, , the roll damping coefficient due to wmg surface.
From this simple analysis we readily can see that C, depends on the wing span.
Wings of large span or high aspect ratio will have largf:.r roll damping than low
aspect ratio wings of small wing span.

The roll damping of the airplane is made up of contributions from the wing,
horizontal, and vertical tail surfaces. The wing, typically being the largest aerody-
namic surface, provides most of the roll damping. This is not necessarily the case

for aircraft having low aspect ratio wings or missile configurations; for these
configurations, the other components may contribute as much to the roll damping
coefficients as the wing.

4.10 Derivative Due To The Yawing Rate, r

The stability coefficient C,, C, , and C; are caused by the yawing angular velocity,
r. A yawing rate causes a change in the side force acting on the vertical tail surface
as illustrated in Figure 3.10. As in the case of the other angular rate coefficients the

angular motion creates a local change in the angle of attack or in this case a change
in sideslip angle of the vertical tail.
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=

e—

Lower dynamic pressure
is seen by this wing,
therefore, a lower lift
Relative velocity
due to forward motion
r (
s

Higher dynamic pressure is
seen by this wing, therefore,
a higher lift

The difference in dynamic
prassure seen by the yawing
wing creates a roll moment
due to the yaw rate, r.

Side force on the vertical
tail created by yawing rate,
r, causas a rolling moment
due to its displacement
abova the center of gravity
in the vertical direction.

FIGURE 3.10

Relative velocity distribution
seen by the wing and vertical tail
due 1o a yawing velocity

Side force and yawing moment
due to yawing rate, r

Roll moment due to
yawing rate, r

Influence of the yawing rate on the wing and vertical tail.
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A positive yaw rate produces a negative sideslip angle on the vertical tail. The
side force created by the negative sideslip angle is in the positive direction:

Y = _C"*-, AB Q. 5, (3.100)
where AB = —rl, /u, for a positive yawing rate. Rewritting Equation (3.100) in

coefficient form yields

C.. (’—I‘)st.,-
C, = — 3‘5 (3.101)
-c., (Z)nd (.10

The stability coefficient C, is defined in terms of the nondimensional yaw rate as
follows:

C,, = ﬂfg: (3.103)
o(30)
Taking the derivative of C, with respect to rb/2u, yields
C, = 2C, 5k (3.104)
W g '
The term C, m% is approximately —C,g  : therefore,
C, = —2C L (3.105)
e "B i b

The stability coefficients, C, , which is the change in yaw moment coefficient
with respect to a nondimensional yaw rate rb/(2u,), is made up of contributions
from the wing and the vertical tail. The vertical tail contribution is derived next.
The yaw moment produced by the yawing rate is a result of the sideslip angle
induced on the vertical tail. A positive yaw rate produces a negative sideslip at the
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vertical tail or a positive side force on the tail. A positive side force causes a
negative yawing moment; therefore,

N =C, ABQ.S.L (3.106)
But AB = —rl, /u, for a positive yawing rate:

N=-C (r—I‘)QDS,,.E, (3.107)
.ﬂ l‘ﬂ
Or in coefficient form
rl,
C, = _CL-; (:c—l)n, v, (3.108)

where i, = Q,/Q and V, = §,1./Sb,
The stability coefficient C, is defined as

C, = 9C, (3.109)
' a(ﬂ)
2uy

= —2::‘;,._1]“ V,,% (3.110)

The vertical tail contribution to C, also can expressed in terms of the side force
coefficient with respect to sideslip:

LY
C, =2C, (E) (3.111)

The yaw rate, r, also produces a roll moment. The stability coefficient C, is due
to both the wing and the vertical tail. An expression for estimating C, is given in
Table 3.4. As shown earlier the yawing rate creates a side force on the vertical tail
that is proportional to the yaw rate, r. Because this force acts above the center of
gravity a rolling moment is created. The contribution of the wing to C, is due to the
change in velocity across the wing in the plane of the motion. Development of an
expression for C; due to the wing and the vertical tail is left as an exercise problem
at the end of this chapter.

In this section we have attempted to provide a physical explanation of some
of the stability coefficients. This was accomplished by simple models of the flow
physics responsible for the creation of the force and moments due to the motion
variables such as p, g, and r . Most of the simple expressions developed for estimat-
ing a particular stability coefficient were limited to only the contribution due to
the primary aircraft component; that is, either the wing, horizontal, or vertical tail
surface. To provide a more complete analysis of the aerodynamic stability coeffi-
cients a more detailed analysis is required than has been presented in this chapter.
References [3.4] and [3.5] provide a more complete set of stability and control
prediction methods.

The stability coefficients C, , C, , C , Ca, ., and C,, all oppose the motion
of the vehicle and thus can be considered as dampmg terms. This will become more
apparent as we analyze the motion of an airplane in Chapters 4 and 5.
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TABLE 34

Equations for estimating the lateral stability coefficients

¥-force Yawing moment Rolling moment
derivatives derivatives derivatives

B C,=-m SCI__(] + E) Gy = Copy + 1V CL_‘(] + E) C, = (—I‘!)l" + AC,, (see Figure 3.11)

AR +cosA __G = _G,lt3
PG T R Taema Y T P12 14

il I (.'1 Iz
r C, = _E(E){C’F)"ﬂ C, = —2n, 'i"',.,(;){:'_.m= C, = 2— 5 5 Crem
ZC T
& 0 Cug = 2KC,,C,, (se¢ Figure 3.12) €, ‘** J cy dy
s, Sfn
8, c:-s,. = E T'CL‘- C.', = —1‘;.‘1‘.'.1'5:_._ C‘B = E 3 TCL‘_'
AR  Aspect ratio
b Wingspan §  Wing area
Cp, Reference lift coefficient 5,  Vertical tail area
C,. Adrplane lift curve slope 1,  Distance from center of pressure of vertical tail to
C,.. Wing lift curve slope fuselage centerline
Cyp,, Tail lift curve slope I'  Wing dihedral angle
¢  Mean aerodynamic chord A Wing sweep angle
K  empirical factor n., Efficiency factor of the vertical tail
I, Distance from center of gravity to vertical tail A Taper ratio (tip chord/root chord)
aerodynamic center de . , - cidesli I

V.  Vertical tail volume ratio 3 Change in sidewash angle with a change in sideslip angle

Maximum ordinales
on upper surface

L _/

M‘;F = =0.0002/rad

-0.0003
-0.0002
“lg
r

(per deg?) —0.0001

FIGURE 3.11

Maximum ordinales
on mean surface

= I Y

Maximum ordinales
on lower surface

ﬂ.f_"[ﬁ = 0.0002/rad

.

0

2

Tip shape and aspect ratio effect on Cj,.
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Spanwise distance from centerline to the FIGURE 3.12
Y inboard edge of the aileron control Empirical factor for C,,
N WE Semispan estimate.
-0.3
hy= 0.5 ____....--"‘"
— |AR=4
=0.2
——-"""'Fﬁ- B
K —1AR = 8
-0.1
0
0 0.25 0.5 0.75 1.0
I
TABLE 3.5
Summary of longitudinal derivatives
X, = —(Co, + zfm]ﬂ-‘-'{ﬁ_,} X, = —(Co, — Ceo)0S )
ML, ity
E._ — _{CL.- + ECLJQS{S_]}
Mg
=(Cy, + Cp )OS _ £
z, =—= — 005 -1y Z. = = Curgpm 05/ (uom)

Z, = uy Z_(fu/s?) or (m/s®)

Z = —t:},i O5/m (fufs) or (m/s)
2uq

_ . g8 ] 1
M. = G ugl, (ﬁ-s)m(m-S)
(@Sc) (1 1
M. = Ca wol, (ft . s) - (m -s)
M, = u;M, (s77)

[

My = Coygr (SO, 67"

Z; = ug Z, (fufs) or (m/fs)

Zy, = = Cy, OS/m (f1I5?)

oo € O
Hh' - C-‘ zﬂn "u!r (ft ':I
M; = M, (s7')

ML = Au.{ﬂsaf’y {s_t}
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TABLE 3.6
Summary of lateral directional derivatives
A SO S e sl o e - Sl . i S A T M, | S S e T
bC,
¥y = ch—m‘ﬂ (ft/s?) or (m/s%) Ng = ﬂs?j (s™%) Lg= ‘QSTE (s™%)
QSbC 0sb*C,, . _ osb*C,, | _

= = == 1 = = I

by = e (Et) (i) M= 6 L= &)
) 2
¥, = %{'—' {ft/s) or (m/s) N, = % (s7') L= %ﬂ% (s7')
iy
Yy, = % (ft/s*) or (mfs®) ¥, = % (ft/s?) or (m/s?)
Ng = B’ﬂ;f"_ (s7%) Ny = 1 = (s7%)
[ C,

Ly = B L - B e

As noted earlier, there are many more derivatives for which we could develop
prediction methods. The few simple examples presented here should give the
reader an appreciation of how one would go about determining estimates of the
aerodynamic stability coefficients. A summary of some of the theoretical predic-
tion methods for some of the more important lateral and longitudinal stability

coefficients is presented in Tables 3.3 and 3.4. Tables 3.5 and 3.6 summarize the
longitidinal and lateral derivatives.
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