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Course Name Mechanics of Materials

Module 2: Bending Moment and Shear Force in Beams, Euler-

Bernoulli Beam Theory

1. Explain types of beams, loads and supports with neat illustrations. (06 Marks)
Aug./Sept.2020, 18AE34

Types of Beams:

(i) Simply Supported Beam: Supported at both ends, allowing rotation and

1 x

(i)  Cantilever Beam: Fixed at one end, resists loads primarily through bending

/
]

(ili))  Overhanging Beam: A beam that extends beyond its supports, creating one or

vertical displacement.

B

moments.

more sections with unsupported ends
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Types of Loads:

(1)  Point Load: Concentrated force applied at a specific location.
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(i) Uniformly Distributed Load (UDL): Even load distribution along the beam's
length.
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(iii))  Uniformly Varying Load (UVL): Linearly varying load, forming a triangular

distribution.

w kN/m
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(iv)  Moment: Bending moment applied to the beam, causing it to deflect.
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Types of Supports:

(1)  Hinged Support: Allows rotation but not translation.
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(i)  Roller Support: Allows rotation and translation in one direction.
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(ili)  Fixed Support: Prevents both rotation and translation.
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2. Find the reactions at the fixed end and draw SFD and BMD for the Cantilever
beam shown in Fig.Q3(b). (07 Marks) Aug./Sept.2020, 18AE34

6 KN-T) 1o KAN-
an .
kg—"’éﬂ\'r c »Y &
k—'z,m—%‘w"’}‘*ww—*
10 kN o kN

ALY
”
}

=
3
-
il
s
|
o M3

&

SFO

I

30

k N

BMO
85

Reaction Force:
Total Vertical load = 10 +5 = 15 kN
Vertical Reaction at A =15 kN (upwards)

Shear Forces:
Shear Force at Aand B = 15 kN
Shear Forceat C, D & E=5kN

Bending Moments:

Bending Moment at E = 0
Bending Moment at RHS of D = =5 X2 =—-10kN —m
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Bending Moment at LHS of D = =10 —10 = =20 kN —m
Bending Moment at C = (—5x4) —10 =—-30kN —m
Bending Moment at RHS of D = (=5 %X 6) —10 — (10 X 2) = =60 kN —m
Bending Moment at LHS of D = —60+5 = —=55kN —m
Bending Moment at A= (—-5x8)—10—-(10x4)+5=—-85kN —m

3. Draw the SFD and BMD of the simply supported beam loaded as shown in Fig.
and locate maximum bending moment. (07 Marks) Aug./Sept.2020, 18AE34
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Reaction Forces:

M, =0

Rz(10) — (40 x 6) — (40 x 4) — (50 x 2) = 0
Rz =50 kN

Ry + R =50 + 40 + 40 = 130 kN

R, = 80 kN
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Shear Forces:

Shear Force at A = 80 kN

Shear Force at B = =50 kN

Shear Force at C = 30 kN

Shear Force at D = =50 kN

Shear Force at E =0

Let x be the distance from Ato E,

Shear Forceat E =80 —-50—-10(x—2) =0
x=5m

Bending Moments:

Bending Moment at A =0

Bending Moment at B = 0

Bending Moment at C =80 X 2 =160 kN —m
Bending Moment at D = 50 X 4 = 200 kN —m
Bending Moment at E = (80 X 5) — (50 X 3) — (10 X 3 X 1.5) = 205 kN —m

4. Mention the assumptions of Euler-Bernoulli’s beam theory and derive the
bending stress equation. (10 Marks) Aug./Sept.2020, 18AE34

ASSUMPTIONS IN PURE BENDING (SIMPLE BENDING)

The following assumptions are made in the theory of pure bending (simple bending) :

| The material of the beam is perfectly homogeneous (i.e., of the same kind throughout) and
isotropic (i.€., same elastic properties in all directions).

2 The value of Young's modulus (E) is same in tension and compression.

3. The beam material is stressed within its elastic limit and thus, obeys Hooke's law.

4. The stress is purely longitudinal.

5. The beam is initially straight and every layer of it is free to expand or contract.

§ The transverse sections, which were plane before bending, remains plane ever after bending.
1 The radius of curvature of beam is very large compared to its depth.

. The resultant pull or thrust on a transverse section of the beam is zero (i.e., the beam is in
tquilibrium),

DERIVATION OF BENDING EQUATION

! Relatlonshlp between bending stress and radius of curvature

ider an elemental length '8x' of a beam subjected to a simple bending or pure bending

"8'51',D“° 1o the action of this bending, let this elemental length of beam bend into an arc of

¥1h 0 as centre of curvature as shown in Fig. 8.6.
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B D Tensile stress

Stress diagram

Fig. 8.6

Let
R = Radius of neutral layer P'Q’
6 = Angle subtended by the arc at the centre
M = Moment acting on the beam.
Consider a layer RS at a distance y from the neutral axis PQ of the beam. Let this layer be
compressed to R'S " after bending. Decrease in length of this layer RS, 5 = RS - R'S"
Change in length of RS
Strain in the layer RS, e = *On‘ginal lengthof RS

_ Rs-rs'_ RS

RS RS

1_('?—;:)3 where RS = PQ = P'Q’' = R®

R-y _ R—R+y
R =~ R
- Strain in the layer RS, ¢ = % *

As R is co in is direct
nstant, strain is directly proportional to its distance from the neutral layer.

] == =y/R

Let & = Bending stress in the layer

£ = Young's modulus of the beam
- Young's modulus E = o
Strain
ie, E —
o “ y/R
s E
=2 --(3.1)

As E and R are constants, st.ress in the layer RS is directly proportional to the distance of the
layer from the neutral layer. In Fig. 8.6, all layers below the neutral layer are subjected to tensile

esses where as the layers above the neutral layer are subjected to :
i co
sqation 8.1 can also be written as / mpressive stresses. The

2
- ~(8.2)
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5. Derive the relationship between shear force and bending moment. (04 Marks)
Jan./Feb. 2021, 18AE34
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6. A beam of 8 m span simply supported at its end carries loads of 2kN and 5kN at
a distance of 3m and 6m respectively from right support. In addition, the beam

carries a UDL of 4kN/m for its entire length. Draw the SF and BM diagram. (12
Marks) Jan./Feb. 2021, 18AE34
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Reaction Forces:

M, =0
Rp(8) —(2x5)—(5x2)—(8x4x4)=0
Ry = 185 kN
Ri+Ry=2+5+32=39kN

R, = 20.5 kN

Shear Forces:

Shear Force at A = 20.5 kN

Shear Forceat D = 7.5 kN

Shear Force at C = —6.5 kN

Shear Force at B = —18.5 kN

Shear Force at E=0

Let x be the distance from Ato E,

Shear ForceatE =205—-8—-5—4(x—2)=0
x=3875m

Bending Moments:
Bending Moment at A =0
Bending Moment at B = 0
Bending Moment at C = (205X 2) —(4x2x1)=33kN —m
Bending Moment at D = (185 %X 3) — (4 x3x 1.5) =375kN —m
Bending Moment at E
= (20.5 X 3.875) — (8 x 2.875) — (5 x 1.875)
—(4x1.875%x0.9375) =39.78 kN —m

7. What are the different types of beams? (04 Marks) Jan./Feb. 2021, 18AE34

(1) Simply Supported Beam: Supported at both ends, allowing rotation and

vertical displacement.
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(i)  Cantilever Beam: Fixed at one end, resists loads primarily through bending

/
g

(i) Overhanging Beam: A beam that extends beyond its supports, creating one or

moments.

more sections with unsupported ends

8. Derive the Euler-Bernoulli beam theory equations. (10 Marks) Jan./Feb. 2021,
18AE34

DERIVATION OF BENDING EQUATION

‘ Re'titlonshlp between bending stress and radius of curvature

ider an elemental length '8x' of a beam subjected to a simple bending or pure bending

"E"Sl'.D“‘ o the action of this bending, let this elemental length of beam bend into an arc of

O as centre of curvature as shown in Fig. 8.6.

M ( A c \M Compressive stress

B D Tensile stress

Stress diagram

Fig. 8.6

R = Radius of neutral layer P'Q’
0 = Angle subtended by the arc at the centre
M = Moment acting on the beam.
Consider a layer RS at a distance y from the neutral axis PQ of the beam. Let this layer be
compressed to R'S " after bending. Decrease in length of this layer RS, §, = RS - RS"

. Change in length of RS
Strain in the layer RS, € = —“mgind lengthof RS
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RS-RS'_, RS’

RS RS
R_
= l—(—mwhereRS=PQ=PQ'=R0
RO
R-y R-R+y
m | T
R R nE

- Strain in the layerRS, € = %

As R is constan in is diren :
t, strain is directly proportional to its distance from the neutral layer.

Let © = Bending stress in the layer
E = Young's modulus of the beam
Stress

- Young's modulus £
Strain

i}

ie, E —_
B By
i = '
= RP --(&.1)
As E and R are constants, st'ress in the layer RS is directly proportional to the distance of the
r:”f;somhthe neutt;alllayer. Ir;’ Fig. t8h.6, all layers below the neutral layer are subjected to tensile
i where as the layers above the neutral layer are subjected t i
e e s . J 0 compressive stresses. The

s_E .
l y = —(82)
I LW =, = ot

8.5.3 Relation between bending moment and radius of curvature

Fig. 8.8 shows an element area dA at a distance y from the neutral axis i.e., z-axis. Letg, (Le.
©) be the stress at this element. The element of force 6, dA (i.e., 6dA) acting on the element of area
dA is in the positive direction of the x-axis when o, (i.e., 0) is positive and in the negative direction
when 6, (i.e., 0) is negative. As the element dA is located above the neutral axis, a positive stress
G, (i.e., 0) acting on that element produces an element of moment equal to oy dA (i.e.. OydA)

This element of acts
Fig: 8.8.

ite in direction to the positive bending moment M shown in

PP

. Elemental moment, dM = —Oy dA

n

E E
‘(“;)’)ydA [‘-'c:——E x and p=R]
- %yzd/\ or +% y2dA

The integral or algebraic sum of all such elemental moments over the entire cross-sectional
wea A must be equal to the bending moment . .

E , E ,
'.M=E—ydAor — y“dA
R {Ry

= %Zysz or %Iysz —(8.5)
A .

where, 3,y dA or I y? dA is the second moment |
- A 2

of area about centroid.
i.e., Moment of inertia about centroidal axis €107 Ve

(i.e., z-axis or neutral axis), ol ) I LR 155
1= Yy'dA or [VdA eor VwL
A

E Fig. 8.8
M= —I
N

M E E
ie., T R = ; - (8.6)
Equation 8.6 can be rearranged to express the curvature
interms of the bending moment in the beam

1_M (8.7
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From (2) and (7),

=T = (8)

M
1

~|

o
y

9. A simply supported beam AB, 6 m long is loaded as shown in Fig.Q3(a). Draw
the shear force and bending moment diagrams for the beam. (10 Marks)
Feb./Mar. 2022, 18AE34
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Reaction Forces:

M, =0
Rp(6) — (2X3 x 4.5) — (5 x 4.5) — (2 X 1.5) — (2 X 1.5 X 0.75) = 0
Ry = 9.13 kN

Ri+Ry=3+2+6+5=16kN

R, = 6.88 kN

Shear Forces:

Shear Force at A = 6.88 kN
Shear Force at C = 1.88 kN
Shear Force at D = 1.88 kN
Shear Force at E = —6.13 kN
Shear Force at B = —9.13 kN

Bending Moments:

Bending Moment at A =0

Bending Moment at B = 0

Bending Moment at C = (6.88 X 1.5) — (2 X 1.5 X 0.75) = 8.07 kN —m

Bending Moment at D = (6.88 x 3) — (2 X 1.5 X 2.25) — (2 X 1.5)
=10.89 kN —m

Bending Moment at E = (9.13 X 1.5) — (2% 1.5 X 0.75) = 11.45kN —m

10. A beam ABCD, 4 m long is overhanging by 1 m and carries load as shown in
Fig.Q3(b). Draw the shear force and bending moment diagrams for the beam

and locate the point of contraflexure. (10 Marks) Feb./Mar. 2022, 18AE34

Reaction Forces:

M, =0
Ry;(3)—(2%x1x%x35)—(4x2)=0
Rp =5kN
Rp+Rz=2+4=6kN

R, =1kN
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Shear Forces:

Shear Forceat A =0
Shear Force at B = 3 kN
Shear Force at C = —1 kN
Shear Force at D = —1 kN

Bending Moments:

Bending Moment at A =0

Bending Moment at B = (—2%x1) = —-2kN —m
Bending Moment at C = (1 xX2) =2kN —m
Bending Moment at D = 0

),YJ'/"*‘ 4xnN
A , g 2 C O
e 1
1 2 3 ]
1 > 3 j
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11. What are the assumptions made in theory of simple bending? Derive an equation
for bending stress. (10 Marks) Feb./Mar. 2022, 18AE34
(Refer to solution of Q4)

12. Draw SFD and BMD for a simply supported beam shown in Fig.Q.3. (20 Marks)
July/August 2021, 18AE34

50 kM

30 kMfm
50 kM.m

| EI=EL’JIZI"!IJIZIchnz

P
>

Mr. Saviraj A S, Assistant Professor, Department of Aeronautical Engineering, GCEM



Reaction Forces:

My =0
RE(10)—50—(50><6)—(0.5><5><30><2;<5)=O
R; = 60 kN

Ry + Ry = 75 + 50 = 125 kN

R, = 65 kN

Shear Forces:

Shear Force at A = 65 kN
Shear Force at B = —10 kN
Shear Force at C = —60 kN
Shear Force at D = —60 kN
Shear Force at E = —60 kN
Bending Moments:

Bending Moment at A =0
Bending Moment at E = 0

5

Bending Moment at B = (65 X 5) — (75 X §) =200kN —m
8

Bending Moment at C = (65 X 6) — (75 X §) =190 kN —m

14
Bending Moment at LHS of D = (65 X 8) — (75 X ?) —(50%x2)=70kN —m

Bending Moment at RHS of D = (60 X 2) = 120 kN —m

13. Mention the sign conventions in SFD and BMD. (04 Marks) Dec.2019/Jan.2020,

18AE34
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14. Draw the bending moment and shear force diagrams for the beams shown in

Fig.Q3(b). Indicate the salient values on the diagram. Fig.Q3(b) (12 Marks)
Dec.2019/Jan.2020, 18AE34
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Reaction Forces:
Taking moments about E,

Rp(10) —(3x4x12) —(3x8%x4)—24=(—6X%X4)

Ry = 24 kN
Re+Rp=12+24+6=42kN
Ry = 18 kN

Shear Forces:

Shear Forceat A =0

Shear Force at B = 12 kN

Shear Force at C = 12 kN

Shear Forceat D = 0

Shear Force at E = 6 kN

Shear Force at F = 6 kN

Bending Moments:

Bending Moment at A& F =0

Bending Moment at B = —(3 X4 X 2) = —24kN —m
Bending Moment at C = —(3 x4 xX4)+(24%x2)=0
Bending Moment atD = —(3 X4 X 8) + (24X 6) —(3xX4x%x2)=24kN—m
Bending Moment at E = —(6 X 4) = =24 kN —m

15. Derive the relationship between load, shear force and bending moment. (04
Marks) Dec.2019/Jan.2020, 18AE34
(Refer to solution of Q5)

16. What are the Euler-Bernoulli assumptions? (04 Marks) Dec.2019/Jan.2020,
18AE34

i ASSUMPTIONS IN PURE BENDING (SIMPLE BENDING)
The following assumptions are made in the theory of pure bending (simple bending) :

1. The material of the beam is perfectly homogeneous (i.e., of the same kind throughout) and
isotropic (i.e., same elastic properties in all directions).

1 The value of Young's modulus (E) is same in tension and compression.

3 The beam material is stressed within its elastic limit and thus, obeys Hooke's law.

4. Thestress is purely longitudinal.

5. The beam is initially straight and every layer of it is free to expand or contract.

§ The transverse sections, which were plane before bending, remains plane ever after bending.
7 The radius of curvature of beam is very large compared to its depth.

4 The resultant pull or thrust on a transverse section of the beam is zero (i.e., the beam is in
¢Quilibrium),
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17. What are the Euler-Bernoulli assumptions? (05) Aug./Sept.2020, 17AE34
(Refer to solution of Q17)

18. Explain in detail the implications of Euler Bernoulli assumptions and derive the
expression for the same. (8) Dec.2018/Jan.2019, 17AE34

Below are the key assumptions of the Euler-Bernoulli beam theory and their
implications:

(i)  Beam Shape: This theory assumes beams are straight and uniform in cross-section.
Implication: Beams can have slight curvature or varying cross-sections, particularly
under bending or torsion.

(i) Small Deformations: It assumes beam deformations are small relative to their length.
Implication: Not suitable for analyzing large deflections or rotations in highly flexible
or slender beams.

(iii)  Linear Elastic Material: Assumes materials follow Hooke's law throughout loading.
Implication: Real materials, especially under extreme loads, may exhibit non-linear
behaviors like plasticity.

(iv)  Neglects Shear Deformation: Ignores shear deformation effects within beams.
Implication: May lead to inaccuracies in predicting shear-related stresses and
deformations for slender beams.

(v)  Bernoulli's Hypothesis: Assumes cross-sections remain planar during deformation.
Implication: warping may occur, especially in non-slender or torsionally loaded
beams.

(vi)  Stress-Strain Linearity: Assumes constant material properties throughout the beam.
Implication: Real materials can have property variations affecting beam behavior.

(vii)  Loading and Boundary Conditions: Assumes well-defined, simple loading.
Implication: Real-world beams often face complex loading scenarios, including

concentrated loads and temperature effects.

“DERIVATION OF BENDING EQUATION

! Remkmship between bending stress and radius of curvature
ider an elemental length '8x' of a beam subjected to a simple bending or pure b"“df“g
""de wDuc 1o the action of this bending, let this elemental length of beam bend into an arc of
th O as centre of curvature as shown in Fig. 8.6.
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Fig. 8.6

Let
R = Radius of neutral layer P'Q'
0 = Angle subtended by the arc at the centre
M = Moment acting on the beam.
Consider a layer RS at a distance y from the neutral axis PQ of the beam. Let this layer be
compressed to R'S " after bending. Decrease in length of this layer RS, §, = RS - R'S"
Change in length of RS
Strain in the layer RS, € = —*Original lengthof RS

RS-R'S' _, _R'S'

= T &s RS
R_
=l-(—ﬁwherv:RS=PQ=P'Q'-‘=Re
RO
R-y R-R+y
S [ 0 A
R R =y/R
y é

- Strain in the layer RS, €

. R
As R is constant in is direct ;
» Strain is directly proportional to its distance from the neutral layer.

Let o = Bending stress in the layer

E = Young's modulus of the beam
Stress
Strain

- Young's modulus E

tuation 8.1 can also be written as

2
y

e
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As E and R are constants, st_ress in the layer RS is directly proportional to the distance of the
layer from the neutral layer. In Fig. 8.6, all layers below the neutral layer are subjected to tensile
[sresses where as the layers above the neutral layer are subjected to compressive stresses. The



19.

(viii)

(ix)

)

(xi)

(xii)

(xiii)

(xiv)

20.

21.

List and explain the implications of Euler-Bernoulli’s assumptions. (06 Marks)
June/July 2019, 17AE34

Below are the key assumptions of the Euler-Bernoulli beam theory and their
implications:

Beam Shape: This theory assumes beams are straight and uniform in cross-section.
Implication: Beams can have slight curvature or varying cross-sections, particularly
under bending or torsion.

Small Deformations: It assumes beam deformations are small relative to their length.
Implication: Not suitable for analyzing large deflections or rotations in highly flexible
or slender beams.

Linear Elastic Material: Assumes materials follow Hooke's law throughout loading.
Implication: Real materials, especially under extreme loads, may exhibit non-linear
behaviors like plasticity.

Neglects Shear Deformation: Ignores shear deformation effects within beams.
Implication: May lead to inaccuracies in predicting shear-related stresses and
deformations for slender beams.

Bernoulli's Hypothesis: Assumes cross-sections remain planar during deformation.
Implication: warping may occur, especially in non-slender or torsionally loaded
beams.

Stress-Strain Linearity: Assumes constant material properties throughout the beam.
Implication: Real materials can have property variations affecting beam behavior.
Loading and Boundary Conditions: Assumes well-defined, simple loading.
Implication: Real-world beams often face complex loading scenarios, including
concentrated loads and temperature effects.

List the Euler-Bernoulli assumptions and explain its implications. (10 Marks)
Jan./Feb.2021, 17AE34
(Refer solution of Q19)

A simply supported beam AB, 6m long is loaded as shown in Fig.Q.3(a). Draw
the shear force and bending moment diagrams for the beam. (10 Marks)
Feb./Mar. 2022, 17AE34
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(Refer solution of Q9)
22. A beam ABCD, 4m long is overhanging by 1m and carries load as shown in
Fig.Q.3(b). Draw the shear force and bending moment diagrams for the beam

and locate the point of contra flexure. (10 Marks) Feb./Mar. 2022, 17AE34
2kn|m trknl
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(Refer solution of Q10)

23. What are the assumptions made in theory of simple bending? Derive an equation
for bending stress. (10 Marks) Feb./Mar. 2022, 17AE34
(Refer solution of Q4)

24. What are the Euler — Bernoulli assumptions and its implications? (06 Marks)
Dec.2016/Jan.2017, 15AE34
(Refer solution of Q19)

25. List out the Euler-Bernoulli assumptions and its implications. (06 Marks)
Dec.2017/Jan.2018, 15AE34
(Refer solution of Q19)

26. What are the Eyler — Bernoulli assumptions and its implications? (06 Marks)
Dec.2018/Jan.2019, 15AE34
(Refer solution of Q19)

27. Explain in detail the implications of Euler-Bernoulli assumptions and derive the

expression for the same. (08 Marks) Aug./Sept.2020, 15AE34
(Refer solution of Q18)
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