Theory of Vibration - 18AE56

Old VTU Question’s Answers
Module — 2

Syllabus:

Undamped Free Vibrations: Single degree of freedom systems. Undamped free vibration, natural
frequency of free vibration, Spring and Mass elements, effect of mass of spring, Compound Pendulum.
Damped Free Vibrations: Single degree of freedom systems, different types of damping, concept of

critical damping and its importance, study of response of viscous damped systems for cases of under
damping, critical and over damping, Logarithmic decrement.

Part — A & B Questions (Mixing of Questions Expected)
1. Define undamped free vibration.

completely. When no external force acts on the body after giving an initial displacement, then the
body is said to be under free or natural vibration. If there is no loss of energy due to friction or
resistance throughout the motion of the system, then the free vibration is called undamped free
vibration. In this chapter, the free vibration of undamped, single degree of freedom systems are

2. Derive an expression for equation of motion and natural frequency of vibration of a spring mass
system in vertical position using Newton’s method.
Or

Obtain the differential equation of motion for a single degree of freedom system by: (i) Newton’s method (ii) Energy
method.
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a) Newton's Method i
Fig. 2.1 (a) shows a spring mass system in vertical po..s'ilion. The spring 18 ﬁxcd at one c-nd
and carries a mass ‘m’ at its free end. The system is constrained to move in lhl‘: vertical d!rccgon
only and the position of the mass can be completely defined by a sfngle \I'z?na.ble X v%'.h.lch is a
fun‘ction of time ‘1. Let the stiffness of the spring be ‘k'. In the slzﬂnc qunhbnum position, the
forces acting on the mass are (i) vertically downward fi orce mg and (ii) vertically upwar.d once kd
where 8 is the static deflection of the spring due to gravitational pull W= mg. Therefore in the
static equilibrium position mg = k. o B
Let x be positive in the downward direction and negative in lhe‘upward direction. Now 1f Fhe
mass is displaced from its static equilibrium position by a dislancc“x z.md then rele'ascd. the spn?%
force is k (8 + x). The free body diagram of the system is shown in Fig. 2.1 (b). Under the forces
the body has an acceleration ¥ downwards. The sign for acceleration is positive for downwaxtdlz.m.d
negative for upward since these directions are selected same as those for x. If the value of X 1s
negative then it means that it has negative or upward acceleration.
Restoring force = mg —k (8 + x)
kd — k& — kx = —kx
mx
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Accelerating force




According to Newton's second law of motion
Accelerating force = Restoring force

—kx

0

ie., mx

ie., mx +kx

This is the differential equation of motion for a single degree of freedom spring mass system

having free vibrations.

Equation 2.2.1 can also be obtained by using D' Alemberts Principle. It states that a body isin
zero. This inertia force

is equal to mass times the acceleration of the body and acts through the centre of gravity of the
body and the direction of inertia force is opposite to that of accelerating force.

In the displaced spring mass system, the spring force kx acts in the upward direction and
accelerating force m X acts in the downward direction. Since the direction of accelerating force is
downward, the direction of inertia force is upward. So the body is in static equilibrium under the

equilibrium, if the resultant force acting on it along with the inertia force is

action of spring force and inertia force.
ie, m¥ +kx =0
The equation 1s same, as obtained by Newton's method.

. , k
Equation 2.2.1 can be rewritien as, X+ = 0
n

If the vibrating motion is SHM, then the fundamental differential equation for simple harmonic

motion 1s,

Yv+eix=0 T (2.23)
Comparing the equation : 2.2.2 and 2.2.3,
k. k
w’= w © = - radfsec  eeme (2.2.4)
Natural frequency f = 1 W, = L Hz

T e R T O S (223)

_ 1 [mg _ 1 [z _ 04985
wm\Nom 22V~ B 7 (226)
b) Energy Method [VTU, June/July 2014]

Consider the spring mass system shown in Fig. 2.1. and according to energy method the total
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energy of the system at any instant must be constant. Since the mass is displaced from the equilibrium

posit_ion lhro.ughAa d.istancc x, the velocity at that instant be x . The total energy of the system
consists of (i) Kinetic energy of the mass (ii) Potential energy (gravitational energy) due to the
elevation of mass from a reference level (iii) Potential energy (strain energy) of the spring.

.. | I
K [ ~ —_ 2
inetic energy of the mass (KE) = 2 mx* e (2.2.7)

Potential energy due to the elevation of mass = — mgx
Negative sign indicates loss of energy since the level is lowered by a distance x.

The strain energy of the spring is equal to the work done in deformi :
distance x. in deforming the spring through a

In the displaced position, spring force = k (8 + x)

Average spring force during the deformation = k(8+ %]
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b,c.

Total Potential Energy (PE) = —mgx + mgx +

2
kxz
-2
Now, according to energy method, -----(2.2.8)
KE + PE = Constant
1 kx?
iLe., 2m.i2 + = Constamt  emme- 2.2.9)
Differentiating the above equation, ;
| k |
—m2x.i+— 2x.x = (
2 2 !
ie. m¥ +kx=0 (2.2.10)

Equation 2.2.10 is the same as that obtained by Newton's method (2.2.1).

3. Determine the natural frequency of spring mass system where mass of the spring is also taken into
consideration.

Solution :
Fig. 2.19 shows a spring mass system,
If the mass of the spring is taken into account then,

—

X

Fig. 2.19
Let x = Displacement of mass
X = Velocity of the free end of
the spring at the instant under consideration.
m = Mass of spring wire per unit length
{ = Total length of the spring wire.

Consider an elemental length dy at a distance ‘y’ from the fixed end.

Velocity of the spring wire at the distance y from the fixed end = x[%]

1, , .y
Kinetic energy of the spring element dy = -i(m d}’)(x-';)

J ‘
1 I ,x 2,
Kinetic energy of spring j* i 'V dy = 3™ Tz{" dy

[}
| —
3
NI HN
T
w| ™
—
n
=
B
—
HH

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



| .
= gm.xz where m = Mass of spring =m'

1, 1.
. Total kinetic energy of the system = KE of mass + KE of spring = -z-m-t2 + EM,IZ

|
\
| L2
! Potential energy of the system = kx
|

]

[T T |
Total energy of the system = 3 T4 & Pt Ekxl = Constant

Differentiating the above equation with respect to time

lmZ,i.,i"-rlm, 2£.i+lk2x.x' =0
2 6 2
. e
i.e., mx+5m,x+la =0
1 "
ie. (m+1m,)x+kx = 0
k
X+ i X =0
m+—m,
3

- Circular frequency ©,

1
Natural frequency f = ﬁw"

4. Show that for finding the natural frequency of a spring mass system, the mass of spring can be
taken into account by adding one-third its mass to the main mass.

Similar to Q.No:3 but while finding KE of Mass, “take m as m/3”
. Total kinetic energy of the system = KE of mass + KE of spring

5. Define and find an expression for undamped natural frequency of a compound pendulum.
Solution :
Fig. 2.20 shows a compound pendulum in the
displaced position.
Let m = Mass of the rigid body = w/g
I = Distance of point of suspension from G
O = Point of suspension
G = Centre of gravity
[ = Moment of inertia of the body about O
= mid+mP=m+1F)
k = Radius of gyration of the body
If OG is displaced by an angle 6, ' \ mgcosé
Restoring torque = — (mg sin @) I = —mglB since O is small sin® =6

According to Newton's second law

e 1 e et b e S | D i ————— e

Accelerating torque = Restoring torque Fig. 2.20

ie, 10 = -mglo
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mgl

ie., é+—— =
ie I
i B+ mgl 0
ie., —
m(k?+1%)
. gl
0+———0 =0
(k2+12)
. gl
. Circular frequency ®, = PP rad/sec

1 1 gl
Natural frequency f = e o = Py _kl 2 Hz.

6. Determine natural frequency of the system shown in Fig by: (i) Newton method (ii) Energy method

>

LLLLLs

0
yo7 f///////z{\/
'

Solution :
(a) Newtons method
MI of mass about O, { =ml*

For a small angular displacement 0, the free body diagram of the system is shown in Fig. 2.22 (b).
According to Newton’s second law of motion in the form of torques,

I, § = ZM where XM = Sum of restoring couples about O

RS  —
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ie, mP§ = —(mgsin0)[—(kasin®)(acosB)

ie. mP@§ +mglO+ka'® = 0 (- sin®=0andcos®= | for small angle)

I » mgl+ka2
e, @+ [T]O =0

2 ka®
Circular frequency o = -"3!12!‘“— rad/sec. = [%"-7) rad / sec

mi
1 I ’mnga_z L g k")
Natural frequency f = Em" Hz = i oy Hz. = Wl 7 3
(b) Energy method
h
From Fig. 2.22 (c), h =1-1=1Il-lcos® = [(l-cosB) | cose=7
x = IsinB=/0 and x, =asind =ab [ sinGEB]

221 =
KE =5 mi=2m m (16)’ =5m12 0 [ i=19]

1 1
PE = PE of mass + PE of spring =mgh + 2 kxi =mgl (1 —cosG)+§ ka’®® (. x; =ab)
According to energy method, KE + PE = Constant
d

d d T £ 1. 242
Z(KE-’-PE) =0 :ie, ;‘[Emle +mgl(l cos9)+2ka 9)

P g -1 ;
ie., % mi’ 20 8-+ mgl (sin6) 6+ ka®20.6 =0

mgl + ka
ml’

fm 1+ ka®
Circular frequency ®, = -—-g——-.‘,—— rad / sec

fmgl+ka2 ’ ka®
Natural frequency f, = z— ®, —-+—; Hz

7. Determine natural frequency of the system shown in Fig by: (i) Newton method (ii) Energy method

ic.. mi*0+mgl 0+ka’0=0 ;ie, é+[ ]6 0|+ Forsmall angular displaced sin6 =8 |

07e J\HP
a
e

(a)

(b)

Fig. 2.24
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Solution :
(a) Newton's method
Moment of inertia of mass about 0, /, = m/’

For a small angular displacement 6, the free body diagram of the system is shown in Fig. 2.24 (b).
According to Newton's second law of motion in the form of torque equation,

I, @ = IM where XM = Sum of restoring couples about O

ie, mP @ = —ka®.a (- Forsmall angular displacement, sin® =6 )

ie., mfO +ka'®

o
()'. oe 9‘0' _—20:0
m

!
- . _ |k (a . . a '_k ad
Circular frequency of vibration @, = |=.[ = | rad/sec = rad / sec
- m\1 I \m
p—
Natural f ¢ vibeation of the sysem £ = — 0, He = k[")- Hos'e [")\F Hz.

Y 0 sys =—0,H: = — J—|~ s —| = |.J=—
R F ’ * 2n 2r ym\ | 2r\ ! /\m

(b) Energy method
From Fig. 2.24(b), x = Isin® = 1 and x, = asin® = a0 [ -+ For small angular displacement, sin® =8 |

KE =~ mid =% m () =2mi0" (: i=16)

0| -
19 | -

1 2 | a | 1.7
PE = PE of spring = Ek.tl‘ =5 k (a®) :-2- ka’®® (. x, =a®)

As the direction of gravitational pull acts parallel to the direction of spring force, for static equilibrium,
the gravitational pull (mg) must be equal and opposite to that of the spring force due to static
deformation 8. i.e., mg = k&. Hence the PE due to the mass is not required to be considered.

d
According to energy method, KE + PE = Constant. - — - (KE+ PE)=0

ie, —

A m292]=o e S m200+ ka?20-6=0
dr |2 2 2 2

5 - ka®
e, ml’O+ka’® =0;ie, 0+ ’-': 0=0

. I ’ka2 _a [k
Circular frequency of vibration ®, = —"—d—z r J;— rad / sec

k -~

.
I .~

g 1 3 f = ._l_. w H-v = __l_.
Natural frequency of vibration f, = Sy Tk SR .

8. Determine the natural frequency of the system shown in Fig, by i) Newton’s method ii) Energy
method.
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@___ x =1s8inB =0

.
F 2 O |

[ acos®
L

L e

(c)
Fig. 2.23
Solution :
(a) Newton's method
M1 of mass about O, I =mb.

For a small angular displacement 8, the free body diagram of the system is as shown in Fig. 2.23 (b). Here
the moment due to inertia force and the spring force are in the same direction and the moment due to
gravitational force is in the opposite direction,

Therefore according to Newton's second law,
I,§ = IM where IM = Sum of restoring couples about O

i.e. I, § = ~(kasin®)(acos®)+(mgsin®)!

ie, I, 6§ =-(ka®)a+mgl® (- For small angular displacement 0, sin 8 = 8 and cos 6 = 1)

ie, mP @ +ka’0-mgld =0
ka* —mgl
ie, 6 +[——2mg—)9 =0
ml

. Circular frequency @, = i mi* |
1 1 {kaz—mg! | |(ka® g
= —0 ) H = = [ ——— H 8B s Hz
Natural frequency f, m o z o mi’ i [ 2 g
(b) Energy method
From Fig. 2.23 (c), h=1—l,=1—lcos0=l (1-cosB) [ 00$9=‘7':|
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x = Isin®=10 andx, =asin@=ab (. sin6=0)

KE = 3 mid =2 m(16) =2 mi%6" (- 5=16)

|-
P’ |-

PE = PE of mass + PE of spring = —mgh + 2k x; =—mgl (1—0059)**3 ka*0" (- x, =af)
[Loss of energy due to mass, since the level is lowered by a distance h. .. -mgh)

d
According energy method, KE + PE=Constant. . — (KE+ PE)=0

ie. di,[% mi*6? —mgi(1-cos®)+ %ka292]= 0

ie., %m‘zéé—mgl(sine)m %kazzeé =0

. .. [ ka* -mgl -
ie., ml’> 0-mglO+ka’0=0 : ie, 9+(——2m§—)e=0 (- sin®=6)

mi
ka® —mgl ha' o) o
Circular frequency ®, = — 8! radfsec. = - ra
LR U [t (RPN Ny LA ) S
Natural frequency f = o O He = o =3 =g

9. Determine the natural frequency of the system shown in Fig, using Newton’s method.

(a) (b)
Fig. 2.25
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Solution :
For a small angular displacement 6, the free body diagram of the system is shown in Fig. 2.25 (b).

For small values of 8, sin® = 68and cos 0= 1.
Inertia force m ¥ =mi® and I,=ml
Now, according to Newton's second law of motion,
i, 6 = IM where EM = Sum of restoring couples about O
ie., mP@® =-kaO.a-kbO.b-mgl® [ Forsmall angular displacement sin® =0 |
=~ [k(a®+b*) +mgl] 8

ie, mPO +k(@+b)+mgll0=0
o [Ic(a2 +b2)+mgd
ie, 0 +- mlz B =0

ka® + kb? +mgl)

mi*

rad/sec

*. Circular frequency of vibration ®, = J (

| 1 |(ka? + kb? + mgi)
Natural frequency [ = o ® Hz= e e Hz.

(h) Energy method

!
From Fig. 2.25(b), h=1-1, =[-lcos® = I (1-cosB) ( cosez-})
x =IsinB=10, x, =asinB=ab and x,= hsin@=h0 [ sin0=0]

22

KE = %m.r = m(lé)2= mi® §* ( i=lé)

1 21
2 2

1 1
PE = PE of mass + PE of springs = mgh+ — kx{ += kx}

T,
- mgl(l—cosﬂ)+5ka 4 +5kb20’ [+ x, =aBand x,=bf]

According to energy method, KE + PE = Constant.

d .
E—(KE+PE) =0;ie, %B mi* 8% +mgl (1—c059)+; ka282+% ksz
ie.. %mlz 20 0+ mgl (sin0)9+-:— ka’® 20 é+% kb*200 =0

i, mi*0+mgl0+ka’0+kb’0=0 [ sin6 =6

. (mgl+kaz+kb2)
0+ 6=0

ie.,
mi*
‘ . (met + ka® + kb
i.e., Circular frequency of vibration ®, = por: rad / sec
e " 1 ((mgi+ ka® +kb?)
Natural frequency of vibration f, = — w, Hz = — Hz
2n 2n ‘ml®
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10. Find the natural frequency of vibration of the system for small amplitudes. If K1, K2, aand b or
(atb) are fixed, determine the value of “b” for which the system will not vibrate. Find maximum
acceleration of the mass.

mM
ol

4 K. Koo |7

/ "a ' 4
[ 707

[VTU, June/July 2015]
Solution : | 3
h
. @ B
b 3
{a +b)cos {a+b)
v s k.aO+ kab
X = (k,+k,)a®
! X

(a)

Fig. 2.30
Fig. 2.30 (b) shows the free body diagram of the given system.

For small values of 8, sin@ =08 and cos 8= 1. Iy =m (a +b)2

(i) Natural frequency of oscillation

Newton's method
According to Newton's second law of motion in the form of torques,

Iy 0 = XM where M = Sum of restoring couples about
ie., mia+b) 0 = - k, +k)a Ba+mgl(a+b)0
ie, m(+b)y 0 +k +k)a*0-mgla+b)0=0

ie., m(a+by 8 + ((k, +k)a*~mg(a+b)}0=0

{(k, +ky)a® —mg(a +b)}.

- 0 =0
m(a+b)

ie.,

. (k,_»fkg)a2 8 B
ke € +{ m(tH—b)2 (a+h)]e_0

' : . = &y +k2)az - £ rad/sec
: . Circular frequency ®, = m(a+b)2 (a+b) o

- ! 1| (ki +ky)a® g
Natural frequency of oscillation f = o2y O 2“” m( z+b)2 = (@ +b) Hz.
{
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Energy method
From Fig. 2.30 (b)
x=(a+b)8; x,=ad; h=(a+b)-(a+b)cosd=(a+b)(l1-cosb)

o, 1 92 1 .
KE of the system = -2~m,x2=5m[(a+b) 9] =Em(a+b)202

PE of the system = PE of mass + PE of springs

| 1
= -mgh+—; b -0-—;—11:2 x; =-mg (a+b)(l—0069)+5 ka0’ T k,a’0?

= —mg (a+b) (l—cos6)+% (k, +k,) a’0’

[Loss of energy due to mass, since the level is lowered .. —mgh]
According to energy method, KE + PE = Constant
d
ie., —(KE+PE) =0
ie. o (KE+PE)

ie., %[% m(a+b)2 0% —mg (a+b) (l—cosO)+% (k, +k2)a202:|=0

ie., %m(a+b)2266-mg (a+b) (sin9)9+% (k,+k,)a’200=0

ic, m(a+b)'d-mg(a+b)0+(k +k)a’0=0 [ sin0=6]

2—
= é+[(kl +ky) a? —mg (a+b)]e=0

m(a +b)2

Circular frequency ®, =

([(k, +k,) a®~mg (a +b)

\ m(a+b)2 ] rad / sec

2n 2n

1 T&fk;}»a’ ~mg (a +b)] -

1
Natural frequency fo = 5= @y = 5= 2
m (a+b)

s Wl J(kl+k2)al g H-

T\ m (a+b) (atb) s
i) Ifm,k,k, (a +b) are fixed, then ® = 0. When @_= 0, the system will not vibrate

(kl+k2)a2 £

ie., = =0
m(a+b)’ (a+b)
(K tky)a® g
{8, g
m(a+b)’ (a+b)
ie., (k+k)a’ = gm(a+b)
= mga +mgh
(ki+ky)a’—mga (ki +ky)a-mg
b mg = mg
(k, +k,)a
Hence, when b = a m—g—] , the system will not vibrate
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11. Using energy method, determine the natural frequency of the system shown in Fig.

From Fig. 2.53

x=r@; X=r@;x=r@

1
Moment of inertia of pulley about the centre O, [, = Y Mr

a) Newton's method
According to Newton's second law
of motion in the form of torques

(m,'\':)r-l-loé = -(kx).r

.. 1 .
ie. (mré)r+- Mo = ~(krO)r Fig. 2.53
1 25
ie., ["'*5“)’ 0 4470 =0
1 ”
ie., [M+5M)0 +k0 =0

Natural frequency f,

b Energy method

Kinetic energy = KE of mass + KE of pulley

Yo am Bohe dgd l(lw)ez
2’"(")*2109'2"’(’9)2"‘2 >

(%m+-l M] r’e’

'S

t
4]
i

i According to energy method, KE + PE = constant

1 1 1
Potential energy = '2- ket 5 k(r@y= ‘5 krt @

e, i (KE+PE) =0
dt
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i —| | = —M |r'0° +=kr0° |=0
Le., d:[(2m+4 ]" 5 J

| 1 9mazn 1, 3 .
ie., [E"H’Z M)!‘ 269+5kr 200 —p

1 .
ie. [m; M]B +k0 =0
kK
ie.. §+(m+;M) 6 =0
l'_-k'__
W = ' | rad/sec
=
2
I [k
. 5 He

Natural frequency f = > = 2n l(

12. Find the natural frequency of the system shown in Fig, by i) Newton’s method ii) Energy method.
K K

From Fig. 2.55, x=r0; X =r@ . X =rp

- '=Extension of left side spring = Compression of right side spring = (r + )@
ergy method

- Kinetic energy = Rotational K

of pulley + Translational KE of pulley

L
=51002+EM1’=

1 (1 2). 1 )
=M 2,2 )
2 (2 rle +2M(r6)

. . 3 g
= — MP @ +%Mﬂ9’=4—uﬁe’.
PE due to left spring + PE due to right spring

%k{(r+a)9}2 +%k{(r+a)0}2 - 2% k(r+a)@?

Potential energy

k(r+a)@
According to energy method, KE + PE = Constant

d
ie., — (KE+PE) =0
e d‘( E) 31
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Ty

:

ie., %{-i— Mr'? +k(r+a)262} =0

3 . ;
ie., z MP200 +k(r+a)*20.0 =0

3 “
ie., a Mr e +k(r+a)d =0
.. M&'(r‘+a)2
ie, 04 ——06 =0

IMr?

. f‘tk(rﬂz)2 (r+a) [4k
Circular frequency ®, = TV B rad/sec = 7 Yam rad / sec

| |4k(r+a) by ] (r+a) [4k

1
. Natural frequency f = e w,Hz = =V s Sk ; Y

(b) Newton's method

From Fig.. 2.55, x=r@ ,i=r0;i=7r0
x' = Extension of leftside spring = Compression of right side spring = (r + a) 8

1
Moment of inertia of pulley aboutA, 7, =1, + Mr? = 5 Mr® + Mr?
According to Newton's second law of motion in the form of torques
1,8 =IM where ZM = Sum of restoring couples about A

ie., [% Mr2+Mr2)é = -{k (r+a)0} (r+a)—{k (r+a) 9} (r+a)

3 9 2 2
ie. 3 Mri@ = -k (r+a)29—-k (r+a2)6 C e, 2 Mr* 6=-2k (r+a) 0
2
2
& . 4k(r+a
j.e., 2 Mr26+2k(r+a)20 =0 ie, 6+——(———;—)—9=0
2 IMr-

2 e S
’41: (r+a) (r+a) |4k
—_— = ~—= [—— rad/sec
—— rad /sec ; q}M

Circular frequency of vibration ®, = \ 3

. 1 1 (r+a) (4k Hy
Natural frequency of vibration f, = I o, Hz = 2 r M

13. Find the natural frequency of vibration of the half solid cylinder shown in Fig, when slightly
displaced from the equilibrium position and released by using i) Newton’s method ii) Energy method.

' Ircos®
| h=r(1-cos®
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or a small angular displacement 8, the free body diagram is as shown in Fig. 2.74 (b)

' Distance of mass centre G of half solid cyclinder from O =r = %

‘Moment of inertia of half solid cylinder about A, I, = I + M - GA®
Assume GA = OA — OG, which is true for small amplitudes of vibration

o I=lg+M(0A-0G) =I,-Mr* + M (R-r) [+ OA=R and 0G=r]

= %MRI—M r2+M(R2+r2—2Rr)=-;- MR* - M r* + MR® + Mr* -2 MRr
- 3 mramr 2R - mp? (E-i) P ..
2 In 2 3 In

(a) Newton's method
According to Newton’s second law of motion in the form of torques

1
3

I, 6 = XM where ZM = Sum of restoring couples

3 8). .
R | =-— |6 = - (Mgsin®) r
e M (2 3“) (Mgsin®)
9%—16 4R : 4R
. MR —— |0=-Mgh — ( sin@=0 and r=—)
e ( on ) o~ In
ie. MR (9""?)6+M3-55-o=0
n
5 Mg%'e 5,58
N T SRR T R Y 0=0
T (911:-16) (9n-16) R
6n

' 8¢ ad/
Circular frequency @, = (On-16) R rad / sec
| 1 ! 8g
Natural frequency fu = E o, = -2-; W Hz

(b) Energy method

l
!

Potential energy = Mgh = Mgr (1-cos8) = Mg (%ﬁ) (1-cos6) ( e ;—:)
n

1, a2 3.8 Yia 1 ~16) .
Kinetic energy = ‘2' lA 62 = ‘i‘ MRZ (E-EJ 92 = _2_ MR'.’ [9’!6“16) 92
According to energy method, KE + PE = Constant

: d ’ d |1 9n~-16) . 4R
e, —(KE+PE)=0 ; ie, —{— MR® 2 £} L
i.e dr( ) Le., — {2 ( . ]9 +Mg[—3u)(l cos8) .0

A 1 2 (9M-16 Mo 4R k
ie, = MR[Z—>|266+Mg|==|(sin6) 6=
5 ( = ] 0+ Mg (3n)(sm6) 6=0

ie., R(gnz—lG)-é+4gG=O [.'. smﬂsO]i

|
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SN

b4+—58
R (97— 16)

88
R (9% —16)

| 1 8¢
Natural frequency f, = 2n 0" ™ e ’ R_(91t—| 6_) Hz I

14. A flywheel is mounted on a vertical shaft as shown in Fig. Both ends of shaft are fixed and
diameter is 50mm. The flywheel has a mass of 500 kg and radius of gyration 0.5m find natural
frequency of (i) longitudinal vibration (ii) Transverse vibration (iii) Torsional vibrations. Take E =
200 GN/m2, G = 84 GN/m2, d =50 mm, m =500 kg, k = 0.5m

2224

Circular frequency ®, = rad / sec

L‘«’.OFQM

—

lg_ s O b

77

S0mm = 0.05Sm

500 kg

=05m

200 GN/m?* = 200 x 10° N/m?
84 GN/m?* = 84 x 10’ N/m’

QM= 3 o
1

i) Longitudinal vibration
Letm, be the mass of flywheel carried by the portion of length/,. .. mass carried by the portion of length
L=m-m,

Since extension of the portion [, = compression of portion /,

Y7711 4774
mgh (m—my).gl, A
AE AE
m x09 = (500-m)0.6 L,=09m
ie, 0.9m = 300-0.6m,
m, = 200kg. @
m, = 300kg
5 = mgh L=06m
AE .
- —SOXIBIKA TI770707
§x0.052 x200x 10° Fig. 2.80
= 4496 % 10"m
- Circular frequency = "gls = ——9§1— = 1477.14rad | sec
" 4.496x107°
| |
= —0, =—x147714 = 2351H;
Natural frequency f, et o B
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ii) Transverse vibration

_OWEL mell

o =
3En® - 3EN°
i 500x9.81x09° x0.6°
3%200x10° x%x(oos)‘ x15’
(A=l +,=09+06=15m)
= 1.243x 10" m
. Circular frequency @, = 8/8 = —9—J-m——3- = 88838 rad / sec
o 1243x10”
1 1
= —m, =— xX88838 = 1414 H. :
Natural frequency f, B 5 4 |
iii) Torsional vibration |
1 |k,
= ——Hz 5
Z 2rny [/
where k, = Equivalent torsional stiffness =k +k, y
G %ax10’ xi’izfo.os‘
k o e = 3
1 I 09 57268.61
g T
Gy 84x10” x —x00s ]
k, = — = =85902.92 3

’ L 0.6
I = mk* = 500 x 0.5 = 125 kgm®
k = k, +k, = 5726861 +85902.92 = 143171.53

1 |k, 1 { 14317153
e [t Y o [ — ey
Natural frequency f 2%V 7 Z = N 5.386 Hz.

15. Determine the natural frequency of the system shown in Fig.

SNEENS

From Fig. 2.54,x=r0 - X=r@and ¥ =r@

] .
Moment of inertia of pulley aboutA, I, =/, +Mr’ = 2 M +Mr.

a) Newton’s method
According to Newton’s second law of motion in the form of torques

Lo =-(kor
1.2 2 4
ie., (EM" + Mr ]9 = —k(r@)r
3 .
Le., 5 MrPr O +kr6 =0
; k
ie., © +3 =0
- M

2
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e, Beae8 =0
Le., + IM =

’Zk 1 12k
Lo = M rad/sec ; Natural frequency f = o 0= 5 Hz.

2n
| Energy method

Kinetic energy = Rotational KE of pulley + Translational KE of pulley
gatiay argl sl Tl 2). 1 :
=— 2 4 — = —| =M oS 2
2109+2MI - i 9+2M("6)
-1Mr"2+er"2 = EMR’Z
-4 0 2 0 e 4 9

1
Potential energy = % ke = 3 k(re)’=-21- kr' 6°

According to energy method, KE + PE = constant

e i (KE4+PE) = 0
dr

ie. %(3 Mr'e? +lkr292) =0

4 2
B 3 R E .
e, Z Mﬂzee+-2- k20.0 =0
: 2T .
ie, 3 Mg +kB =0
2k
6 +—0=0
A7

’2 k 1 |2k
. 0 = A M rad/sec ; Natural frequency f, = VM Hz

16. Determine the natural frequency of the simple pendulum i) Neglecting the mass of rod and ii)
Considering the mass of rod.

i) Neglecting the mass of rod

Consider the simple pendulum shown in Fig. 2.21(a). For the displaced position, the weight of bob can

be resolved into two parts one in the tangential direction and the other along the string. Itis the tangential

force which restores the mass again in equilibrium position.

Let m = Mass of bob
! = Length of rod
I, = Mass moment of inertia about 0

’ = mi
| a) Newton's Method
i According to Newton's second law of motion in the form of torque equation.

I

E I, 8 = Restoring torque :
| = —(mgsinB@)=-mglB X
since  is small sin®=0 6‘&“ c
i.e., mP 0 +mgl = 0 mg mgcosé

} Fig. 2.21 (a)

l ic. 0+ £ 6 = 0. Itis the equation of motion

l

o 8 . - _LJE
. 0 = Jj rad/sec. ; Natural frequency f = % W = V1 Hz.
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b) Energy Method

From Fig. 2.21 (b)cos 6 =

h .
L .

[, =lcos®;,x=10

1 1 y
Kinetic energy = — mx* = 2 m 16y

2
Potential energy =mgh=mg (/-1
=mg (Il -1{cos8)=mgl (1 —cosB)

According to energy method KE + PE = Constant ..

d
—(KE+PE)=0

ie., %{%m(lﬁ)z +mgl(l—cose)} =0
ie. %—m!1266+mgl(sin9)é =0
e é+%e = 0. Since 0is small, sin@ =0

b Energy Method

1
A J% rad/sec; Natural frequency f = n

i) Considering the mass of rod

g

Fig. 2.21 (b)

OO 0 s ¢ o L 0

!

Let m, be the mass of rod and it acts through the centre of the rod halfway from both ends as shown in

Fig. 2.21(c).
Newton's Method
According to Newton's second law of motion in the form of torque equation

a)

I, § = Restoring torque

1 -- [
ie., ("'12 +§mr’2 )9 =~ (mgsin 8) I-(m g sin6) 5

= —(mglﬁ+%m,g!9) since 0 is small sin6 =6
1 - 1
ie. m+§m, 10+ m+5m, £9 =0

( l ]
m+—m,
bas—2

=0

-1
{

Fig. 2.21 (¢)

1 502 11 - 12
Kinetic energy = KE of mass + KE of rod = -Z-M(ﬂl) +-2-.-§m,(01)
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PE of mass + PE of rod

Potential energy

mgl(l —cos®)+m g é (1-cosB)

Since KE + PE = constant

0

d

£ (KE + PE)

dr an
ie., %m{’ 2 é§+—;-m,tz26§+mgl(sin0)é+m,gé(sin9)é =0

1 .
ie., [m+5n»]19+('n+'~"'2—)39 =0 (-» sin6=0)

+m, /2
2 ‘g‘rad/sccand '=L Ry
l " 2n

T
o
=
5

£
]
3

17. What are the types of damping? Explain any two types of damping.

The following are the common types of damping.
(i) Viscous damping
(i) Coulomb damping
(iii) Solid or structural damping

(iv) Slip or interfacial damping.

(i) Viscous damping

It is the most common type of damping. When a system is allowed to vibrate in a li
viscous medium, the damping is called as viscous damping. The resisting force experiel
viscous damping is proportional to the velocity. i.e,, Fav .. F=cv=c ¢ where c is the
constant or coefficient of viscous damping. Two important types of viscous dampers cof
used are

(a) Fluid dash pot (b) Eddy current damping.

) Solid or structural damping

This type of damping is due to the internal friction of the molecules. Due to vibratory motion,
als are cyclically stressed and energy is dissipated due to intermolecular friction. For most
tructural materials like steel, aluminium, the energy dissipated is found to be a function of amplitude
nly over a wide frequency range. Experiments show that for elastic materials for loading and
Joading conditions a loop is formed on stress-strain curve. The area of this loop represents the
snergy dissipated due to molecular friction per cycle per unit volume. The size of the loop depends
on the material of the vibrating body, frequency and the amount of dynamic stress. This loop is
lled hysteresis loop (Figure. 3.7a). Hence this damping is also called as hysteresis damping.

Slip or interfacial damping

Machine elements are connected by means of various types of joints. Energy of vibration is
by microscopic slip on the interfaces of machine parts in contact under fluctuating
Slip also occurs on the interfaces of machine elements, forming various types of joints. The
dissipated per cycle depends upon the coefficient of friction, the pressure between the
ing parts and the amplitude. The amount of damping depends upon the energy dissipated
reycle. At zero pressure there is no energy loss since no energy is dissipated in friction but there
slip. At very high pressure also no energy loss since there is no slip. Therefore there is an
value of pressure for which the energy dissipated is maximum. The effective damping is
for larger the energy dissipation. Figure 3.9 shows the variation of slip damping with contact
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18. Derive the equations of motion for damped free vibration with usual notations. Formulate and
discuss the response of a critically damped and over damped system.

or

Set up the differential equation for a spring mass damper system and obtain the complete solution for
the over damped condition.

or

If X(t) represents general response for an damped free vibration system, then obtain the solution for
critically damped system and also plot the response and hence give its applications.

I v
x(t) =Ale( SHEent +A2e( EVEDeal Cyhere & = damping ratio.

or
Derive the equation for damped free vibration and solve for critical damping system.

.ﬁ::sider a spring carrying a mass at one end and the other end of which is fixed. A damper 15

between the mass and the rigid support as shown in Fig 3.10.
ANNNNN

- — — — — — - — o — - —

i . mg
Let k = Stiffness of spring = 3

= damping coefficient (damping force per unit velocity)

o
|

o = Frequency of natural undamped vibrations
x = displacement of mass from mean positions at time ‘t’
X = velocity of mass at time ‘t’
¥ = Acceleration of mass at time ‘t'
kx = spring force
mx = Inertia force
¢ ¥ = Damping force
m = Mass suspended from the spring
w = Weight of body = mg
& = static deflection of the spring

Let the body be displaced by a distance x in the downward direction from mean
Now the forces acting on the body are,

2

. . - . - . x s
(i) Accelerating force in the direction of motion (i.e., downwards) = m = mx

(ii) Damping force or friction force in the opposite direction of motion (i.e., upwards) =¢

(iii) Spring force in the opposite direction of motion (i.e., upwards) = kx
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~ For the dynamic equilibrium of the body, the sum of inertia force and external forces in any
direction should be zero.

- Here the external forces are damping force and spring force. The magnitude of inertia force
s same as that of accelerating force but it acts in the opposite direction of accelerating force.

Inertia force = m X, in the opposite direction of motion (i.e., upwards).

Therefore the equation of motion can be written as,

mi¥+cx+kx =0 ----(3.3.1)
Equation 3.3.1 is the differential equation of the system and it can also be written as
o e g B
YX4b—X4+—x =0 eme (3.3.2)
m m

; A system having the equation of motion as given by equation 3.3.2 is said to be a single
legree of freedom damped vibrating system.

o determine the natural frequency (®,)
\ Put ¢ =0

k
Hence the equation 3.3.2 becomes X + 0 + - 0

o = ‘/Z , rad/sec —----(3.3.3)
m

0 determine the critical damping coefficient
- Equation 3.3.2 is the differential equation of second order. Assuming the solution is of the
x =" ——(3.34)

X = o™ and = o’e®

Substituting these values in equation 3.3.2, the equation becomes

c k
ey — e+ —e* = 0
m m

a € .k
i_c_. o +m(x+m e™ = ()

) c k
e, o+ —a+— =0 —-==(3.3.5)
m m

e

The solution given by equation 3.3.6 takes one of the three forms, depending on whether

2
c k
quantity [(ﬁ) - ;J is zero or positive or negative. If this quantity is zero, then
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¢k
¢ .
—_— = —; je, T=J~=
(Zm) m 2m m "
S €= 2mw .
The critical damping coefficient ¢_is defined as the value of damping coefficient :

2
c k ' .
which the mathematical term [(EJ - "“'] in equation 3.3.6 is equal to zero
Critical damping coefficient ¢, = 2m®,_ = 2Jmk g | k
The ratio of actual damping coefficient to critical damping coefficient is called the d
factor or damping ratio. It is denoted by & (zeta)
Damping factor or Damping ratio

c ’
e -
N (LT_(E)
We have, o = - - o s
o T
= -i(ﬂ,.i [‘c‘m") -, [ ¢ .=2mo and o, = Jk)
e, £ v

~Em + o, \/Ef_—_l = ["@i \/ﬁ]“’.
1 {—§+\/§_2:T}m"
o, = {2-V8-1}o,

The most general solution for the differential equation 3.3.2 is given by,

x=Ae"+A” —
where A, and A, are two arbitrary constants which are to be determined from the initial
biditions of motion of the mass. o, and a, are its two roots,

~ Therefore equation 3.3.10 can be written as w
«

Q
]

-5 .'-T: ’-.‘:T ¥
X = A,e{ Snti-tey + /42e'{w tos = (33.11)

~ Depending upon whether & is greater or equal or less than one, these roots may be real or
qual or complex conjugate

i) If § = 1, the roots are real and equal. The damping is known as critical damping.

'.) If§ < 1, the roots are imaginary and both the roots are complex conjugates. The damping is
known as under damping.

‘ (i) Over damped system

If& > 1, then the roots o, and o, are real but negative. This is a case of over damping or large
damping and the mass moves slowly to the equilibrium position. The motion is not periodic (i.e.,
aperiodic). In actual practice the over damped vibrations are avoided. From equation 3.3.11 the
neral solution of the motion is,

{—{w’ﬁ}mna

53
jiege Ao

+ 4
The values of constants A and A, can be determined from initial conditions.
i.e., whent = 0; displacement x = x, and velocity v = v,
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S X=X, = A +A, -=-=-(3.3.12)
Now, & A,[-§+\/§2—1]m”+ Azl—é— R0 | [T R— (3.3.13)

From equation 3.3.12 and 3.3.13 the values of A, and A, can be determined.

The value of djs.plflcement X goes on decreasing with time. The system is non-vibratory in
. The characteristics of this type of motion are shown in Fig 3.11a and b
®, = 3 rad/sec, § = 1.2, x(0) = | mm

E=o

———
—

o

x(t) {(mm)

B | ~

E —x(0)=9mm /s -n--- x(0)=-9mm /s Bl S e ot
(a) Oniwit 14 (0 = TR
(a) (b) T
Fig. 3.11

(ii) Critically damped system [Fig 3.11(c)]
IfE = 1, then the radical becomes zero and the roots o, and o, are real and equal. Itis thecs

of critical damping i.e., when the frequency of damped vibration is zero, critical damping w
occur. The motion in critical damping is not periodic (i.e., it is aperiodic). This type of damping
also avoided because the mass moves back rapidly to its equilibrium position. :
Since & = 1, the two roots of the equation 3.3.9, ¢, and o, are equal to each other

e, 0 = 0,=—0, - (33

Now the solution of equation 3.3.2 for o, = ¢, is given by,

x = Ae™ + Ajte™ = A + Ayte™

= [A + A e™ B &

The values of constants A and A, can be determined from initial conditions.
ie, whent = 0; x=x and X=v =0

. "«n

= A +A) (o) e+ A, e

= A e —(A +AD® e

= xozAl

Since when t = 0,x,=A andvy =0= j(o;

i((n =v,=0=4,-x,0,
A = X0
Substituting the values of A, and A, in equation 3.3.15
x o= x4+ x, 0 e =x [1+ 0 e e (3
If v, # 0, thenA,=v, +x0
cox = {x+ (v, + x,w)1} e |

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



®,=2 rad/sec, X(0) =Imm

x(t) mm

t(s)

- X(0)=1.0mm/ s X(0)=10.0mm [ gccoiees X(0)=150mm /3

Fig. 3.11 (c)

) Under damped system

For this system £ < 1. Therefore the term under the roots becomes negative. The two roots o,
id &, are thus known as complex conjugate. This is the most general condition that occurs in all
cal systems and is known as under damping. This is the only case which leads to oscillatory

Since the two roots of equation 3.3.9, «, and @, are complex conjugate i.e., imaginary, their
can be written as

a, {’@”ﬁ}ﬂ’n

----- (3.3.18)
wd o = {£-Hi-E)a,
Hence the general expression becomes,
—E+i "E e - -,',‘,’__—1 «
x=A|e{ i +A2e{{ e
l"‘_;i ! - 'ﬁ
= oo [A, L W e ‘“"] ----- (3.3.19)

According to Euler’s Theorem
e = cosO +isin®
-8

e cosO—isinB

Hence equation 3.3.19 can be written as
x = gto [A cos (I-E* or+A isin ‘[l_—?cont-O-
A,cos \J1-E* of—A,isin ﬁmﬂtl
00 [(A, +A) cos J1-E 01+ (A, - A)isin JI-E o]

ie, x = %ot [Cecosf+Csing 0 = (3.3.20)
where CI = A|+A!
C,=(A-4A)i

o, = J1-E* ® = Frequency of under damped vibration

Substituting C, = A, +A,=Xsin¢pand C,=i (A, -A) =Xcos ¢
Equation 3.3.20 can be written as
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where X

The values of C, and C, can be obtained, lf the values of A, and A, are known. The values
A, and A, can be found from the initial conditions.

Equation 3.3.21 indicates that the system oscillates with frequency ®,. As & is less than |
is always less than ® . The solution consists of three terms

— X which is constant

- ¢ which decreases with time and finally e =0 whent — e
— Sin (o, + ¢) which represents a repetition of motion.

Thus the resultant motion is oscillatory with decreasing amplitude having fmquency ofw,
ultimately the motion dies down with time as shown in Fig 3.12(a). :

e % [X sin ¢ cos ®f + X cos ¢ sin /]

X oty sin (0 +9)

JC? +C} and ¢ = tan’ —C'-

----(3.3.21)

-Decreasing exponentially
with time

Mean position

Displacement

All the three types of damping responses (x - t) are presented in Fig. 3.12 (b)

Figure 3.13
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19. Define logarithmic decrement, Derive an expression for logarithmic decrement.
or

S:Lloa{u—”
Define logarithmic decrement and ST it can be expressedas *
amplitude and xn is the amplitude after n cycles.

I

any two successive amplitudes in an under damped system is always constant.

Displacement

Fig. 3.14
Equation 3.3.21 gives the displacement of an under damped system
e, x =X ¢ sin(wf+¢)

i Xl] where n cycles, uo is the initial

It is defined as the natural logarithm of the ratio of any two successive amplitudes on the
same side of the mean position in an under damped system. It is denoted by 3 (delta). The ratio of

Equation 3.3.21 is an equation of harmonic motion in which X e ** is the amplitude and o,
is the angular frequency. When sin (ot + @) is equal to one, the amplitude is maximum. Also the

amplitude will go on decreasing exponentially with time.

Now, maximum amplitude x = X ¢ > (341
Letx, be the maximum amplitude when the time is ¢, and x, be the maximum amplitude w

the time is t,

"émall and

X, = Xe
X = x e"&“’-':

X Xe 5 ” e—h.’r(-gﬂ'.’:l - eﬁ“’..(‘:"l)
> X Xe 5tz 3

Where (1, - t,) is the period of oscillation or time difference between two consecuti

amplitudes

2n 2n

Substituting the value of ¢ in equation 3.4.2,

2n 2ng
xl §m” ! i |12
& w, y1-§ WP v TR G P b F e S T
X2
A
imi i by vi-g
Similarly it can be proved . e and so on
3
2nk
X X X X 5 Ty
Hence = = =2 = =2 .......... n_ - VS

Now taking natural logarithm on both sides
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) 32

X2 1-&*
X 2ng
Logarithmic decrement § = I —'] z —p—
4 n [x2 It -
when € is very small, § = 2ng

. X
Also since —%

X

]
7 AR
|
e
= |
I
N
|
S—t
=

Logarithmic decrement &

il
=
| ]

Eal e
N
]

R | -
~
]
¥ e e N
> |3
) LW AN g

20. Derive an expression for energy dissipated in viscous damping.

X
Logarithmic decrement, & = In [_:lJ O L _ et

r4

; e | 8 &
1.L., X, =ed=1-0 4+ —2—'— s ? o rerreanas

Let £, be the vibrational energy at amplitude x|

1
E = 3 kx *
Similarly £, be the vibrational energy at amplitude x,
|
E, = > kx,?
E, - E, E j
| — X,
1 2 2 —= -6y2 -26
s ——%=l- =l-(e’)yY=1-¢
E] El [II ]

O ) ]
2! 3!

I
|
o !

|
! AE @287 (28)°
i ie., =20-——+——
l Y R, IR
‘ Since & is small, higher powers can be neglected
‘ AE
=20
E
)
e, 8= L e 35.1
ie, O 2, (3.5.1)
where AE = E, - E, = Energy dissipated in one cycle.
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21. Vibrating system consist of a mass of 50 kg a spring a stiffen 30 kKN/m and a damper. Damping is
20% the critical value. Determine: (i) Damping factor (ii) Critical damping coefficient (iii)
Logarithmic decrement (iv) Ratio of two consecutive amplitude (v) Natural frequency of free
vibration (vi) Natural frequency of damped vibration.

-~ Data : m = 50 kg ; k=30 kN/m = 30,000 N/m;
: c=02¢
 Solution :
c 02
] Damping factor§ = — =——=02

C C,

}

(i)  Critical damping coefficientc, = 2mw = 2Jkm = 2,/30,000 x 50 =2449.5 N-sec/m

g 2mx02

2ng
Ji-g2  Vi-02?

i (iv) Ratio of two consecutive amplitudes

2

= 1.28255

iil) Logarithmic decrementd =

l x,
4 Also 8 = In

Lyt

X,

= ¢d=¢' 5236058

Xpey

(v) Natural frequency of free vibration
k 30,000

Circular frequency of free vibration®,, = ,[— = %0 =24495 rad/sec
m

| 1
Natural frequency of free vibration f, = B w, Hz= >n x24495=39H;

~ (vi) Natural frequency of damped vibration or Damped free vibration

| 1 2 | 2
=—Wy =-— 1-&* = —x24495xy1-02° =382H.
fa 27twd 2”:xo),‘ g 21‘:x xv z
22. A mass of 2 kg is supported as an isolator having a spring scale of 2940 N/m and viscous damping.
If the amplitude of tree vibration of the mass falls to one half of its original value in 1.5 seconds,
determine the damping coefficient of the isolator.

Data : k = 2940N/m ;m=2kg
Solution :
Displacement of an a under damped vibrating system is given by
x = Xe™® gin (w7 +0)

. Maximum displacement x = X e when sin (0 +¢)= |

k f2940
Natural frequency of undamped system ®_= J—;_ N2 ° 38.34 rad/sec

Let x, be the maximum amplitude of vibration when time is 7, and x_ be the maximum ampli
vibration when time isf,

Xe i =X 0

IA =

X, = X e'{‘”-'l =X ¢-”w'
383481

fa - 51__‘ = MNY, - WMy

.'n xe'”-"‘lh

E
= (\l.\t,u. W

Since the amplitude falls to one half its original value in 1.5 secs.
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e, 2 = ¢

x, = 05x, andr, ~1,=15
XA
—_— MM x 1S

05x,

81

Taking natural logarithm on both sides

n2 = Ine™ "
ie., 069315 = STSIE
~. Damping factor§ = 0012

Critical damping coefficientc, =

c
Damping factor§ = .
i€, 0012 = —
ST T 15336
. Damping coefficient ¢ = 1.84 N-sec/m.

2"&).=2\[k_m- =2J2%M0x 2 =153.36 N-sec/m

23. The mass of a single degree damped vibrating system is 7.5 kg makes 24 free oscillations in 14
seconds when disturbed from its equilibrium position. The amplitude of vibration reduced to 0.25 of
its initial value after 5 oscillations. Determine: (i) Spring stiffness (ii) Logarithmic decrement (iii)

Damping factor.

a: m=75kg;x,=025x,

z
<
=
e
i

Xp

Xs

*o

X5

ie, 4 =

)
X

Hence logarithmic decrement &

OR & =

Lo

2 "

2nf =2nx 1.714=10.77 rad/sec
x

m

x

m

:’k—sz . Stiffness of spring k = 870.13 N/m
*o

—_— =g

0.25x;

5
19..5!..*_'1.&."_4_(‘_0] [._.x_o.__fn_=£z_=
X Xy X3 Xy X5\ % X % %

s
2%
(‘l)
(4)"=1.3195

X
m;‘l =in1.319=0277
1

lxn(ﬂ] = Lin()=0277
n \xs) 35
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i) Damping factor, , .
8= 255 S Om 4’:2&22
i -y It

4 22
i.c.. [_é) = ’;f
4n2§2 i
ie, 1-8 =
i 0277*
. Damping factor§ = 0044

24. A Pendulum is pivoted at point O as shown in Fig. If the mass of the rod is negligible and for small
oscillation. Find : i) Critical damping coefficient ii) Damped natural frequency.

——-—" . i=cw

¢
’

’
L /
'

oL .
| P»m.r = ml0
~
d (m mg
a) k)
Solution :

Moment of inertia of mass about 0, /= ml’
For a small oscillation the free body diagram of the system is shown in Fig. 3.18(b)
From Newton's second law of motion in the form of torques

Fig. 3.18

1, 8 = IM where IM = sum of restoring couples about O

1,6 = —ka’0—cb*® —mglh

ie, mL* @
ie, mL’Q

= L kaz+mgL
O I 2 0 + Tt 10 0

Equation (i) is the differential equation of motion for the given system.
The roots of this equation are

—ka?® - ch* @ ~mgl®

O + (ka* +mgl)0=0

+

0 )
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"

bt (b ) _ [k’ +mel
mt> =\ mi? mi?
2 :

cb? cb? Y (ka®+mglL
T , Y e 3
mi2 \\ 2mL mi

2
g ch? » cb’ 2_ ka® +mglL
2mi? 2ml’ ml?

ka® +mgL
o

2mi?

ka® +mglL
b’ ml*

2ml? (ka® +mgL .
e J per N.sec/m

The general expression for torsional damped system is,
1,0 +c,0+k0 =0
k

@,
al
o,
(i) Critical damping coefficient
If the sytem is critically damped then the radical must be zero
A cb® : = ka® +mgL
e, (577 2
At critical damping ¢
2 2
c.b
- (5)
c.b’
2ml?
ie,c =
. Critical damping coefficientc, =
(ii) Natural frequency of damped vibration

ie., §+£;‘é +—0=0

1

e, g +20,E0 +©,0 =0

k o S b 0. 0 = 2000
[-.'o),,=J_T”radlsec. —Cx 21(0,,'"C' "5

Comparing the equations (i) and (i1)

b’
2o, =
ka* +mgL
0 = T

From equation (iii),

Damped frequency ®©, =

Department of Aeronautical Engineering, GCEM, Bangalore

ch? 2__1_
= \2m2) @

o =

vt ¥ mid
(2»;1? “ka® +mgL

2
b2 Yop doeiug
"2 ) mL?(ka® +mgL)
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b ¥ 1 ka2+mgL)
- — 2
12 ml*(ka* +mgL) [ mL

2
ka® + mglL _[ cb? )

= [z 2 [2
2 \2
fka2+mgL cb
®, = —'E-——(——z 5 | rad/sec
|
—wyHz

.. Natural frequency of damped vibration f,= In

2
1 kaz+mgL_[ cb? ] Hz

= -2—1[ ’an 2 mL2

25. Obtain the differential equation of motion for the system shown in Fig. and hence find (i) Critical
damping coefficient (ii) Natural frequency of damped oscillation

02 s K ~

f p777774
|
‘ 4 <
?- g
“
| b .
Z
; =T
Z
a NS SN
4 e |
b s
Fig. 3.20

- Solution :
Moment of inertia of mass about O, I, =mb’
For a small angular displacement of @ in the downward direction,
Spring force = kab T
Damping force = cx=ca® T
From Newton’ second law of motion in the form of forques

I, = XM where XM = Sum of restoring couples about O
ie, mb'g = (-ca@)a—(kab)a

ie, mb*@ +ca’p +ka'® = 0
2 2
e ETIE. .
L6, 9+W9+;579=0 —--(i)

Equation (i) is the differential equation of motion.
The roots of this equation are,
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cat ca’ 2 ka®
%= l2mb? | mb?
(i) Critical damping coefficient

If the system is critically damped then the radical must be zero

2

. ca’ ka*

i.e., 1 B R 0
2mb mb

Atcritical damping ¢ = ¢
c.a’ ka®
2mb* mb*

2mb ’k 2mb ’k b
i s = |- m— =~ =2~
Le, ¢ @ S¥w" g Y\m 3 Jkm

b
. Critical damping coefficientc = 2-; Jkm N-sec/m.

(i) Natural frequency of damped vibration
Damped frequency @, = Radical with negative sign

2 2 \?
, _ka_z & ou x rad/sec
mb 2mb

Proof : When a = b
AN A OIO]
‘ mb? | 2mp? )  Vim) \2m
* c
w’ —[Cw—") [ ¢, =2mo,2m= —‘—J
C, (0"

- c —
Vol -0l = o,|1-¢ radsec | =8
Damped natural frequency of a standard system.

e
]

€
I

i

26. Obtain the differential equation of motion for the system shown in Fig. and hence find (i) Critical
damping co-efficient. (ii) Damping ratio. (iii) Natural frequency of damped oscillations (iv) Natural
frequency of undamped vibration.

L=lsomm

SN SOONNNANNNY

NN
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b=150mm=0.15m

)

a=100mm=0.1m
F
?{
=3
TR
Fig. 3.22

o
ANUUERANALUREANTANANARRRRRRRRRRRRAARAY

Solution :
Moment of inertia of mass about O,/ = ma’
For a small angular displacement of 8 in the downward direction
Spring force = kb® T

cx=ca® T

Damping force
From Newton’ second law of motion in the form of torques
1,6 = IM where M =Sum of restoring couples about O
ie.ma’® = (~ca®)a-(kb0)b
e, map +ca’® + kb0 = 0
, 2
o 8 ‘;0 K = 0

Equation (i) is the differential equation of motion. The roots of this equation are,

m m
L% T 2
2
. (!' —"'2;+ bn ma , 2_‘"' 2’” 2

(i Critical damping coefficient
If the system is critically damped then the radical must be zero

B 2
A Ce kb i i
e, (Zm) = —5 [+ Forcritical dampingc = ¢, ]

ma
e, S 2]k
Y m aVm
k b b
N = J— . 2m— =2~ ki
& J; 2ma a,/b,.Nsec/m
Hence critical damping coefficient
2x0.15
¢, = 010 J5000 x 2 =300 N-sec/m,
(i) Damping ratio
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(iii) Natural frequency of damped vibration
Damped frequency @, = Radical with negative sign

kb* ¢ a
oW, = ;3‘5 rad/sec

5000x0.5" _(132
2x01* 2x2
<. Natural frequency of damped oscillations
o !
fi = 5 OHz =7 x70.71=11.254Hz.
(") Natural frequency of undamped vibration

o, = J1-£.0, ; ie, 70-7I=J1-a333’.m,
< Circular frequency of undamped vibration ®_= 75 rad/sec

2
) =70.71 rad/sec

Natural frequency of undamped vibration f, = %0. = ﬁ x75=1194H:;

27. A thin plate of area A and weight W is attached to the end of a spring and allowed to oscillate in a
viscous fluid as shown in Fig. If f1 is the frequency of the system in air and f2 in the liquid. Show that

a= g,fff i

~, where the damping force Fa= «2AV. V/ being velocity.

Fig. 3.24
- Damping force F, = 2nAv
ie, ¢x = 2nAv

S C

2nA

1 k
Frequency of free vibration in air f P ®, Hz where ®_= J;
Frequency of damped free vibration in liquid

L on1-8 2wfy1-8

o =3g % 2t 2n
o= f1-E
(%)

fu
-4

BT Aokl o

5

Hence 1 -&*

o
e
1
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sl
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Also &
2-f (mY
o \mo,
2
fmA - finA
ies V-] = ‘mm, = m2w,
= -2—:'—" fZ - fi - Hence proved.

28. A vibrating system is defined by following parameters: M = 3 kg, K = 100 N/m, C = 3 N-sec/m.
Determine: (i) Damping factor (ii) Natural frequency of damped vibration (iii) Logarithmic decrement
(iv) ration of two consecutive amplitudes and (v) the number of cycles after which the original amplitude
is reduced to 20%.

Damping factor

k F 100
Circular frequency of undamped vibration®, = J—-n; Ny = 5.7735 rad/sec
Critical damping coefficientc, =2mm, =2x3x5.7735=34.641 N.sec/m

¢ 3
~ Damping factor§ ="~ = 34641 =0.0866
Natural frequency of damped vibration

Circular frequency of damped vibration®, = /1 —§2 0, = J] - 0.0866° (5.7735) =5.7518 rad/sec

1 1
Natural frequency of damped vibration f, = " w,= = x5.7518=0.9154 Hz
Logarithmic decrement
2n 2n x 0.0866

ithmic decrementd = = = =(.5462
e J1-E2  Vi1-00866°

{iv) Ratio of two successive amplitudes

Xn

Logarithmic decrementd = in 1
n+

.
= Ratio of two successive amplitudes 7~ = &b = 542 = 1,7266

n+1

(¥} Number of cycles after which the original amplitude is below 20 %

sthmi lln 2
Logarithmic decrement & Pl

1 X
i = —In
ie, 05462 = » ( 0.2x, ]
ie, n = 29466 ~3
. Number of cycles after which the original amplitude is below 20 % is 3
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29. A body of 5 kg is supported on a spring of stiffness 200 N/m and has dashpot connected to it, which
produces a resistance of 0.002 N at a velocity of 1 cm/sec. In what ratio will the amplitude of vibration
be reduced after 5 cycles.

Similar problem:

A mass of 5kg is supported on a spring of stiffness 1960 N/m. The dashpot attached to the
produces a resistance of 1.96 N at a velocity of 1m/sec. Determine,

(i) Natural frequency of free vibration
(ii) Damping resistance

(iii) Critical damping resistance

(iv) Damping factor

(v) Logarithmic decrement

(vi) Ratio of any two successive amplitude
: (vii) Amplitude ratio after 5 cycles.

(viii) Decrease in amplitude after 5 complete cycles or oscillations.
i (ix) Amplitude after 5 cycles if initial amplitude is 10 mm
E Data : m=5kg,k=1960 N/m,F =196 N; x =lm/sec;x =10 mm
Solution :

(i) Natural frequency of free vibration

y
k 1960
Circular frequency J_;_= < - 198 rad/sec

42 W, = L><l9.8=3.15 Hz
2n 2n

Natural frequency f

L (ii) Damping resistance

Resisting force F,= cx ; ie, 1.96=cx1
1.96 N.sec/m

Damping resistance ¢

(iii) Critical damping resistance
c, =2mwo =2x5x 19.8 = 198 N.sec/m

(iv) Damping factor

t= £ =10 2099x107
('.C

=

198

t {v) Logarithmic decrement

-1
: 2rE _ 2xmx99x10 = 00622

V1-8 \F ~(99x 107%)’

(i) Ratio of any two successive amplitude

(i) Amplitude ratio after 5 cycles
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ﬁ - ‘(uunuxS] = 1365

(viiii) Decrease in amplitude after S complete oscillations

2 . 1368
Xy
Xy
" = 07326
* = 1365 %o

(ix) Amplitude after 5 cycles, ifx, = 10 mm

X 0.7326 x, = 07326 x10 = 7326 mm

b
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