Theory of Vibration - 18AE56

Old VTU Question’s Answers
Module - 4

Syllabus:

Systems with Two Degrees of Freedom: Introduction, principle modes and Normal modes of vibration,
coordinate coupling, generalized and principal co-ordinates, free vibration in terms of initial conditions.
Geared systems. Forced Oscillations-Harmonic excitation. Applications: Vehicle suspension, Dynamic
vibration absorber and Dynamics of reciprocating Engines.

Continuous Systems: Introduction, vibration of string, longitudinal vibration of rods, Torsional vibration
of rods, Euler’s equation for beams.

Part — A Questions

1. Briefly explain principal modes and normal modes of vibration.

% A two degrees of freedom system has two equations of motion ( ie, one for each mass) gnd
hence two natural frequencies. The natural frequencies are found by solving the fre:quencyl equation
' of an undamped system or the characteristic equation of a damped system. The system at its lowest
o first natural frequency is called its first mode, and its immediate next higher is called the second
"mode, and so on. If the two masses vibrate at the same frequency and in phase, it is called a
principal mode of vibration. If at the principal mode of vibration, the nmp!itgde u_rf one of the
masses is unity, it is known as normal mode of vibration. Normal mode of w'lbrahmfs are free
| vibrations that depend only on the mass and stiffness of the system and how they are distributed,

2. For the system shown in below fig. Determine:
(i) Equations of motion
(ii) Natural frequencies of the system
(iii) Modal vectors
(iv) Draw mode shapes
Takeml=m2=m; KI=K2=K3=K
Or
For the system shown in below fig. i) Derive the equation of motion ii) Set up frequency equal and obtain
natural frequencies of the system.
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-~ Solution :
. i) Derive the equation of motion

The two masses m and m are defined by their positions x, and x, respectively at any ﬁme ‘r
The equations of motion are obtained from Newton’s second law of motion. Considering the free body

- diagram shown in Fig 6.8, the equations are; "k (%=, )
; k x, A
I
m or *— M je—kix, =) kir,x)e— ™ |1&— ki, or m
A
T Fig. 6.8
K ' myx, = ~kx — kix-x) k x, === (0
X=X,
: 1 mx, = —k(,-x)-hke, (2)
Equations (1) and (2) can be re written as
' m% +2kx —kx, =0 [ (3)
m'x‘z—kl’l"' ml - ﬂ "'"-'"{4]

Equation (3) and (4) represents the differential equations of motion of second order.
ii) Frequency equation and natural frequencies of the system. |
Assuming the harmonic motion of masses m and m at the same frequency © and the same phase angle
9, the solutions of equations (3) and (4) can be writien as

x, = Asin(@e+® = (5)
x, = Bsin(wr+¢) —A
Where A, B and ¢ are arbitrary constants.
Now, &, = Amcos (o +¢): X =—Aw’ sin (0¥ + )

Xy

Bw cos (o + §) : X, = — B’ sin (6 + )
Substituting the values of x,, x,, ¥, and ¥, into the equations of (3) and (4)
— m? Asin (0 + ¢) + 2kA sin (a¢ + ¢) — kB sin (@t + $) =0

e, (—mw'+2k)A-kB = 0 — (7)
' Similarly — m*B sin (¢ + ¢) — kA sin (@ + ¢) + 2kBsin {0 + ¢) =0 _
e, (~m*+2K)B-kA = 0 wmem= (B)

 Equation (7) and (8)-are homogeneous linear algebraic equations in A and B. For a non trivial solution of A
and B, the determinant of the coefficients of A and B must be zero.

‘(-—mmz +2k) —k

e, & (-m2+2k) =0

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



Expanding the determinant
(= moy + 2k) (- mo' +2k) -k = 0

miat —dmork + 45 - = 0
& W

le., - —w+—5 =10
i m

Equation {(9) is called the frequency equation.

g
il
+

o m N . mom _k

o= 2 2 m

4%+2; W%

2 = — =

W’ = ; -
3k

w, = JE rad/sec ; @, = 4/ — rad/sec

it m

o, and t, are the circular frequencies of first and second modes respectively.

I | k
. g i i = == 4| H
. Natural frequency of first mode f, 7 " 2r \m H
1 I {3k
Natural frequency of second mode f, = by =5 ' m H:

iii) Modal vectors
The values of A and B depend on the natural frequencies of ®, and ©,

Let A, = Amplitude of x, when frequency © = @,
A, = Amplitude of x, when frequency ® = @,
B, = Amplitude of x, when frequency © = ®,
B, = Amplitude of x, when frequency w = ®,
Using the equations (7) and (8), the amplitude ratio can be written as
A k -mmf +2k 1 and
B, = -mw!+2k k =
A ko —mo;+2k —_]‘and
B, 7 _mol+2k k A

Amplitude ratio for the first mode can be written as

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



k X
B Tment —m[k)+2k !

Amplitude ratio for the second mode can be written as

I k I [l:Ml=J£I
B, -mo; +2k  _ (3;‘)_',2& Ay m

m
Hence for the first mode, the two masses move in the same phase with equal amplitudes and for the
- second mode the two masses move out of phase with equal amplitudes.

If one of the amplitude is chosen equal to one or any other number then the amplitude ratio is
sormalized to that number. The normalized amplitude ratio is called the normal mode and is designated by

o

The normal modes of vibration corresponding to ®,* and ®,” can be expressed respectively.

o0 = o= fuaf - B
o = {offuf - fit

The vectors ¢, (x) and ©, (x) which denote the normal mode of vibration are known as the modal
wectors or eigen vectors of the system.

' iv) Mode shapes

H

(a)
Fig. 6.39
Figure 6.9(a) represents the first normal mode shape and Figure 6,9(b) represents the second normal

3. Below fig. shows a spring mass system. Determine

(i) Equation of motion

(if) Frequency equation and natural frequencies of the system
(iii) Modal vector and mode shapes
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i) Equation of motion
. The free body diagrams are shown in Fig_6.11.

k
K, 2kl =)
! ! ‘
2k
m 2m
| [ §
2K(x, %) 3k, 3k
Fig. 6.11 Fig. 6.10

The equations of motion are obtained from Newton's second law of motion, Considering the free

diagram shown in Fig 6.11.

mx, — hx, = 2k [x, —,1:2)
Lomd, + kv +2k(x -x) =0
e, mx + 3hx, - 2kx, = 0
Similarly 2m X, = -2k (x, —x,) - 3kx,
e, 2mX; + 2k(x, - x)+3kx, = 0
ie, 2mX¥, - 2ke + Skx, = 0
Equations (1) & (2) are called the differential equations of motion for the given system

ii) Frequency equation and natural frequencies.
Let the solution of equations (1) & (2) can be written as
x, = Asin (0f +¢)
x, = Bsin (o +¢)
where A, B and ¢ are arbitrary constants.
Now &) = Amcos(®t + ¢); X, =—Aw’ sin (@ + )
Similarly x, = — B’ sin (a¥ + 0)
Substituting these values in equations (1) and (2)
m [—Am2 sin(mr + ¢)] + 3 kA sin (of + ¢) — 2k B sin (0r + ¢) =0

e, (—mwé+3)A-2k8 =0 _
Similarly 2n [— By’ sin (@ + 0)] — 2k A sin (@r + ¢) + 5k Bsin (@i +¢) =0
ie., (=2mw*+5k)B-2kA = 0

Equations (3) and (4) are homogenious linear algebraic equations in A and B, For a nontrivial so

of A and B, the determinant of the coefficients of A and B must be zero.

-----
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mw” + 3k ~2k | ;

| 2k 2metesk|

- Expanding the determinant

: (3k — mto?) (5k — 2mw’) — 4k = 0

ie., 15K —6kmoy — Skmor + 2nre’ — 4k =0
ie. 2mie'- 1lkmo’ - 11E° = 0

k &’
e, w'-55 . W -55 5 = 0 e (5)

Equation (5) is called the frequency equation.

1 2
ﬁii\[[ﬁﬁ) _axixsst

o m m m
55X _2g7 " .
- m m . —
w; = 5 =1314 —
55X 1287 .
m - -
w; = 5 =4.186 —
k
@, = 1.146 |~ radisec

k
o, = 2046 J; rad/sec

@, and @, are the circular frequencies of first and second modes respectively,

1 1 ’k !k
[ = — =— x 1146 ,/— =0.182 |—
Natural frequency of hlrst mode f| o = " -

1 1 ’k 'k
- = — %2 RASRCY — H
Natural frequency of second mode f, w, 5 x 2.046 325 z

2n
Modal vectors and mode shapes .
Let A, = Amplitude of x when frequency © = ®,
A, = Amplitude of x, when frequency @ = @,
B, = Amplitude of x, when frequency @ = ®,
B. = Amplitude of x, when frequency © = ®,

Using the equations (3) and (4), the amplitude ratio can be written as
: A 2% _ —2mo +5k
B, -mﬂ]f + 3k 2k

A 2k —2maw; + 5k

B,  -mwl+3k 2k
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Amplitude ratio of first mode can be written as

RN S —
1o Tmop 3 (—m){l.‘ild»—)-i—i’-k m
m
- 1186 = —
iy
Amplitude ratio of second mode can be written as
2k 2k
% = T . ('.'m§=4.18ﬁ£]
2 Moyt [—m][4.136—)+3k m
m
- - l686= -
: »

The normal modes of vibration corresponding to ©,” and @,’ can be expressed respectively.

o= o = al - L)

1.186 71,

First mode Second mode

(a) {b)
Fig. 6.12

Au Ay —1686
CREHENAR Y

3 The vectors &, (x) and ¢,(x) which denote the normal mode of vibration are known as the modal vectors
. oreigen vectors of the system.

The mode shapes for first mode and second mode are as shown in Fig 6. 12 (a) and 6.12 (b) respectively.
3 In the first normal mode, the two masses move in phase. In the second normal mode the two masses
.~ move in out of phase with each other.
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4. Below fig shows spring mass system. If the mass m1 is displaced 20 mm from its static equilibrium
position and released, determine the resulting displacements x (t) 1 and x (t) 2 of the masses.

Givenk =k =k, =kandm =m,
Solution :
The free body diagrams are shown in figure 6.15 (b)

k1, K lx, )

3
3

k,[l,—l,: k] I,

Fig. 6.15

The equations of motion are obtained from Newton's second law of motion. Considering the free
diagram shown in Fig 6.155.

my, = -—kx -k ;,(.'c] —.rl}
1.e., m_‘jl + {k1+k:},r:-rkfr: =0 . maes (n
Similarlym, ¥; = —kx, -~k {x,—x)
----- {2)

e, m¥ —kx +k,+k)x, =0

Let the solution of equations (1) and (2) be,

x, = Asin{o+¢)

x, = 8sin (¢ + O}
Where A, B und ¢ are arbitrary constants.

Now,x, = Awcos{or+¢); x = — Ay’ sin (@f + 0)
Similarly ¥, = - B’ sin (0 + §)

Substituting these values in equation (1) and (2)
m, {-A’ sinfar + )} + (R + k) A sin (@r + ¢) — &, B sin (or +¢) =0 |
ie, |-mw +k +&)A-kB=0 {3}
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Similarly, m_ [~ Bo® sin (or + ¢)}- k, A sin (0f + ) + {k, + k,) B sinwr = 0
ie., [~ mo'+k +k)|B-kA =0 N—Y
For a nontrivial solution of A and B, the determinant of the coefficients of A and B must be zero

—myo® +(k, +k;) —k,
ie., 3 =)
ie., [=mo'+(k +&k)) [ -mo’+ k& +k)) -k'=0
Le., mmat = {(k, +k)m, + &, +k)m | o+ ((k+E)k, +k) k7] =0 Y
Equation (5) is the frequency equation.
Since m, =m, =mand k =k, =k, = k, equation (5) becomes

i — dkma + 3 = 0

2
k
i.e., m"-4-jf-m1+3[—~J = ()

m m
2 r
451‘[[4&) e
m m m

S
il

=2
]

Amplitude of x, when frequency © = (0,

2x1
* Hence w, = E radfsec = Circular frequency of first mode
; W, = RS rad/sec = Circular frequency of second mode
m .
; Let A, = Amplitude of x, when [requency @ = @,

B, = Amplitude of x, when frequency 0 = ®,

B, = Amplitude of x, when frequency ® = @,
using the equations {3) and (4) the amplitude ratio can be written as
A _ ky _ my} +(ky + k1) _ 1
Bl _'ﬂlmlz +(k1 +k2} kz l]
A ks _ myw3 +(ky +k3) _ b
B, —m 3 +(ky +k, ) k, A
: . A k i
Amplitude ratio of first mode — = =1= Y
B k i
I —m—+(k+k)
m
. . A k ]
Amplitude ratio of second mode = T =] = —
By m T a (k) ¥
“m

The general solution of the equation of motion is,
x (1) = A, sin (wf+ ¢|] +A35in (wt + ¢=]

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com n



A, sin [E:m,] +A, sin [Exwl]

B, sin (@ 1+ ¢,) + Bsin (0,7 + §,)

AA, sin [Ex +¢-,] + A, A, sin [Er +¢1J
= A sin [EH:#,] - A, sin [EH—%]

The constants A , A,, ¢, and ¢, can be obtained from the following initial conditions ;
X(0) = 20mm; x, (0)=0; & (0)=0: x, (0)=0
X, (M=20 = A sin ¢l +A, sin b,
5 0)=0 = A sind, —A,sing,

k k 3k 3k
X0 = A1E Cﬂﬁ[\’;f+¢:]+ﬁg\l;cm[\,;r+¢z]
X (=0 = A.E cus¢,+ﬁ2Em¢z

k 3
Similarlly, i, (0)=0 = A‘\E cnsqi.—AzJ; cos b,

Adding the equations (8) and (9), we get
24, sin0, = 20

X, (0

ie, Asing = 100 o A=

Substracting the equation (9) from (8), we gel
2A,8ing, = 20

. . . 10
ie., A,sing, = 10; . A= b,

Adding the equations (10) and (11), we get 2 A, JE::_ cos ¢, =0

e, cosg,=0 . o = 90°
Substracting the equation (11} from (10), we get

3k
24, 1‘; cosd, = 0

e, cos¢, =0 . ¢,=90°

Hence, A = ,m = .I{] = 10 mm
sind, sin90
4 10 10 10
= = = mim
* sing, sin 90
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Thus the motions of the masses are

"
-,
=
—
]

x, (1)

(. 3k

10 sin | ¢ +90° +msin[-‘)—f+9ﬂ°J
Vm m

10 cos JE;.,.H}WS ’}_‘k.; mm
m m

10} 5in [ Er-q»‘)ﬂ“]—lﬂsin[ E1‘4-'57@{}“‘]
Vm \'m

e
10 cos Er—ll]ms &r mm :
Vm Vm

For the first principal mode of vibration, the two masses move in the same direction with equal amplitudes.
For the second principal mode of vibration, the two masses move in opposite directions with equal

amplitudes.

5. Below fig. shows a system subjected to vibration. Find an expression for the natural frequency.

NN

Solution :

Assume tension in string as 1 and it remains constant for small oscillations. Figure 6.20a shows
displaced position of the masses due to the oscillations. :

o s

t—t———ﬂé————i

m,
Tcosa, Tcosf '.
Itxi-le Tsinc: T ; Tsinfi
Y ) (b) '
4 7
Z Z
% - = :% {left mass)
(a)
Tsiny
(c} (right mass)
Fig. 6.20
From Fig. 6.20a
: ol SR S B, NSO
sin 0= — Lsin = o asiny=
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Consider left mass -

The free body diagram of left mass is shown in Fig. 6.20 (b)

From Newton's second law of motion, the equation of motion for the left mass is,
~Tsino-Tsin B

]

]

mi.xj

Le., m, Jr'|+ Tsina+ Tsinf

e, m, x + T(?] + T(:I_l:!_‘f?_) ~0

. 2r T
m X + "rxl-T x, =0
Consider right mass

The free body diagram of right mass is shown in Fig. 6.20(c)
From Newton's second law of motion, the equation of motion for the right mass is,

m, X, = —Tsiny+ Tsinf

2
ie,m, X +Tsiny~Tsinf = 0

iem, %y + =T [L!I*) =0
T 2T —)

{
Let the solution of equations (1) and (2) be
x, = Asin (@f +6)

mz.r._,—-Tx1+—,x1=l]

x, = Bsin (mt+¢)

2

where A, B and ¢ are arbitrary constants
Now ¥, =—A@" sin (ot + §}; X, = - Bo'sin (ot +¢)
Substituting these values in equations (1) and (2),

2T T
m, (- Aw’} sin (ot + ¢} + TAsin (ot +0) - 7 Bsin(wt+0)=0

o7y T
ie. [—mmz +T] A= B=0 (@)

T 2T
Similarly m, (- Bw®) sin (@t +) - TAs'm (ot + ) + e Bsin (ot +¢)=0

2T
ie. (‘“‘zmz + T] B~ T A=0 —-(4)

For a nontrivial solution of A and B, the determinant of the coefficients A and B must be zero.

» 2T T
m]n‘l +T —T
i 2ri= 0
1.€., _ 3: - mz 4 I
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2

2T 2T
+m om0 - m(ol—}———-muf+

! 12

T

T!

T 27
ie., (—mw1+TJ ["”'1{“2"' é']‘ r

47

—(5)

. 1
ar 2r1), |21 +_%.=£} _ax T
myl - myl myl  myl mymy
| o =
; 2
- P
2r or)_ |21 21‘} 4% 137"
myl  myl il | m mymy1* rad
Circular frequency of Ist mode.w®, = 3 soc
- . -}5
zr+_z;_]+ {zr zr] 4x1x3T
myl mi) Ylml ml]  mml® | rad
Circular frequency of 2nd mode.@, = 2 pren
Note :
{) If m = m, = m, then the frequency equation is
r 2?‘] 31'1
4:r 3?*

ii) If m=mandm, -Zm.then tln&nquenny equation is

“omi mi )Y
3T
ie. m---?‘I @ = 0
iii) If m = m, = 2m, then the frequency equation is
2T 2T ar?
| =—=+— 0
[m*m]”’Hw -

rajreddyhg@gmail.com

Department of Aeronautical Engineering, GCEM, Bangalore



iv) Procedure for amplitude ratio, mode shape etc. refer Example 6.5.

6. Determine the differential equation, natural frequency and the amplitude ratio of the system shown
in below fig.

78 (/7 s rawaray 7

T e e e i g

Solution :
i) Differential equation

Assume the rod is stiff and initially vertical, Let the system be given a small displacement and the
displaced position is shown in Fig 6.29b. The free body diagrams are shown in Fig 6.25c. For small angle
sinfl=Band cos O =1,

|
E | |
§ K |
E I R

m‘l

[

I
; |

[ m,

(a) (b) ] x | fsin®
“___m_,i_ {Invertion forca)
kx 0
<« R-— e
Tcosey @
TT in
m sin
1E;Tsinl:'.i'
Tcosb
m]
m,g
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Consider massm,
From the Newton's second law of motion
mE = —ke+Tsin@
e, mx +ke=T8 =0
From Figure 6.29 ¢
TcosB
coom X +ky—m g8
Consider massm,
Displacement of mass m, =x +{sin8 =x+10
From Newton's second law of motion
m, (% +1§) = -Tsin8 = -T9

mgiie., T=mg
0

]

I

omyY +mie +mgd = 0
ie, ©+10 +g0 =0
Equations (1) and (2) are the differential equations of motion.
ii) Natural frequency
Let the solution of equations (1) and (2) be
x = Asin{o¥ +¢)
6 = ysin (o +¢) _
S = —A W sin (@ +9); B =-yo!sin (o +0)
Substituting these values in equations (1) and (2)
m, (-A@’) sin (@t + §) + kA sin (¢ + ¢) —m g Wy sin (o +¢) =0
e, (-m @ +kA-mgoy =0
Sirnilarly'{—Am’} sin (@f + @) + [ {(~yo’) sin (o +§) + g wsin(ar+¢) =0

] e, ~-0A+(g-lw)y = 0 —(4)
~ For a non trivial solution of A and y determinant of the coefficients of A and y must be zero

—mo’ vk -
i -mg  g-lo’
e, (om0 +k) (g~ 1) - m gt = 0
e m o' - klo? - m g + kg —m,ge’ =0
- de, mlo'—(mg+me +k) o +kg=0

= — 0"+ = =0
k. o [' myl ml] my

~ Equation (5) is called the frequency equation

1
£+M+i)t (-E.-I-M-I--E-) "ﬁ.
ot = \omlom booml o my ) myl

2 ¥
o M me k|1 £+M+J’L) _dke
SO0 = ol md omy | 2(UE md omy ) ml
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-

1
- 1 m k 4k
oo ME me k)1 £+_=H+..._.] _dkg
> T 210 omd omy | 20T omi omy myl

Using @, and ©,* frequency of first and second mode can be calculated.

ill) Amplitude ratio
Using the equations (3) and (4) the amplitude ratio can be written as,
(-mw?+k)A —mpegy, =0

A __mg
‘4’] =my wf+k
Similarly -—mfA.ng-Hﬂﬁ} w, =0

A g - loj
7 oh

A m —lw?

L 28 _ 5 |

v| —mlmf‘l'k mf
Ay mg g —lw}

and — = 3 = 2

7. Determine the natural frequency of the system shown in below fig

or

Determine the natural frequencies of the system shown in below fig
K1 =40 kN/m

K2 =50 KN/m

K3 =60 KN/m

m1 =10 kg

m2 =12 kg

rl=0.1m

r2=0.11m.
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Fig. 6.30

Solution :
The free body diagrams are shown in Fig 6.31.

The torque equation is /@ =ZT
18, =~k;r,8) ro—k (r, 0 -r8)r
ie., 1,0, +kr+kr?)0 ~krr,=0
Similarly 1,8, = —k,(r,0,-r8)r,~(k,r,8)r,

Le. LB, +(kr+kr)0,~kr r,8 =0

k1 r, H‘l k! "191"{1'5"

et kat. ©,

Fig. 6.31
Let the solutions of equations (1) and (2) be

8, = y,sin{wr+¢)
W, sin (@f +¢)

TSP
]

8, = —y,0 sin (0 +9); 6, =-y,0 sin(w+06)

Substituting these values in equations (1) and (2)
I (<, @) sin (o + @)+ (k r* ke, 7))y, sin (o + @) -k, 7, v, p, sin (or+¢) =0

:'E e, [~ o' +kri+k,r) )y ~krry =0 weee (3)
- Similarly 7, (—y, @) sin (0 + 0) + (k, 77 + k, 1,2 W, sin (0 + )~ k, 7, F, W, sin (or +$)=0
I A Y g o e | @)

. Foranontrivial solution of y, and y, determinant of the coefficients of , and y, must be zero.
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Le_l f|ml +(k1r|2 + kzrll) "'Il'-lﬁrz J -0
|

_kzl"ll"z —Ilﬂ]z +(k2rzz +k3rf
. e, [~ @+ (kri+kr?)) (-, +kr)+kr D))= (k,rr)=0

e L' =107 (k,rt+ ko) — Loy (ke + ke )+ (ke 24 kgr ) (e + k) = (kg r, Y =0
ey T - (ke + LR+ Lk + LR @

+kkrirt +kk ot + ke e+ ki - k=0
2,2 2,2 2,2
2 2 [ i Ly
2 2
. 1| ks +hyry L +hyr +1 kyri +kyry N ko’ + kot
b L w=a g, I 2 1 2

b
(kl.&zrlzrzz + |l'|k3rlzr22 +k=l'3r|2rzz)

hi,

E_ Using @’ , frequency of first and second mode can be calculated.

8. For the system shown in below fig. find the natural frequencies and amplitude ratios. Given
m1 =10 kg, m2 = 15 kg, K =320 N/m.

i =%
- K
m, WwwW—1 Mg

7777 77770 71/¢ 7 777 L ¢/ 72°¢

> 1, > 1,

Mo —AWWW—]  m,
FLE T R R T T T A T e i iddid
Fig. 6.43

Solution :

(i} Equation of motion
The free body diagrams are shown in Fig.6.44

m,  fe——k(r -1;) ko, —x) =—— ™
Fig‘ JI# .:'
The equations of motion are obtained from Netwon’s second law of motion. Considering the free i
diagram shown in Fig. 6.44
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m Xy = = k(x-x)
my X+ kx, —kx,=0
Similarly, my Xy = ~kix,-x)
my X = ke +ke,=0

Equations (1) and (2) are called the differential equations of motion for the given system.

(if) Frequency equation and natural frequencies
Let the solution of equations (1) and (2) can be written as

x, = Asin (ot +¢) and x, = B sin (o¢ + ¢)
where, A, B and ¢ are arbitrary constants.

Now, & = Aw cos (@1+6) ; &, = - Aw’ sin (af +0)

Xy = By cos [mt+¢) i Xy = ~ B’ sin (m!+¢}
Substituting these values in equation (1) and (2)
(m,) (~A®®) sin (wr+) + kA sin (o +¢) 4B sin (0r+0) = 0

ie, (~-mo’+k)A-kB=0
Similarly,
(m;) (~Bw?) sin (o +6) — k Asin (01 +06) + k Bsin (wr+¢) =0

ie, (— my° +k) B-kA=0 —(4)

Equations (3) and (4) are homogeneous, linear algebraic equations inA and B. For a non trivial solution
of A and B, the determinant of the coefficient of A and B must be zero.

r—m,m“+.&) —k J L,
—k (~mye® +k

Expanding the determinant

(- m@? +k) (~my0® +k) - k7 =0

i, + mme® —m ko® -mko® +k* -k =0

Le, mmy o —(m +my) ko' =0

ie., @ -[M] kw? =0 —(5)

Nty

~ Equation (5) is called the frequency equation
“Equation (5) can be written as

daErie

e, 0'=0 or mz—(m]k=ﬁ
ny my
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1D+15
= 7.303 rad / sec
® =0 and @, = q m,m-z d Iﬂxl

. Natural frequency of first mode f, = —I w, =0

1
Natural frequency of second mode /2 = h 2= 2_

[10+15

)—ll 62 Hz
10x15

Amplitude ratio and mode shapes
Using the equations (3) and (4), the ratio of amplitudes of motion can be written as

A k _-u;mfu

B ~m n,[-hl: k
A A cmo ek
B, = —m otk k
. . A _ k k -l
~ Amplitude ratio of first mode 3, -mlml+k = otk
3
Amplitm:hmiuufmundmhb- + 20 -

B, -m @itk  —{(10)(7303) +320
The normal mode of vibration corresponding 1o @] can be expressed as
Al (A 1
Hix) = {n‘}'{lm}’{r}
The normal mode of vibration corresponding 10 m? can be expressed as

o= {ut i at =t = )

¢,(x) and ¢,(x) are known as the modal vectors or eigen vectors of the system. The mode
first mode and second mode are as shown in Fig. 6.45 (a) and (b) respectively.

1.5

(b) Second mode shape

(a) First mode shape
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9. Determine the frequency equation and the general solution of the two degrees of freedom torsional
system shown in below fig.

N\
I T N
K (ST ez N

Let k = Torsional stiffness

et R LR

1
I, = mass moment of inertia of rotor 1 = = m, n

1
! = mass moment of inertia of rotor 2 = 5 m, ’1:

Let ©, and 0, be the angular displacements of rotors 1, and |, respectively.

The free body diagrams of the two rotors are as shown in Fig. 6.48.

l,__©
ks, k.(0,-8,) k,;(0,-8,)
!
|
Fig, 6.48
From Newton's second law of motion (Torque equation)
16 = ITor M
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Consider first rotor
r|-.e.l'|

ie.d 8 +k +k)8 -k,
Consider the second rotor

n

~k 6,~k,_(6,-0,) if8,>6,

0

l ﬁ: 'kaﬂ: ""t.:wz' Hn}

1

LO,+ (k +k)0,-k8 =0
Equations (1) and (2) are the differential equation of motion of the system.

Assuming the harmonic motions of /, and /, at the same circular frequency o and at the smmue
@, the solutions of equations (1) and (2) can be written as ;

6, = w,sin (o¥ +¢) and 8, =, sin (@ +§)

-

El] = —w,nfsin(mrﬂnmd ﬁz=-wzm‘sin{m¢+¢]
Substituting these values in equations (1) and (2)
{ [—\p,m’}siu(nr+¢)+(k +k,}w,sh:(m+¢}—kﬁq:,uin{mr+¢)=ﬂ
1n.{~fﬂf+[k +k }}w, k \|J, =0
Similarly, /, {-lr:m’)sm{mt+¢}+(k +k }wlnin(mrw} -k, qrfsm (e +§)=0
ie., {— Im’-r-(k +k }lw} -k 1;,
For & non trivial solution of W, and v, dctermmant of the coefficients of , and y, must be zero,

-1’ +k, +k,) —ky,
~k ~Lo* +(k,_+k,)

;

=0

Lew (1, 08+ (k, +k)) (L 0+ K, +k)) = ki =0

e 11,00~ 1,07 (K, + k)L, 07 (K, +k )+ +k) (k, +K)— k) =0

1
e L@ (1, (k +k)+1 (k +k ) o vk k +E K + k3 + k&, — kiy =0

k.- +kt, k:. +kt— ] 1 ['t: ’tt +k: 't: + kl kr }
) B b + L lw® + L _fz i | 1 h =0 e i(5)
IJL.{D‘ [ !1 ! . fﬂz

e Mha kv ] [I:,JH:,. +k,1+k,1] 4(:: k, otk k, +k.,k.,] —©

Equation (5) is the frequency equation of the system.
From equation (6) the two values of circular frequency @, and w, can be obtained.
Using the equations (3) and (4) the amplitude ratio can be written as

v, k,, Lot +(k, +k,) 1 ;
R T k, =% Y
Vi ke, ~ 1w} +(k,, +k,:] 1 .
Vo = —heltlk, k) T k,, =2, —(8)
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normal modes of vibration corresponding to ) and @3 can be expressed respectively.

Wi Vi o
$® = {Vn} -{1-1‘4‘11} ' )

{‘Fu} ={ Viz } (10
¥nl o [A2Vi

The vectors ¢,(8) and 8,(6) which denote the normal modes of vibration are known as the modal vectors
or eigen vectors of the system.

The general solution of the equation of motion is composed of two harmonic motions of frequencies @,
and ,, they are the fundamental and first harmonic,

0.(6)

o8 = g sin(@f+6)+ W, sin{at+,) -}
B, = Y, sin(@g+$)+ Y, sin (@1 +$,)
= AW, sin(@7+0)+Ay, sin(ot+g) ——{12)

- where W, /., ¢, and ¢, are arbitrary constants. These constants can be evaluated from the four initial
~ conditionsB,(0), § ,(0), 8,(0) and § ,(0).
If the arbitrary constant ,, is zero in equation (11} and (12), then the first mode will exist. Hence the
equation becomes

6 = y, sin{ws+0)

B, = Ay, sin(@f+d,) —=(13)

If the arbitrary constant y, | is zero in equation (1 1) and (12), then the second mode will exist.
equation becomes,

8, = w,,sin (@, +0,)
8, = Ay,sin(as+e)
Fig. 6.49 shows the mode shape diagram.

*F' 11'11

First mode shape Second mode shape
Fig. 6.49

10. Prove the angular displacements of the two rotors are inversely proportional to their inertias.

The Fig 6.60 shows a geared system in which rotorA on one shaﬂ.is connected throughy
'E" and gear wheel F to the rotor 'B' on the second shaft. This system is replaced by an
system as shown below. .
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Shaft

J E
A <
t
Rotor Biion
L N Shaft 2[ |
/ Rotor B
dy
E“’ P 1 o,
- - — B’
A i
U
de=d,, | dy=d, Equivalent shaft
LI
U |

L e b y 3 &
L N

While replacing an equivalent shaft, the following assumptions are made,
i) The inertia of the gears and the shafts is negligible
ii) The load is within elastic limits of gear teethi.e., they are rigid.
iii) No backlash or slip occurs in the gear drive.
Let d,and d, = Diameter of the shafts 1 and 2
{, and [ = Length of shafis 1 and 2
I, and J’ = Mass moment of inertia of the rotors A and B
O, and ®, = Angular speed of the rotors A and B

ratio = Speed of pinion £~ @,
G = ©% "Speedof gear F

d_ = Diameter of the equivalent shaft = d,

I, = Length of the equivalent shaft
1, = Mass moment of inertia of the equivalent rotor B
. The systems are equivalent preferably,
':'1 K.E of the original system is equal to that of equivalent system
il Strain energy of the original system is equal to the strain energy of the equivalent system
{A) Equating Kinetic energies
K.E of original system = K.E of section [, + K.E of section [,
K.E of equivalent system = K.E. of section /, + K.E of section /;
- K.E of section I, = K.E of section [
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Wp
2
I = ;‘,{E?—J since Gearratio G = —*
w, #
A A et (65.1)
i B G
(B) Equating strain energles
. Strain Energy of section /,' = Strain Energy of section /,
& l i l E - E
ie., ET' 6, = ET!BE 7™
G"FIB f " GJE X _ .:.[..T_
Y 0',.0 = A 0,0, o 0=
« N e N N p
' = IZ‘ ~B—’ ..—{A =f= % d—g—] " 3:@;;}:—&
: 8, ) Js o, ) \dy ] 32
32 4
= ',2 — Eﬁ' ¥ msl=m4;dul=d4
ml) dl :
Y
e !2' = tl.[‘“‘i <Gz mm—— (5.5-2}
B/
d, ) |
. Equivalent length I, = I + l,.[d—‘J G? — (G
L

The natural frequency of torsional vibration of a geared system which has been re

two rotor system is calculated as explained below : :
Let the node of the equivalent system be N as shown in figure 6.41 Distance of the nod
rotor A is [, and from rotor B' is /. :
Since f

1 GJ-,_
e\, 0, J'I'

!.-t I, = Iy Iy T
Also | +1 =1 | -
From equations 6.5.4 and 6.5.5, the values of /, and /' can be calculated. :

When the inertia of the gearing is taken into consideration, then an additional rotor
dotted in Fig 6. 60] must be introduced to the equivalent system at a distance /| from the o

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



!
The mass moment of inertia of this rotor is given by I,'= 1, + G—’; where 1, and /, are

moment of inertia of the pinion and gear wheel respectively. The system then becomes &
rotor system. =

11. Design a dynamic vibration absorber and show that in order to reduce the amplitude of main system,
exciting force must be equal to spring force of absorber system.

or
With help of suitable sketches illustrate the working of: (i) the Dynamic Vibration Absorber and (ii)
Dynamics of reciprocating engines.

Dynamic Vibration Absorber
(VTU, June/July 2009, May/June 2010, June/July 2011, Dec, 2012, Dec. 2013/ Jan. 2014, June/ July 2014, Dec., 2004/ Dec., 2015)

. A dynamic vibration absorber is a single degree of freedom system, to which is attached
another single degree freedom system as an auxiliary system, thus it wl}l ﬁansfarrq the whole
gystem into a two degree of freedom system, having two natural frequencies of wbranun'. One of
the natural frequencies is set above the excitation frequency while the other is set below it so that
* the main mass of the entire system will have very small amplitude of vibration instead :nf very large
; uplitude under the given excitation. Fig. 6.75(a) shows a schematic sketch of a spring mounted
' dynamic absorber. The equivalent system of the dynamic absorber is shown in Fig. 6.75(b).

. Spring mass system k, —m, is the main system and spring mass system k, —m, is the auxiliary
 or absorber system. The equation of motion for this system is,

m, % = - kx, —kx—x)+ Fsin o

ie, m % + (k + k) x, - kx=Fsoo¢ 6.6.10
mz;f]_ = - k} {.xz, - II)
ie., mx, + kx, —kx, =0 —-= 6.6.11

Let the solution of equations 6.6.10 and 6.611 be
x, = Asin¢; x,=Bsinwf
oo% = —A @sin o x, =— B’ sin of
Substituting these values in equation 6.6.10 and 6.6.11.

K,
Foioat] [ 1,
k,
= 1y
v Fie. 6.75 (b)

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



m, (A o sin @) + (k, + k) (A sin o) - k, B sin o = F_ sin of
e, [-me’ + (k + kJ)JA-kB=F, orees
Similarly m, (- B sin wt) + k, B sin of - k, A sin of =0 :
ie,(-ma +k)B-k,A =0 — O
It can be written in matrix form
~mw’ +(k, +k,;) —k, A F

AN [ YK -
Equation 6.6.14 can be solved for the amplitudes A and B

Fo ~k;
O -m,m’ +ky

* - 2 "‘(t: + tII -*:
-k, -mye’ +k,
Foer ~my’)
mym0* = (myky +myk, +myk, Jo’ +kk,

—— ]

e’ + (k4 k) r-|

| "'-tj . 0
Similacly 3 = myor +(k; + ;) —k;
-k, (—mz + i:;)
= Foky e 6.6.16

o — (myk, + mok; + mok, Jo + kik,

To make the equations 6.6.15 and 6.6.16 in the dimensionless form, divide the numerators and
' denominators by k k,

L.

Let A = Zero frequency deflection

’k
W, = ";: = Natural frequency of the main system alone.
k,
w, = ;2" = Natural frequency of the absorber system alone.

" . :
w = = =Ratio of the absorber mass to the main mass
1
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A ®;
A, T o o o —— 8817
— 5 —|(I+p)—+—5 |+]
o) w} [( u)mf mJ
B I
A" = m4 mz mz """ 6-6-18
[(1+u)—+—]+l
2
o w’ o o

3 when ® =w,, A= 0i.e., when the excitation frequency is equal to the natural frequency of the
_E* sorber, then thc main system amphlude is zero even though it is cxcued by a harmonic fan.e It

'1 rations, then a secondary absorber system having its natural frﬂqucncy equal to the operating
#- pquency can be coupled to the main system to reduce its amplitude to zero.

_&
....Al k
Now whenw = @,B= —%5 = ——1— = _h
o m Kk m
'“7‘12 m m‘l ky
. F,=-Bk, e 6.6.19

. le., the spring force Bk, is equal and opposite to the exciting force on the main mass, resulting
no motion of the system, Since the main system vibrations have been reduced to zero and these
vibrations have been taken by the absorber system, it is called vibration absorber. This undamped
dynamic vibration absorber is also called as Frahm Vibration Absorber.

For more effectiveness the operating frequency of the absorber must be equal to the nafe
frequency of the main system, i.e., m, = ®, or k,/m,= k /m . Under this condition the absc b
called tuned absorber. 3

.~ For a tuned absorber,

2

®
1-=

A mz
A = 4 2 "
SR AT "

@, W,
...'E_. l ¥
A, T o > B
—_—— (24 p)—+1 1

~ ( u}mi

A '
The amplitude ratio = will be infinite if the denominator of the above equations are

A
4 2

I ¢ PATH L
W, w;
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(&) (e

<)

Using the equation 6,6.22 the two resonant frequencies can be calculated. Also on the
of equation 6.6.22 a plot has been shown in Fig. 6.76. It shows the effect of mass ratio on
natural frequencies of the system. For each mass ratio there are two natural frequencies which ¥

I
—_——
+
L N =
[

H
e
+
'S ;_":N

above and below the natural frequency of the main system. For smaller value of mass ratio -

the two values of frequency are found closer to unity i.e., 0= ©,.

2.0 ]
1.5 —
w 13//ff
®, \
e ——
0.5

0 0.2 0.4 0.6 0.8 1.0

e

m
Fig. 6.76

Dynamics of reciprocating engines

o Effect of static and kinetic forces of reciprocating parts

e Static forces arise due to weight of reciprocating parts as well as due to variation of fluid pressure on
account of expansion or compression. (1.C engines)

e Due to reciprocating or to and fro motion, each member is subjected to varying acceleration at its
different positions. This leads to varying kinetic forces from instant to instant.

e The above variation of fluid pressure and kinetic forces for every position of crank leads to non-
uniform development of torque and work. This necessitates use of flywheel in reciprocating engines
to limit fluctuation of speed.

A, G /

’ \
- F [ N,
1
A 7T A /
% A

Yy AN -

X - -
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Velocity and acceleration of piston:

* x=displacement of piston from inner dead centre
* r=radius of crank

* [=length of connecting rod

o n=l/r

.x:r[(l—cos ISF)Jr(ﬁrz—\/m2 —sinzf?)]

If the connecting rod were infinitely long, then

n— \/n > —sin © @ will become zero.
x=r(l-cos #)a S HM

Velocity of piston :

dx ( sin 26 ]
Vv=—=@r| sin @ +
dt 2\/n2—5in29

sin 26

= a)r[sin 6 +
2n

)forn =4 or Sas sin*@<1

if n 1s infinitely large,

v =wrsin @ asin S.HM
Acceleration of piston

f= @ = a}‘zr(cns O+ cos 26)
dt n
at@ =0’
f= mzr(l - l]
n
at 8 =180°

f = or(-1+)
n
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Part — B Questions
1. Determine an expression for the general solution for lateral vibration of string.
2. Derive one dimensional wave equation for lateral vibration of a string.
3. Derive one dimensional wave equation for critical vibration of a string.
4. Derive the general solution for vibration a string

5. Determine an expression for the free longitudinal vibration of a uniform bar of length I, one end of which
is fixed and the other end is free.

6. Derive the governing differential equation for transverse vibration of a beam.

7. Derive an expression for torsional vibration of a uniform shaft.

8. Derive the frequency equation of longitudinal vibrations for a free-free beam with zero initial displacement.
9. Derive an expression for the free longitudinal vibration of a uniform bar of length “L’ which is free-free.
10. Find the frequency and normal modes of transverse vibration of a simply supported beam of length L.

11. A bar of length | fixed at one end is pulled at the other end with a force P. The force is suddenly released.
Investigate the vibration of the bar.

12. Derive 1D wave equation for torsional vibrations of a uniform shaft
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