Theory of Vibration - 18AE56

Old VTU Question’s Answers
Module -5

Syllabus:
Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell

reciprocal theorem, Dunkerley’s equation. Orthogonality of principal modes, Method of matrix iteration-
Method of determination of all the natural frequencies using sweeping matrix and Orthogonality principle.
Holzer’s method, Stodola method.

Part — A Questions

1. Write a short note on influence coefficient.

~ An influence coefficient, denoted by a, is defined as the static deflection of the system at
on ‘i’ due to an unit load or an unit force applied at position ‘j’of the system when this unit
d or force is the only load or force acting on the system.
Inthe case of torsional systems a, means, the angular displacement at coordinate ‘i* due to an
it torque applied at coordinate ‘J’.

For a ‘n’ degrees of freedom system, the number of influence coefficients will be equal to n’.
wever only n(n+1)/2 will have different values since a, = a,.

The determination of influence coefficients are required while writing the general
equations of motion in matrix form.

In matrix form, it is called flexibility matrix and is denoted by |A).

r
ayy a|z a” ............. a,. .1

For a multi degree of freedom system [A] =

2. State and prove Maxwell’s reciprocal theorem.

Maxwell's reciprocal theorem states that in a vibrating system, the deflection ata
due to an unit load or an unit force applied at position ‘j* is equal to the deflection at
due 1o an unit load or an unit force at position i.

LC., av = a,‘

Proof :

Consider a simply supported beam carrying two concentrated loads W, and W, as
Fig7.1.
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The four influence coefficients are a,, a,,, a,, and a,, . It is necessary to show that a,

w=w v

in order to prove Maxwell’s reciprocal theorem. Now consider two cycles. For the first
W, first and then W,. When W, is alone at position (1), the influence coefficients are a,,
Potential energy =% W/ a,..

Now if W, is applied at position (2).meaddinmlmetgyonhcsym--2- Wia,+W,

| 1
.% Total energy of the system = 2 W a,+ 2 Woa, + W, (W,a,
For the second cycle, apply W, first and then W,. When W, is alone at position (2), the

1
coefficients are a,, and a, . Potential energy = > Wia,,

' 1
w if W, is applied at position (1), the additional energy of the system = 3 Wi a, + W,(Wa,)

1 1
=« Total energy of the system = = W.ra, + 2 Wla, + W, (W, a,)

Since the condition is same at the end of both cycles, the total energy of the system must
the same. Therefore by equating the two total energies, we get a,, = 4@, Hence proved.

3. Determine the influence coefficients for the system shown in below Fig. Take m1=m; mz=2m; mz=
3m; li=h=Ilz=1
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m =m
m, =20
m,=3m
l,-l,-l,-l

Fig. 7.2

Pmm definition influence coefficient a_ is the deflection at the position “i* due to an unit force applied
'j’. For a three degree of freedom system, there are nine influence coefficients. They are a, . a,,,

Gy Gy Gy, @y Gy, AN

(a) Apply an unit horizontal force to the mass m, as shown in Fig 7.3 (a). For the equilibrium o

(a)

Fig. 7.3

T, sin®, = 1
T, cos8, = mg+meg+mg=g(m +m,+m,)

Equation (i) divided by equation (ii) gives

1
‘anel = 8('". +M2 +ml) ‘
Since 8 is very small, tan®, = sin8,
1
sin®

R T
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From the configuration of the system,

a
sin@, = T:L

' P 3
glmy +my+my) = 1

i.e.,

l l !
4
= glmy +my+my) = glm+2m+3m) = 6mg

_From the geometry of the system, ¢, =a,, =a,,
By Maxwell's reciprocal theorem, @, =a,, anda, = a,,

 (b) Apply an unit horizontal force to the mass m, as shown in Fig 7.3 (b)

For the equilibrium of mass m,
T,sinB, = | eeee (i)
T,cos0, = mg+mg=g(m,+m,) e (iv)
- Equation (3) divided by (4) gives,
1
(and, = “g(my +my)

- Since 6, is very small, tan®, = sin6,

1
sind, = —g(m, +my)
Due to the unit horizontal force at mass m,, let.x, be the additional displacement of mass m,. Therefore
m the configuration of the system,

sind,

|

B
T oglmy+tmy) T b

L3R N
glm, +ms)

e, x, =

] b,
Sy = Ayt glmy 4my +my) b g(my +my)
l 1 1.l
= g(m+2m+3m) ¥ g@m+3m) = 6mg * Smg = 30mg
From the geometry of the system, a_ =a,,

By Maxwell’s theorema,, =a,,

(¢) Apply an unit horizontal force to the mass m, as shown in Fig 7.3 (c)

For the equilibrium of mass m,
T,sing, = | weeme (V)
T,cos8, = mg —emee (V1)

Equation (v) divided by equation (vi) gives
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1

tan@, = a8

Since 6, is very small, tan®), = sin,

configuration of the system.

X
sing, = 7=
3

e s
13

o
P
n

b
2 mg

h b b

G = Ut % = o(my +my +my) + g(m, +my) ¥ myg

I { ! 21 7
T 6mg i Smg X 3mg = 30mg = 10mg
Hence the influence coefficients are,

!
Gy B0 B0 =05 Myt 6_m;
11!
42=%=% = 30me
"
% = 10mg

4. Determine the influence co-efficient of the triple pendulum shown in below Fig.

A

Due to the unit horizontal force atm,, let x, be the additional displacement of mass m, . Hence from the

W
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Apply a unit horizontal force to the top most mass in as shown in Fig 7.5 (a)

la) (b)

Fig. 7.5
For the equilibrium of mass m
T, sing, = 1 (i)
T, cos®, = mg+mg+mg wemes (i)
Equation (i) divided by (ii) given,
Lo
tand, = g
Since 0, is very small, tan®, = sin@,
1
sin@, = _;‘;
For the configuration of the system,
sin, = ‘%‘
: L
i.e., I i
=8
G = Ing

From the geometry of the system,a  =a, =a,
By Maxwell's reciprocal theorema, =@ anda, =a,,

o (b) Apply an unit horizontal force to the middle mass m as shown in Fig 7.5 (b). For
§ mass, o

T,sin6, = 1
T,cos6, = mg+mg=2mg
Equation (iii) divided by (iv) given,

tan@, =

3|~

Since 8, is small, tan@, = sin6,

1
o sinO2 = m
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From the configuration, sin8, = —~

I
g T SR Y
1Le., 2mg = ‘
by
xi = 2’"8
i i 5

Nowa,=a, +x, = 3mg + 2mg = éms
From the geometry of the systema,, = a,,
By Maxwell’s theorem a,, = a,,
st ~
a22=a23=a32 = 6mg 3
(c) Apply an unit horizontal force to the lowest mass m as shown in Fig 7.5 (c). For the equili
this mass,
T,sin®, = 1
T, cos0, = mg
Equation (v) divided by equation (vi) given,
1

mne3 = e

Since 0, is very small, tan6, = sin@,

1
sind, = E
From the configuration,  sin®, = x—;
1
ie, — = 2
mg I
A
G T mg

ik akar s g

/ == = > el
Nowa,=a, + mg 6mg mg 6mg
Hence the influence coefficients are,
!

=" 0T %% % T Amg
51

D= 0n=% = 6mg

11U

all:! = 6mg

5. For the system shown in below Fig, determine the influence coefficient

A
/| Ca >

1 3k —— WETI . il
/'—V\M_ le ~9—M }M

/

ETT T 7T T 77 /@Q/_?%
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Fig. 7.12
§ Assume an unit force is applied to the mass 4/m as shown in Fig 7.13 (a).
Unit force
_
O] @ ®
3k k k
am  WWWW— 2m AWM m
% ® &
: Fig. 7.13 (a)
Deflection at position (1) due to an unit force at position (1) is a,,
1 : Force
a, = = (- Deflection = Stl-fnt” )
Due to this applied unit force at position (1), the masses at position (2) and (3) will alsol
by the same amount.
1
a, = ay=a,= =
wherea, = Deflection at position (2) due to the unit force at posi
a,, = Deflection at position (3) due to the unit force at posi
By Maxwell's reciprocal theorem,

ur
a,=a,= :—*1" and a,=a,=

Nowapplyanunitfmamm%u;huwninmitfmﬁg?.ﬂ(b)
Unit force

D @
3k

am  AMWWWAH 2m AW
w9 D

Fig. 7.13 (b)

For the position (2), the two springs of stiffness 3k and k are in series and hence their equ
stiffness in given by,

e
T &

k
-

n
| -

= Bl=-

Deflection at position (2) due to unit force at position (2) is a,,
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> vl
an = l, = —&—
Dunmmhq:pﬁedmhfmupodﬂma).uwmummwﬂldso
same amount, .

I}

4
92

N
By Maxwell’s reciprocal theorem

4
Gy, = 0u" 3

Apply an unit force at mass m as shown in Fig 7.13 (c),
Unit force

k k

@ @
am MWW~ 2m

%

COULNANANNNNNNAY

Fig. 7.13 (c)
For the position (3), the three springs of stiffness 3k, k and k are in series and their
equivalent stiffness is given by,

W

|-
+

n-
~
1]
| —
n
%]~

<2 2l-

k

L

Deflection at position (3) due to unit force at position (3) is a,,

1}
.k'l R

®|~

Ayy

Hence the influence coefficients are,

a,=a,=a,=a,=4a, =

8
)
I
8
=
B
"
B~ &ls 8-

@

6. Find the flexibility influence coefficients for the system shown in below Fig

>, > Sy * >3

K o2 3

Solution:

Approach: Use the definition of k;; and static equilibrium equations.
Let x,, x5, and x5 denote the displacements of the masses m,, m,, and m,, respectively. The
stiffness influence coefficients k;; of the system can be determined in terms of the spring stiffnesses
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A
b
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my  — IH\— myz —'I:I[]‘— M3

(a)
l—’— Y = 1 l—’-.rz— 0 I—PT'JJ— 0
ky ky ks
m O m O s
_— — —_—
kyy key k3
(b)
kyx; ko2 — xp) ki x3 — x3)
L S P = - 1y
_— —_— —_—
kyy ko k)
(c)
- IIID _‘L’2: _I’J:ﬂ
ky l_» ks l_b ki l_»
—_— —_— —_—
kia ks ks
(d)
kl_rl kz(x_ Xl} k'.s(IJ_ X2
e " - m, | Ic+ My
—_— T — : —_—
ki Ky ks
(e)
:/; . }—»x,:k ’—D-I‘;_: L ’—»-g:
A 1 2 3
2 - E— —
kis ks ka3
(1)
7
;‘J—' kyxy ko2 — xp) k23 = x3)
/‘ _ nil _ﬂ fﬂz _k m3
é — — ! —_—
ki3 ks ks
(g)

FIGURE 6.6 Determination of stiffness influence coefficients.

ki, k>, and ks as follows. First, we set the displacement of m; equal to one (x; = 1) and the dis-
placements of m» and ms equal to zero (x» = x3 = 0), as shown in Fig. 6.6(b). The set of forces
ki (i =1,2,3) is assumed to maintain the system in this configuration. The free-body diagrams of
the masses corresponding to the configuration of Fig. 6.6(b) are indicated in Fig. 6.6(c). The equilib-
rium of forces for the masses m,, m,, and m; in the horizontal direction yields
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Mass m: ki = —ka + kg (E1)
Mass ma: kyy = — ks (E.2)
Mass my k3 = 0 (E.3)

The solution of Eqs. (E.1) to (E.3) gives
kip = ki + ky, ky = —ka, ks =0 (E4)

Next the displacements of the masses are assumed as x; = 0, x, = 1, and x5 = 0, as shown in
Fig. 6.6(d). Since the forces kj» (i = 1, 2, 3) are assumed to maintain the system in this configura-
tion, the free-body diagrams of the masses can be developed as indicated in Fig. 6.6(e). The force
equilibrium equations of the masses are:

Mass m: ko + ky = 0 (E.5)
Mass Hiql Iijﬁ - IL'3 = IL'E {Eﬁ)
Mass ms: ks = —k3 (E.7)

The solution of Egs. (E.5) to (E.7) yields
kia = —kz, kaa = ky + ks, kzn = —k3 (E.8)
Finally the set of forces k;z (i = 1, 2, 3) is assumed to maintain the system with x; = 0, xo = 0, and

x3 = 1 (Fig. 6.6(f)). The free-body diagrams of the various masses in this configuration are shown in
Fig. 6.6(g), and the force equilibrium equations lead to

Mass my: ki3 =0 (E.9)
Mass ma: kaz + k3 =0 (E1()
Mass my: k33 = kq (E11)

The solution of Egs. (E.9) to (E.11) yields
ki3 =0, koy = —ky, k3 = ky (E12)

Thus the stiffness matrix of the system is given by

(ky +ka) —ky 0
(k] = | =k, (ky + k3)  —k; (E.13)
0 —k3 ki

7. Explain Dunkerley’s method.

This method is semi-empirical which gives approximate results and it is used when the dias
of the shaft is uniform. According to Dunkerley’s method a shaft subjected to number
loads and udl is,

TR AL :
et L A U e
2 f,: f"f 2 (7.6.1)

1
—f'"'z- =
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W

W, w, s
l | I m kg:unit length

L , ]

| ol
Fig. 7.26
Let W, W,, W, etc., = Concentrated loads at different points along the shaft.
m,, m,,m,, etc., = Corresponding masses of loads W, W, W, elc.
S, = Natural frequency of the shaft subJected to number of point
loads and w.d.l.
f"l = Natural frequency of the shaft due to load W, alone.
f”2 = Natural frequency of the shaft due to load W alone.
f"3 = Natural frequency of the shaft due to load W alone.
f,., = Natural frequency of the shaft due to u.d.1. alone

6, = Deflection of the shaft under the load W, due to W, alone.
8, = Deflection of the shaft under the load W due to W, alone
8, = Deflection of the shaft under the load W due to W alone
8, = Deflection due to ud! alone.
04985 '

= Hz or f,=— Hz

G a5
{ 04985

- H, i e A

Sl T—-sz z or f, =3, H

04985

1
= H.
Ll

05614 ' ’
fn‘ = J.s_ Hz or fn -— 384

4
,=i.’2L, Y L
384 El mi® 384 8,

Substituting these values in Dunkerley’s equation

—17.—. 8'2+ 822+ 8’2+ ----- +—§l—2
1 04985 04985 (4985 05614
1 8 Lt 8-' :|
= 0.4985 [8‘+5’+ RETS 1.27
0.4985*
"2 - 8 Hl.
127
= 0.4985 = Hz _ T (7
‘/5, +9, +9, +-——+1~2{-’
or

= A g 5 Hz
n 5
o P JONE TR i

rajreddyhg@gmail.com
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If there is no uniformly distributed load,

04985
O, +8, +8;+———

Ji

Jidy, 8
= 2m\ 8, +8, +8,+

8. Find the natural frequency of the system shown in below Fig by Dunkerly’s method. Take E =
1.96x10' N/m2, I = 4x107" m*.

/} Mﬁ_i%ok? M, = 50}:?
4
7/

= [80OMmm
= 2006
Y 1= 306 mm ‘Plr
or
M, =100 M~=5o
4 \ w ‘% o Kg"
’,
/ |
y - -~
/L tRomm 13ommm —
/
Solution :
By Dunkerley’s method
Static deflection due to mass 100 kg
3 3
5 _mga” _ l00x9.8’llx0.18 - =24325x10%m
' 3Bl 3x196x10' x4x10
Static deflection due to mass 50 kg
3 3
g Ml oo MEIBAIN o Sodens S0
3 AEI 3x196x10" x4x10
 Natural frequency of free vibration

o o = 55.5H
To = Im\5,+8,  2mV24325x107 +5631x10° o

9. A shaft shown in below Fig. of 50 mm diameter and 3m long is supported at the end and carries three

weight of 1000 N, 1500 N and 750 N at 1m, 2m and 2.5m from the left support. Taking E = 200 GPa,
find the frequency of transverse vibration.

1Soon

|Oeor—\_1_ -1sonN

ol | @ @[]

B - -

| | i

w1 U]

e

Z.5

3y :
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im

2m

R

2.5m

3m

=
I

Fig. 7.28
S50mm = 0.05m
E = 200GPa = 200 x 10° N/m*

n
1= 2d* = Zox(00s)
= 0.3068 x 10 m*
By Dunkerley's method
Wi 1000 1% x 22
| whh
'w:i‘sfl]ﬁ%gue}a' = W= 3En T 3x200x10° x 03068107 x3
' = 7.243 x10°m
: - LAR 1500% 2% x 12
hﬂﬁ%f«m] % =Waa™ 35 = 3x200%10° x03068x 100 x 3
| = 10.864 x 10° N
750%25% x05°

2,2
deflectiondue | & _ w Wil

= 212x10"m

of free transverse

1 ’ 8
= — [=——=——=H:
Natural frequency ]f,., = 2|6, +5, +5,

oweight 70N | ' A 3ER T 3x200%10° x03068x 10 x3

vibration 1

981

21V 7243%107° +10864 %107 +2.122x10™

=3.5Hz.

10. A shaft 180mm diameter is supported in two bearing 2.5m apart. It carries 3 discs of weight 2500N,
5000N and 2000N at 0.6m, 1.5m and 2m from left end. Assume the shaft weight to be 1900N/m length.
Determine the natural frequency of transverse vibration by Dunkerley’s method. Take E = 200GPa

Or/ Similar

A shaft 180mm dia is supported at 2.5m apart. It carries three discs of weight 2500N, 500N and 2000N
at 0.6m, 1.5m and 2m from left end. Assume shaft weight to be 1900N/m and E = 200GPa. Determine

the natural frequency of transverse vibration.

—
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Solution : 5000N

2000N
L
= L x018*
= 515x 104
E 2.5m
Fig. 7.29
2,2 62 x19° '
Static deflection due § = Wa. = Wik = 2500;(06 3 - = 4.2x 107
to load 2500 N g LTSRN 3x200%507 x515%107" x 25
252 2 12 - y.
Static deflection due 5 = Wa, = i v 5002)(15 o —~ = 1.46x 10"
to load 5000 N A +8 -3EN 3%200x 10" x515% 107 x2.5

_wig 2000 2* x 05°

d = Wa

= - ; —— = 26x10
0T T 3En T 3%200x10° X515 107 X25 !

Static deflection due

|
|
|
b
‘..

to load 2000 N “
4
. CI. —§—x 1920x2 — =93x10"m
Static deflection due © T 384 EI 384 200x10° x515%107
to ud!

Natural frequency o 1 8 5

> T
of free tr'ansvcrsc 1 2% 8, +8,+8y+ 2

vibration by 127
Dunkerley’s method
1 981
= on 9a%100 AR
2 425107 4146107 +2.6x1075 + —;E_,——

11. A shaft 100mm diameter is supported in short bearing 3m apart and carries 3 discs weighing 900N,
1400N, 700N situated in 1m, 2m and 2.5m from one of the bearings respectively. Assuming E = 200GPa
and density of shaft material = 7800 Kg/m3, calculate the frequency of transverse vibration, by
Dunkerley’s method.

Solution :
7 = 200 % 10° N/m?
1400N E RPN
900N il el
& 700N /600.96 N/m length 64
T 4
—[)?1——— FREEREY b BESER BN RSN bV 4 BEE = —x(01
i i = 4908 x 10" m*
Tm |
2m =
B 55 2.5m
3 o 3m
3 Fig. 7.30

Volume x Density

3
I

(gdz]xzxp = ’:x(o.l)lex?soo

— T

61.26 kg/m length
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w = mg = 61.26 x 9.81 = 600,96 N/m length
AAA 900x 1* x2*

W o = 4.07 % 10-m
3, T T3ER T 3%200%10” x4.908x 107 X3
AR 1400x 2% x1* '
= Wa.= = = 6.33x 10"'m
O = Wity= 2Bl = 3x200x10° x4.908x 10 x3
212 2 2
S R 700’;25 0.3 —— = 1.24x10%m
o =S Ty 3% 200%10° x4.908x 10 x 3
4 4
geudiiig ol L H0I0Y - kb
T 384 EI 384 200x10° x4.908% 10
f,, = %—J & 8 HZ
1 n 3
+8, +—=
3, +8, +8; 7
e 'l il g = 1219
2% | 4.07x107 +633x1074 +124x107* + 2302X°8

1.27

12. Using Stodola’s method find the fundamental mode of vibration and its natural frequency of spring
mass system shown in below Fig. Given K1 = K2 =K3=1N/m, ml1=m2=m3 =1Kg.

Solution :

Procedure : (Formulation of Tabular column)

Step1: 5
gis:ar:::ea:g] ﬁm \5:1‘; ?:g :';llucs for deflection (unity for simplicity) to represent the m,
ie, x=1

r=lLxy=1andx =1 i
Enter the assumed diflection of each mass in the first row under mass (m) column, m,
Step2:
Determine the inertia force on each mass as below: ks
Let x,=Asinor % =Awcos o
¥ =-A@siner . ¥ =-@ x (maximum) 24
Fig. 7.32
o F o= =m, X

—m, (-’ x) = mw x,

ie., F =mwx F,=mwXx, F =max,

F =F,=F =0'C:m=m,=m,=1x =x,=x,=1)

Enter the inertia forces of each mass in the 2nd row under mass column.
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Step3:

Spring force
It is the total inertia force acting on each spring. These must be entered in the third row under sti i i
(k) column.

Step4:

Spring deflection
Each term in the the third row divided bythe respective spring stiffness is the spring deflection
these values in the fourth row under stiffness (k) column.

StepS:

Calculated deflection

These are the total deflection of each spring and are obtained by adding the deflection due 1o ¢
spring. with the mass near the fixed end having the least deflection and so on. These are entered in

fifth row under mass (m) column,
Step6:
These are the normalised values of fifth row. The entries in this step (6) are compared with the asse

deflection of step 1. The process is continued untill the calculated deflections are equal or proport
to the asumed deflections. When this is achieved the assumed deflection will represent the fundame

maode of vibration, A
Inertia force = mx o’ %
But m =m, = m,=1 andx =x,=x,=1(given)
- Inertia force = ®*
2 . Force
Spring stiffness = ——Deﬂccﬁon
Force

ing deflection = ————
Sprg demection Spring stiffness

k,=k,=k, = 1 (given)
k=1 m=1 k=1 m=1 k=1
Trial T
.. l. Assumed deflection (x) I 1
| 2 Inertia force o’ (08
| 3. Spring force kYOS 20 W’
| 4 Spring deflection RY( 2w o’
: 5. Calculated deflection 3’ 50° 6w
1 1.67 2
1
L. Assumed deflection I 1.67 2
2 Inertia force o’ 1.670° 207
;‘, 3, Spring force 4.670" 3.67a¢ 207
4. Spring deflection 4.67a¢ 367w 2’
3. Calculated deflection 4.67 0’ 8.340r 1034 0"
1 1.79 221
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m
h‘;I.nllfkssunu.sd deflection 1 1.79 221
2. Inertia force w’ L.79a¢ 2210
3. Spring force Sof 407 22100
4. Spring deflection 5 4’ 221
5. Calculated deflection 5w 9w’ 11.21 o
1 1.8 224

The calculated deflection in trial I1I are very close

to the assumed values. Hence the fundamental or First Mode Shape
1.0
principle mode of vibration is given by | 18 | and
224
fundamental natural frequency is obtained by equating 1.8
the sum of the calculated deflection to the sum of the
assumed deflections
Le, (5+9+11.21)w*=(1+1.8+224)
2.24
(.t)"l = (1447 rad/sec.
Fig, 7.33
1 1
i.e., Fundamental natural frequency f, = P S % 0.447 = 0.071Hz I

13. Using Stodola’s method, determine the fundamental mode of vibration and its natural frequency of
the spring mass system shown in below Fig.

For the formation of Tabular column refer Example 7.39

k =3k m =nm k2=2k m=2m k =k
Trial I
1, Assumed deflection 1 1
2. Inertia force me? 2 mw’
3. Spring force 6 may* 5 moy 3 mey’
: ] 6mm> Smm? Inw’
4. Spring deflection % % %
o 2mm’* ta 25mm’
R R Ay
2 45mm’
5. Calculated deflection 2":0 .
1 2.25
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‘Assumed deflection 1 225 175
Inertia force moy 4.5mw’ 11.25moy
 Spring force 16.7Sme? 1575 me 11.25me’
) 16.75m0° 15.75mw’
m deflection T %
558mo’ 787mw’ 1125mn’
a5 na k
558m0’ 1345ma’ 24.70me’
siste . A k k k
10 241 R
- Assumed deflection 10 241 a0
Inertia force may 4 82me’ 13.26mef
Spring force 19.08 may’ 17.08 moy 13.26 mw
" 19.08mm’ 1808ma’
636mn’ 9.04mn’ 1326me’
= k t _—t
; 154ma’ 28.66ma’
. Calculated deflection 636;"‘” - et
1.0 2.42 45

1.0
may be taken as {242
45

As the assumed deflections are almost equal to the calculated deflections. The principal mode of vibration

Fundamental natural frequency is obtained by equating the sum of the calculated deflection to the sum
of the assumed deflection.

ﬁm’+lsm’+m’

= 424445
X X x 14242+

o, w— = 0.156is w‘-O.ISﬁ-*-
m

fT
& o = 0395 |— rad/sec

" \m

1
i.c., Fundamental natural frequency f,, = -z—n-u),,' - 2_11:‘ x 0. 395\(: = 0063J— Hz
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First Mode Shape

1.0

2.42

4.5

Fig. 7.35

dL"K B it 2 ®
™ mr—\uzr% 3m
/ (@S
- AN N e i S T R e e i B
—> —> —>
4k 3k 2k k
m AW 2m 3m WA

(@] (@] (@) |
e

Solution :

[VTU, Dec’07/Jan’ 08, June/July * 08, Dec. 2012, Dec. 2013/Jan. 20;

Fig. 7.36

For the formation of Tabular column refer Example 7.21

k =4k

k,=3k

m,=2m

K=

m=3m

k =k

Mrial I

1. Assumed
deflection
(x)

2. Inertia
force
F =morx,

3. Spring
force

4, Spring

10mw*

10m”
4k

moy

9 may

Imm’
3k

7 mey

Tmo*
2k

3 mw’

4 mo’

4mo’

deflection

5. Calculated
deflection

- 2 5mw*

25mm’

_ 3mo’

S53mw

g 2

& 35mm*

9’

13mm?

36

52
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Fﬁnl[l
1} Assumed
deflection | 22 36 52
2) Inertia
force
F=moyrx, moy 4.4 moy 10.8 may 20.8may
3) Spring
force 37 mw’ 36 moy 31.6mar 20,8 moy
4 Spring | 37mw? 36mw’ 31.6me’ 208mew’
deflection 4k 3k 2k k
| 9.25mw 12me’ _ 158mo’
k i g
i slenlaicd 025me? | | [rzsme? 37.05mw’ 5785ma’
dCﬂCCU(Jn SR Ny | - —— k § gty = i
k k k
1.00 23 4 63
Trial IT1
1) Assumed
deflection 1.00 23 4 63
2) Inertia
force
F=mox mw’ 4.6 ma 12 moy* 252 mw’
3) Spring
force 42 8 mwy 41.8 mwy* 37.2moy 25 2my
4) Spring | 42 7me’ 418mo? 372me’ 25.2mew’
deflection —4 n 3% % p
P Caodiniod 10.7me’ 24.6mew? 432ma’ 68 4me?
deflection
k k k k
|
I 10 23 4 639
|
| 1
23 23
Assumed deflection i 4
6.3 639
x, 1
1" Mode converge 2 - =
X3 4
Xy 6.39
First mode shape

e

L Fig. 7.37

Department of Aeronautical Engineering, GCEM, Bangalore rajreddyhg@gmail.com



2

)
[1423+40+639] = "’T [10.7 424.6+43.2 + 68.4]

m
Lo 1w, %0305 1% = 00ess | %
L. Ty In " n s m— ! ;. 4

15. Using Stodala’s method, determine the lowest natural frequency of the torsional system shown in

®, = ».:;os‘{Z rad/sec

below Fig
P
2Ky 2Ky Ke
o
2T b
31
3k,
[ s 21 k, 3
Fig: 7.41
Solution :
For the formation of Tabular column refer Example : 7.24
ky =3 Lor) =1 k., =2k, L=2I k., =k,
Trial: I
I Assumed deflection (8)) 1 l 1
2 Inertia torque (T) o' 2w’
3 Shaft torque 6l Sloy’ 3o
. 6l Siw’ 31w’
4 Shaft twist ETS K, 2%, _k,
2w’ 2510
= k' = k'
2107 45l0°
5 Calculated deflection X %
! !
1 225
Trial : I
1 Assumed deflection 1 225
2 Inertia torque (O3 4510
3 Shaft torque 16.7510y 15.7510 11,251
20 16751 15.7510* 11.2510°
4 Shaft twist 4%+ Sk k. Lok k, k,

Department of Aeronautical Engineering, GCEM, Bangalore

rajreddyhg@gmail.com




55810’ 787510’ T;
= I(' - k‘ a1
5.5810> 13,455/ 2470510’
5 Calculated deflection TV i k
k, k, T
| 241 443
Trial : ITI
| Assumed deilection | 241 443
' |2 Inertia torque Iy 4821w’ 13,2910
- |3 Shaft torque 19,1 110y 18.1 1e? 132910y
f _ 19117w° 18.1 1iw? 13.29/0°
: 4 Shaft twist 3 2%, k,
' 637" 9.05510° :
= R
6.3710° 15.42510* 28.71510°
5 Calculated deflection = g =y
k, k, k,
1 242 4,50
Trial : IV
| Assumed deflection | 242 45
2 Inertia torque loy' 484100 13510’
3 Shaft torque 19341y 18341y 13510’
N 19.34/w’ 18.341w° 13510
4 Shaft twist 3%, 2%, k
6.451w° 9.171w*
= k‘ = k'
6.4510° 15.6210° 29.1210°
5 Calculated deflection % _k— _Ic—_
td ! !
I 242 451

The calculated deflections in trial IV are very close to the assumed values. Hence the fundamental mode
1

of vibration is given by 2.42
4.5]
645l0° 156210° 2912/
The fundamental or least natural frequency is X ol . A =1+242+451
T ! 1

~3
ie, 5119 _l:- = 7.93

6.4510°
OI"—-l
k,
Ak
Lo’ = =05 7

j il.com
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fk rad
Lo, = 0 i e
o @y 0.394 e |k _

First mode shape diagram similar to Fig 7.39
Part — B Questions

1. Determine the natural frequency and the mode shape of the system shown in below Fig by Holzer’s method.
ml=2Kkg, m2 =4Kkg, m3=2Kkg, k1 =5N/m, k2 =10 N/m

1\

b
= =

2. Using Holzer’s method, determine the first two natural frequencies of the system shown in below Fig.

L

BLS
1 1T

—

A
[ ] 8T

Ky
r —13T

3. By Holzer’s method, find the natural frequencies of the system in Fig Q10. Assume K = 1N/m, m= 1Kg

3K

™m

4. Determine the natural frequency of the system shown Fig 9(b) by Holzer method. Given J1 =J2 =J3 = 1Kg
m2, K K IN.m/ rad
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b
3, Ja 33

5. Using Holzer’s method find the natural frequencies of the four mass system as shown in Fig. Q10, if K =1
N/mand m =1 kg

O—uw

7

6. Find the natural frequency of the system shown in Fig. Q8 by Holzer’s method. Assume m1=m2=m3=1
kg and k1= k2=k3=1 N/m
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