Module 1

CHAPTER 1: PYTHON BASICS

1. Entering expressions into the interactive shell

2. The integer, floating-point and String Data Types
3. String concatenation and replication

4. Storing values in variables

5. Your first program

6. Dissecting your program

1.1. [Entering expressions into the interactive shell

>

Run the interactive shell by launching IDLE, which is installed with Python. On Windows, open the Start
menu, select All Programs > Python 3.3, and then select IDLE (Python GUI). On OS X,
select Applications > MacPython 3.3 » IDLE. On Ubuntu, open a new Terminal window and
enter idle3.

A window with the >>> prompt should appear; that’s the interactive shell.

>>> 242
4

The IDLE window should now show some text like this:

Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit
(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.
>>> 242
4

In Python, 2 + 2 is called an expression, which is the most basic kind of programming instruction in the
language. Expressions consist of values (such as 2) and operators (such as +), and they can
always evaluate (that is, reduce) down to a single value. That means you can use expressions anywhere in
Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4. A single value with no operators is
also considered an expression, though it evaluates only to itself, as shown here:

>>>)
2
The other operators which can be used are:
Operator ~ Operation Example Evaluates to...
** Exponent 2 ¥ 3 8
% Modulus/remainder 2%8 6
1 Integer division/floored quotient 22 /18 2
/ Division 22 /8 2.75
* Multiplication 3%5 15
Subtraction 5-2 3
+ Addition 242 4

Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

» The order of operations (also called precedence) of Python math operators is similar to that of mathematics.

The ** operator is evaluated first; the *, /, //, and % operators are evaluated next, from left to right; and
the + and - operators are evaluated last (also from left to right). We can use parentheses to override the

usual precedence if you need to.

>>> 2 +3 %6

20

>»> (2 +3) *6

30

>>> 48565878 * 578453
28003077826734

33> 2 FE g

256

>»> 23/ 7
3.2857142857142856

>»> 23 // 7

3

53 23 % 7

2

>>> 2 + 2
4

>»> (5 -1) * ((7+1) /(3-1))
16.0

(5-1)* ((7+1)/7(3-1))
{
4* ((7+1)/7(3-1))
{
*(8)/(3-1))

(8)/7(2)

W — X —

4 * 4.0

{
16.0

Figure I-1: Evaluating an expres-
sion reduces it fo a single value.

» Due to wrong instructions errors occurs as shown below:

VVVYVYVVY

> 5 +
File "<stdin>", line 1
5+
A
SyntaxError: invalid syntax
>»> 42 + 5+ ¥ 2
File "¢stdin>", line 1
42 + 5+ %2

A

SyntaxError: invalid syntax

The integer. floating-point and String Data Types

» The expressions are just values combined with operators, and they always evaluate down to a single value.
» A data type is a category for values, and every value belongs to exactly one data type.

Table 1-2: Common Data Types

Data type

Examples

Integers
Floating-point numbers

Strings

-2,-1,0,1,2,3,4,5
-1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25

a', 'aa", "aaa’, 'Hello!', "11 cats'

The integer (or int) data type indicates values that are whole numbers.

Numbers with a decimal point, such as 3.14, are called floating-point numbers (or floats).

Note that even though the value 42 is an integer, the value 42.0 would be a floating-point number.
Python programs can also have text values called strings, or strs and surrounded in single quote.

The string with no characters, ", called a blank string.

If the error message SyntaxError: EOL while scanning string literal, then probably the final single quote

character at the end of the string is missing.

»»> 'Hello world!

SyntaxError: EOL while scanning string literal

2 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

YV V VY

String concatenation and replication

The meaning of an operator may change based on the data types of the values next to it.
For example, + is the addition operator when it operates on two integers or floating-point values.
However, when + is used on two string values, it joins the strings as the string concatenation operator.

33> 2 + 2 »>> "Alice’ + 'Bob’
4 "AliceBob’

If we try to use the + operator on a string and an integer value, Python will not know how to handle this,
and it will display an error message.

>>> 'Alice’ + 42
Traceback (most recent call last):
File "<pyshell#26>", line 1, in <module>
'Alice' + 42
Typekrror: Can't convert 'int

object to str implicitly

The * operator is used for multiplication when it operates on two integer or floating-point values.
But, when the * operator is used on one string value and one integer value, it becomes the string
replication operator.

5>y 'Alice' * §
"AliceAliceAliceAliceAlice’

The * operator can be used with only two numeric values (for multiplication) or one string value and one
integer value (for string replication). Otherwise, Python will just display an error message.

>»> 'Alice’ * 'Bob’
Traceback (most recent call last):
File "<pyshell#32>", line 1, in <module>
'Alice’ * 'Bob’
TypeError: can't multiply sequence by non-int of type 'str'
>»> "Alice' * 5.0
Traceback (most recent call last):
File "<pyshell#33>", line 1, in <module>
'Alice’ * 5.0
TypeError: can't multiply sequence by non-int of type 'float’

Storing Values in Variables

A variable is like a box in the computer’s memory where you can store a single value.
If we need to use variables later, then the result must be stored in variable.

Assignment Statements

You’ll store values in variables with an assignment statement.

An assignment statement consists of a variable name, an equal sign (called the assignment operator), and
the value to be stored.

Ex: spam =42

3 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1

Python

Overwriting the variable

L

> A variable is initialized (or created) the first time a value is stored in it).
> After that, you can use it in expressions with other variables and values @).

> When a variable is assigned a new value (3), the old value is forgotten, which is why spam evaluated

wN =Y

to 42 instead of 40 at the end of the example.

@ >>> spam = 40
>>> spam
40
>>> eggs = 2
8 >>> spam + eggs
42
>>> spam + eggs + spam
82
©® >>> spam = spam + 2
>>> spam
42
One more example
>>> spam = 'Hello'
>>> spam
'Hello'
>>> spam = 'Goodbye'
>>> spam
'Goodbye'

Variable names

We can name a variable anything as long as it obeys the following three rules:

It can be only one word.

It can use only letters, numbers, and the underscore (_) character.

It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names

Invalid variable names

balance
currentBalance
current_balance
_spam

SPAM

account4

current-balance (hyphens are not allowed)

current balance (spaces are not allowed)

gaccount [can’t begin with a number}

42 [can't begin with a number)

total_sum (special characters like $ are not allowed)

*hello" (special characters like * are not allowed)

4 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Y

VV VYV

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM are four different
variables.

This book wuses camelcase for variable names instead of underscores; that is,
variables lookLikeThis instead of looking like this.

A good variable name describes the data it contains.

Your First Program

The file editor is similar to text editors such as Notepad or TextMate, but it has some specific features for
typing in source code.

The interactive shell window will always be the one with the >>> prompt.

The file editor window will not have the >>> prompt.

The extension for python program is .py

Example program:

@ & This program says hello and asks for my name.

@ print{ 'Hello world!")

print('What is your namef') # ask for their name
myName = input()

print{'It is good to meet you, ' + myMame)
print({’'The length of your name is:")
print(len{myName))

© print('What is your age?") # ask for their age
myAge = input()
print{'You will be

+ str(int{myAge) + 1) + " in a year.")

» The output looks like:

Python 3.3.2 (v3.3.2:d0479283e3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit
(AMDG4)] on win3z

Type "copyright”, "credits" or "license()" for more information.

»3» ====================z=====z====== RESTART =========z==z====================
>33

Hello world!

What is your name?

Al

It is good to meet you, Al

The length of your name is:

2

What is your age?

4

You will be 5 in a year.

>3y

Dissecting Your Program

Comments

» The following line is called a comment.

@ # This program says hello and asks for my name.

5 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

>

Python ignores comments, and we can use them to write notes or remind ourselves what the code is trying
to do.

Any text for the rest of the line following a hash mark (#) is part of a comment.

Sometimes, programmers will put a # in front of a line of code to temporarily remove it while testing a
program. This is called commenting out code, and it can be useful when you’re trying to figure out why a
program doesn’t work.

Python also ignores the blank line after the comment.

The print() Function

>

The print() function displays the string value inside the parentheses on the screen.

® print('Hello world!")
print('What is your name?') # ask for their name

The line print("Hello world!") means “Print out the text in the string 'Hello world!".”

When Python executes this line, you say that Python is calling the print() function and the string value is
being passed to the function.

A value that is passed to a function call is an argument.

The quotes are not printed to the screen. They just mark where the string begins and ends; they are not
part of the string value.

Note:

We can also use this function to put a blank line on the screen; just call print() with nothing in between the
parentheses.

The Input Function

The input() function waits for the user to type some text on the keyboard and press ENTER.

© myName = input()

This function call evaluates to a string equal to the user’s text, and the previous line of code assigns
the myName variable to this string value.

We can think of the input() function call as an expression that evaluates to whatever string the user typed
in. If the user entered 'Al', then the expression would evaluate to myName = "Al'".

Printing the User’s Name

The following call to print() actually contains the expression 'It is good to meet you, ' + myName between
the parentheses.

@ print('It is good to meet you, ' + myName)

Remember that expressions can always evaluate to a single value.

If 'Al' is the value stored in myName on the previous line, then this expression evaluates to 'It is good to
meet you, Al'.

This single string value is then passed to print(), which prints it on the screen.

6 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

The len() Function

» We can pass the len() function a string value (or a variable containing a string), and the function evaluates
to the integer value of the number of characters in that string.

© print('The length of your name is:")
print(len(myName))

> In the interactive shell:

»>»>» len("hello')

5

»>>> len('My very energetic monster just scarfed nachos.')
46

>»> len("")

0

» len(myName) evaluates to an integer. It is then passed to print() to be displayed on the screen.
» Possible errors: The print() function isn’t causing that error, but rather it’s the expression you tried to pass
to print().

»>> print('I am "+ 29 + ' years old.")
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
print('I am ' + 29 + ' years old.")
Typekrror: Can't convert 'int' object to str implicitly

» Python gives an error because we can use the + operator only to add two integers together or concatenate
two strings. We can’t add an integer to a string because this is ungrammatical in Python.

>»»> 'Tam " +29 + ' years old.'
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
‘Tam' + 29+ ' years old.'
TypeError: Can't convert 'int' object to str implicitly

The str(). int() and float() Functions

> If we want to concatenate an integer such as 29 with a string to pass to print(), we’ll need to get the
value '29', which is the string form of 29.
» The str() function can be passed an integer value and will evaluate to a string value version of it, as follows:

»> str(29)

29"

>>> print('I am ' + str(29) + ' years old.")
I am 29 years old.

7 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Because str(29) evaluates to 29', the expression 'T am ' + str(29) + ' years old." evaluates to 'l am '+ '29' +
"years old.", which in turn evaluates to 'l am 29 years old.. This is the value that is passed to
the print() function.

The str(), int(), and float() functions will evaluate to the string, integer, and floating-point forms of the
value you pass, respectively.

Converting some values in the interactive shell with these functions:

>>> int(1.25)

»>»> str(o) 1
1Dl .

>>> int(1.99)
»>>>» str(-3.14) 1 (
"-3.14° »»> float('3.14")
>>> int('42") 3.14
42 >>> float(10)
»>>»>» int('-99") 10.0
-99

The previous examples call the str(), int(), and float() functions and pass them values of the other data
types to obtain a string, integer, or floating-point form of those values.

The str() function is handy when you have an integer or float that you want to concatenate to a string.
The int() function is also helpful if we have a number as a string value that you want to use in some
mathematics.

For example, the input() function always returns a string, even if the user enters a number.

Enter spam = input() into the interactive shell and enter 101 when it waits for your text.

»>>> spam = input()
101

>>> spam

'101°

The value stored inside spam isn’t the integer 101 but the string '101".
If we want to do math using the value in spam, use the int() function to get the integer form of spam and
then store this as the new value in spam.

>>> spam = int(spam)
>>> spam
101

Now we should be able to treat the spam variable as an integer instead of a string.

>>» spam * 10 / §
202.0

Note that if we pass a value to int() that it cannot evaluate as an integer, Python will display an error
message.

8 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

>

Y

>>»> int('99.99")
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>
int('99.99")
ValueError: invalid literal for int() with base 10: '99.99'
>>> int('twelve')
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
int('twelve")
ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if we need to round a floating-point number down. If we want to round a
floating-point number up, just add 1 to it afterward.

»»> int(7.7)

.

>>> int(7.7) + 1
8

In your program, we used the int() and str() functions in the last three lines to get a value of the appropriate
data type for the code.

@ print('What is your age?') # ask for their age
myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

The myAge variable contains the value returned from input().

Because the input() function always returns a string (even if the user typed in a number), we can use
the int(myAge) code to return an integer value of the string in myAge.

This integer value is then added to 1 in the expression int(myAge) + 1.

The result of this addition is passed to the str() function: str(int(myAge) + 1).

The string value returned is then concatenated with the strings "You will be ' and ' in a year.' to evaluate to
one large string value.

This large string is finally passed to print() to be displayed on the screen.

Another Input:

Let’s say the user enters the string '4' for myAge.

The string '4' is converted to an integer, so you can add one to it. The result is 5.

The str() function converts the result back to a string, so we can concatenate it with the second string, 'in
a year.', to create the final message. These evaluation steps would look something like below:

9 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

+

print('You will be ' + str(int(myAge) + 1) + ' in a year.")

+

print('You will be ' + str(int('4") + 1) + ' in a year.')

print('You will be ' + str(4+1) + " in a year.')
print('You will be ' + str(5) + " in a year.')
print('You will be ' + ‘5’ + ' in a year.')
print('You will be 5' + ' in a year.")

F OV O OO W

print('You will be 5 in a year.')

Figure 1-4: The evaluation steps, if 4 was stored in myAge

Text and Number Equivalence

» Although the string value of a number is considered a completely different value from the integer or
floating-point version, an integer can be equal to a floating point.

53> 42 == '42'

False

>>> 42 == 42.0

True

»»> 42.0 == 0042.000
True

CHAPTER 2: FL.OW CONTROL

1. Boolean Values

2. Comparison Operators

3. Boolean Operators

4. Mixing Boolean and Comparison Operators
5. Elements of Flow Control

6. Program Execution

7. Flow Control Statements

8. Importing Modules

9. Ending a Program Early with sys.exit()

Introduction

» Flow control statements can decide which Python instructions to execute under which conditions.
These flow control statements directly correspond to the symbols in a flowchart

In a flowchart, there is usually more than one way to go from the start to the end.

Flowcharts represent these branching points with diamonds, while the other steps are represented with
rectangles.

YV V VYV

10 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

» The starting and ending steps are represented with rounded rectangles.

Yes —m= Have umbrella? No —m=| Wait a while. |-

ND YES

'

Go outside.

FYY

MNo Yes —

Y
End

Figure 2-1: A flowchart to tell you what to do if it is raining

Boolean Values

» The Boolean data type has only two values: True and False.
» When typed as Python code, the Boolean values True and False lack the quotes you place around

strings, and they always start with a capital T or F, with the rest of the word in lowercase.
» Examples:

Q >>> spam = True
>>> spam
True
8 3> true
Traceback (most recent call last):
File “<pyshell#2>", line 1, in <module>
true
NameError: name ‘true' is not defined
© >3> True = 2 + 2
SyntaxError: assignment to keyword

> Like any other value, Boolean values are used in expressions and can be stored in variables). If we

don’t use the proper case @ or we try to use True and False for variable names @), Python will give
you an error message.

Comparison Operators

» Comparison operators compare two values and evaluate down to a single Boolean value. Table 2-1 lists
the comparison operators.

Operator ~ Meaning

== Equal to

1= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

11 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

https://automatetheboringstuff.com/chapter2/#calibre_link-1904

Python

Module 1

>

These operators evaluate to True or False depending on the values we give them.

»»> 42 == 42
True

»»» 42 == 99
False

33y 2 1= 3
True

> 2 1= 2
False

» The == and != operators can actually work with values of any data type.

"hello’

33> 'hello’
True

»>> ‘hello’
False

35y 'dog' =
True

>>>» True == True
True

>»> True != False
True

>>> 42 == 42.0
True

»>> 42 == '42'
False

== 'Hello'

'cat’

Note that an integer or floating-point value will always be unequal to a string value. The expression 42

== "4 c evaluates to False bec
string '42'.

ause Python considers the integer 42 to be different from the

The <, >, <=, and >= operators, on the other hand, work properly only with integer and floating-point

values.

e

>»> 42 < 100

True

>»> 42 > 100
False

*>» 42 < 42

False

»>> egglount = 42
»>> egglount <= 42
True

>>> myAge = 29
>>> myAge >= 10
True

The Difference Between the == and = Operators

Y

The == operator (equal to) asks whether two values are the same as each other.

The = operator (assignment) puts the value on the right into the variable on the left.

We often use comparison operators to compare a variable’s value to some other value, like in
the eggCount <= 42 € and myAge >= 10 @ examples.

Boolean Operators

The three Boolean operators (and, or, and not) are used to compare Boolean values.

12 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Binary Boolean Operators

» The and and or operators always take two Boolean values (or expressions), so they’re considered
binary Operators.

and operator: The and operator evaluates an expression to True if both Boolean values are True; otherwise,
it evaluates to False.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to... +33 True and True
True and True True True

True and False False 553 True ﬂl‘ld False
False and True False False

False and False False

or operator: The or operator valuates an expression to True if either of the two Boolean values is True. If both
are False, it evaluates to False.

Table 2-3: The or Operator's Truth Table

»»> False or True

Expression Evaluates to...

True or True True True

True or False True »»> False or False
False or True True False

False or False False

not operator: The not operator operates on only one Boolean value (or expression). The not operator simply
evaluates to the opposite Boolean value. Much like using double negatives in speech and writing, you can
nest not operators @), though there’s never not no reason to do this in real programs.

Table 2-4: The not Operator’s Truth Table
>»> not True

Expression Evaluates to... False
not True False ® 3> not not not not True
not False True True

Mixing Boolean and Comparison Operators

» Since the comparison operators evaluate to Boolean values, we can use them in expressions with the
Boolean operators. Ex:

>>> (4 < 5) and (5 < 6)

True
>>> (4 < 5) and (9 < 6)
False
»»» (1 ==2) or (2 == 2)
True

» The computer will evaluate the left expression first, and then it will evaluate the right expression.
When it knows the Boolean value for each, it will then evaluate the whole expression down to one
Boolean value. You can think of the computer’s evaluation process for (4 < 5) and (5 < 6) as shown
in Figure below:

13 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

(4 <5) and (5 < 6)

/

True and (5 < 6)

/

True and True

{

True

» We can also use multiple Boolean operators in an expression, along with the comparison operators.

>»> 2+ 2==4andnot 2 +2==5and 2 *2==2+2
True

» The Boolean operators have an order of operations just like the math operators do. After any math and
comparison operators evaluate, Python evaluates the not operators first, then the and operators, and
then the or operators.

Elements of Flow Control

» Flow control statements often start with a part called the condition, and all are followed by a block of
code called the clause.

Conditions:

» The Boolean expressions you’ve seen so far could all be considered conditions, which are the same thing
as expressions; condition is just a more specific name in the context of flow control statements.

» Conditions always evaluate down to a Boolean value, True or False.

> A flow control statement decides what to do based on whether its condition is True or False, and almost
every flow control statement uses a condition.

Blocks of Code:

» Lines of Python code can be grouped together in blocks. There are three rules for blocks.
1. Blocks begin when the indentation increases.
2. Blocks can contain other blocks.
3. Blocks end when the indentation decreases to zero or to a containing block’s indentation.
if name == 'Mary’:
1] print('Hello Mary')
if password == 'swordfish':
e print('Access granted.')
else:

© print('Wrong password.')

> The first block of code @ starts at the line print('Hello Mary') and contains all the lines after it. Inside this
block is another block @, which has only a single line in it: print('Access Granted."). The third block €
is also one line long: print("Wrong password.").

14 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Program Execution:

>

The program execution (or simply, execution) is a term for the current instruction being executed.

Flow Control Statements:

1.

if Statements:

The most common type of flow control statement is the if statement.

An if statement’s clause (that is, the block following the if statement) will execute if the statement’s
condition is True. The clause is skipped if the condition is False.

In plain English, an if statement could be read as, “If this condition is true, execute the code in the
clause.” In Python, an if statement consists of the following:

1. The if keyword

2. A condition (that is, an expression that evaluates to True or False)

3. Acolon
4. Starting on the next line, an indented block of code (called the if clause)
Example:
if name == 'Alice’:
print('Hi, Alice.')
Flowchart:

name == ‘Alice’ True— | print('H1, Alice.')

False

End

else Statements:

An if clause can optionally be followed by an else statement. The else clause is executed only when
the if statement’s condition is False.

In plain English, an else statement could be read as, “If this condition is true, execute this code. Or
else, execute that code.”

An else statement doesn’t have a condition, and in code, an else statement always consists of the
following:

1. The else keyword

2. A colon

3. Starting on the next line, an indented block of code (called the else clause)

15 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

» Example:
if name == 'Alice’:
print(‘Hi, Alice.')
else:
print('Hello, stranger.')
» Flowchart:

name == 'Alice’ True——= print(‘*Hi, Alice.')

False

I | print('Hello, stranger.')

A

End

3. elif Statements:

» While only one of the if or else clauses will execute, we may have a case where we want one
of many possible clauses to execute.
» The elif statement is an “else if”” statement that always follows an if or another elif statement.
It provides another condition that is checked only if all of the previous conditions were False.
» In code, an elif statement always consists of the following:
1. The elif keyword
2. A condition (that is, an expression that evaluates to True or False)
3. Acolon
4. Starting on the next line, an indented block of code (called the elif clause)
» Example:

A\

if name == "Alice’:
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.")

> Flowchart:

16 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

name == "Alice’ True —im=| print('Hi, Alice.')
False
True —p=| print('You are not Alice, kiddo.') |—
False
End -~

g

» When there is a chain of elif statements, only one or none of the clauses will be executed.

» Example:
if name == 'Alice":
print('Hi, Alice.')
elif age < 12:
print({'You are not Alice, kiddo.')
elif age » 2000:
print({'Unlike you, Alice is not an undead, immortal vampire.')
elif age » 100:
print('You are not Alice, grannie.")
» Flowchart:

TI'LE—-‘ print('Hi, Alice.'} }—

False

False
Y

Tn.eAD—{ print(*You are mot Alice, kiddo.') }—

print(‘Unlike you, Alice 1s mot
age > 2000 True—f ‘ an undead, immortal vampire.')

False

TrL-EA.{ print{'¥ou are not Alice, gramnie. ")

o
H

- n
a+
AL

Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

17

Module 1 | Python

» The order of the elif statements does matter, however. Let’s see by rearranging the previous code.

>

Y V

YV VVYVYY

Y

Say the age variable contains the value 3000 before this code is executed.

if name == "Alice”:
print('Hi, Alice."}
elif age « 1I:

print{'You are not Alice, kiddo.')
& elif age » 100:
print({'You are not Alice, gramnie.')
elif age » 2000:
print(Unlike you, Alice is not an undead, immortal vampire. ')

We might expect the code to print the string 'Unlike you, Alice is not an undead, immortal vampire.'.
However, because the age > 100 condition is True (after all, 3000 is greater than 100) @), the string "You
are not Alice, grannie.' is printed, and the rest of the elif statements are automatically skipped.
Remember, at most only one of the clauses will be executed, and for elif statements, the order matters!
Flowchart - (1)

Optionally, we can have an else statement after the last elif statement.

In that case, it is guaranteed that at least one (and only one) of the clauses will be executed.

If the conditions in every if and elif statement are False, then the else clause is executed.

In plain English, this type of flow control structure would be, “If the first condition is true, do this. Else,
if the second condition is true, do that. Otherwise, do something else.”

Example:

if pame == "Alice":
printi“Hi, Alice.'}
elif age ¢ 13:
print("You are mot Alice, kiddo.')
else:
printi You are neither Alice mor a little kid.")

Flowchart 2 (2)

Flowchart (1) Flowchart(2)

Shart

".le—--‘ print(‘H1, Alice.'}) lf

True —m=| prant(‘Hi, Alice.*) —

False

-'JQ——{ print(‘¥ou are pot Alice, kiddo. ") l—

Falze age ¢ 12 True —e=| print({'fou are not dlice, kiddo.') |—

".le——{ print{'You are not Alice, grannie.') I» Fal
05

False
+ print{*¥You are neither Alice

nor a little kid.")

‘_': print('Unlike you, Alice 1s not
. an wndead, immortal wampire.')
F A Y

o (e 3
(= 3

18 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

A\

Y

4. while loop Statements:

We can make a block of code execute over and over again with a while statement.

The code in a while clause will be executed as long as the while statement’s condition is True.

In code, a while statement always consists of the following:

1. The while keyword

2. A condition (that is, an expression that evaluates to True or False.

3. Acolon

4. Starting on the next line, an indented block of code (called the while clause)

We can see that a while statement looks similar to an if statement. The difference is in how they behave.
At the end of an if clause, the program execution continues after the if statement.

But, at the end of a while clause, the program execution jumps back to the start of the while statement.
The while clause is often called the while loop or just the loop.

Example:

Using if statement Using while statement

spam = O =pam = 0

if spam ¢ & while spam < 5
print('Hello, world.') print(’Hello, world.’)
spam = spam + 1 spam = spam + 1

These statements are similar—both if and while check the value of spam, and if it’s less than five, they
print a message.

But when we run these two code snippets, for the if statement, the output is simply "Hello, world."

But for the while statement, it’s "Hello, world." repeated five times!

Flowchart:

Using if statement Using while statement

*

print('Hello, world.')

'

Spam - spam + 1

+

print(*Hello, world ")

'

spam - spam + 1

False Falss

End

In the while loop, the condition is always checked at the start of each iteration (that is, each time the loop
is executed).

If the condition is True, then the clause is executed, and afterward, the condition is checked again.

The first time the condition is found to be False, the while clause is skipped.

19 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

An annoying while loop:

» Here’s a small example program that will keep asking to type, literally, your name.

Example Program Output

Please type your name.
Al

& nane = Please type your name.

8 while name != "your name’: ERES

print("Please type your name. ") Please type your name.

(3] name = input() e (a1

@ print(’Thank you!") Please type your name.
your name
Thank you!

> First, the program sets the name variable €J) to an empty string.

» This is so that the name !="your name' condition will evaluate to True and the program execution will
enter the while loop’s clause @.

> The code inside this clause asks the user to type their name, which is assigned to the name variable €.

» Since this is the last line of the block, the execution moves back to the start of the while loop and
reevaluates the condition.

» If the value in name is not equal to the string 'your name', then the condition is True, and the execution
enters the while clause again.

> But once the user types your name, the condition of the while loop will be 'your name' != 'your name',
which evaluates to False.

» The condition is now False, and instead of the program execution reentering the while loop’s clause, it
skips past it and continues running the rest of the program €.

» Flowchart:

Start

|

name! - ‘your name’ print('Fleaze type your name. ')

nama = input(}

printy{ “Thank you!*)

>

5. break Statements:

» There is a shortcut to getting the program execution to break out of a while loop’s clause early.
» Ifthe execution reaches a break statement, it immediately exits the while loop’s clause.

20 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

In code, a break statement simply contains the break keyword.
Example:

& while True:
print("Please type your name. ")
L2 name = input()
& if pame == "your name’:
a2 break
© print("Thank you!l"}

The first line @) creates an infinite loop; it is a while loop whose condition is always True. (The
expression True, after all, always evaluates down to the value True.)

The program execution will always enter the loop and will exit it only when a break statement is
executed. (An infinite loop that never exits is a common programming bug.)

Just like before, this program asks the user to type your name @.

Now, however, while the execution is still inside the while loop, an if statement gets executed @ to
check whether name is equal to your name.

If this condition is True, the break statement is run @), and the execution moves out of the loop
to print('Thank you!") @.

Otherwise, the if statement’s clause with the break statement is skipped, which puts the execution at
the end of the while loop.

At this point, the program execution jumps back to the start of the while statement @) to recheck the
condition. Since this condition is merely the True Boolean value, the execution enters the loop to ask
the user to type your name again.

Flowchart:

(=)

=

nage = 7

e 1

True print("Flease type your name.’)

Y
name = input()
wr
Fals=
k"
Trse —-| bresk
Fale
|
Y

print{'Thank you!'}

'

P Y
| End |
W A

'

21 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

6. Continue statements:

» Like break statements, continue statements are used inside loops.

» When the program execution reaches a continue statement, the program execution immediately jumps
back to the start of the loop and reevaluates the loop’s condition.

» Example and Output:

while True: 'rﬂlm are you? i
print('Who are you?') 'ih'gn 'af::e,UEI:anks. Who are you?
name = input() Toe yout
I= "Jge':

o 1F nane |- e Hello, Joe. What is the password? (It is a fish.)
2] continue Mary

print('Hello, Joe. What is the password? (It is a fish.)') Who are you?
® password = input() Joe

1 password == "siordfish: Hello, Joe. What is the password? (It is a fish.)
© break swordfish
© print('Access granted.’) Access granted.

> If the user enters any name besides Joe @), the continue statement @ causes the program execution to
jump back to the start of the loop.

» When it reevaluates the condition, the execution will always enter the loop, since the condition is simply
the value True. Once they make it past that if statement, the user is asked for a password €.

> If the password entered is swordfish, then the break statement @) is run, and the execution jumps out of
the while loop to print Access granted @.

» Otherwise, the execution continues to the end of the while loop, where it then jumps back to the start of
the loop.

» Flowchart:

Trua | printy{ “Who are youi") |
-1
g
r
| name = inputf} |
nr
Folsa
FALY
-—_F-b
Folza
| print{"Hallo, Joe. What 1s the password? (It 1s 2 Fish.)") |

y

| password = input(} |

password == "swordfish

'y

| primt('kooass Cramtod ") |

'

{ ed)

*e A

22 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

There are some values in other data types that conditions will consider equivalent to True and False.
When used in conditions, 0, 0.0, and " (the empty string) are considered False, while all other values are

considered True.

Example:

(]

name =
while not name: €

print(’Enter your name:')

name = imput()
print(*How many guests will you have?")
numHluests = int{input())
if numHGuests: @

print(’'Be sure to hawe enough room for all your guests.')@
print(Done®)

NOTE: If you ever run a program that has a bug causing it to get stuck in an infinite loop, press CTRL-C.

This

>

>

>

will send a KeyboardInterrupt error to your program and cause it to stop immediately.

7. forloops and the range() function:

If we want to execute a block of code only a certain number of times then we can do this with a for loop
statement and the range() function.

In code, a for statement looks something like for i in range(5): and always includes the following:
The for keyword

A variable name

The in keyword

A call to the range() method with up to three integers passed to it

AN e

A colon
6. Starting on the next line, an indented block of code (called the for clause)
Example and output:

My name 1s

print('My name 1s")

for

Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)

i in rangs(5):
print(‘'Jimmy Five Times (' + str(i) + *)')

Jimmy Five Times (4)

YV V VYV V

A\

The code in the for loop’s clause is run five times.

The first time it is run, the variable i is set to 0.

The print() call in the clause will print Jimmy Five Times (0).

After Python finishes an iteration through all the code inside the for loop’s clause, the execution goes
back to the top of the loop, and the for statement increments i by one.

This is why range(5) results in five iterations through the clause, with 1 being set to 0, then 1, then 2,
then 3, and then 4.

The variable 1 will go up to, but will not include, the integer passed to range().

Flowchart:

23 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Start

Y

print('My name is')

L

for 1 in range (5) print("Jimmy Five Times (" + str(i) + ")")

Done looping

End

» Example 2:

@ iotal = 0

© for num in range(101):
& total = total + num
@ print(total)

> The result should be 5,050. When the program first starts, the total variable is set to 0 €)).

The for loop @ then executes total = total + num €) 100 times.

» By the time the loop has finished all of its 100 iterations, every integer from 0 to 100 will have been added
to total. At this point, total is printed to the screen @).

Y

An equivalent while loop: For the first example of for loop.

print('My name is')

1=0

while 1 ¢ 5:
print('Jimmy Five Times (' + stx({i) + ")")
1i=1+1

8. The Starting, Stopping, and Stepping Arguments to range

» Some functions can be called with multiple arguments separated by a comma, and range() is one of
them.

» This lets us change the integer passed to range() to follow any sequence of integers, including starting
at a number other than zero.

for 1 in range(1z, 16):
print(i)

» The first argument will be where the for loop’s variable starts, and the second argument will be up to,
but not including, the number to stop at.

12
13
14
15

24 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

The range() function can also be called with three arguments. The first two arguments will be the start
and stop values, and the third will be the step argument. The step is the amount that the variable is
increased by after each iteration.

for 1 in ramge(o, 10, 2):
print(1})

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0D Ch e B D

The range() function is flexible in the sequence of numbers it produces for for loops. We can even use
a negative number for the step argument to make the for loop count down instead of up.

for 1 in range(s, -1, -1):
print(1}

Running a for loop to print i with range(5, -1, -1) should print from five down to zero.

o

[IR S R VS

Importing Modules

All Python programs can call a basic set of functions called built-in functions, including
the print(), input(), and len() functions.

Python also comes with a set of modules called the standard library.

Each module is a Python program that contains a related group of functions that can be embedded in
your programs.

For example, the math module has mathematics-related functions, the random module has random
number—related functions, and so on.

Before we can use the functions in a module, we must import the module with an import statement. In
code, an import statement consists of the following:

1. The import keyword

2. The name of the module

3. Optionally, more module names, as long as they are separated by commas

Once we import a module, we can use all the functions of that module.

Example with output:

import random
for 1 in range(s):
print(random. randint(1, 10))

Sl I = I o =

25 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

The random.randint() function call evaluates to a random integer value between the two integers that you
pass it.

Since randint() is in the random module, we must first type random. in front of the function name to tell
Python to look for this function inside the random module.

Here’s an example of an import statement that imports four different modules:

import random, sys, os, math

Now we can use any of the functions in these four modules.

from import Statements

>

>

An alternative form of the import statement is composed of the from keyword, followed by the module
name, the import keyword, and a star; for example, from random import *.

With this form of import statement, calls to functions in random will not need the random prefix.
However, using the full name makes for more readable code, so it is better to use the normal form of
the import statement.

Ending a Program Early with sys.exit()

The last flow control concept is how to terminate the program. This always happens if the program
execution reaches the bottom of the instructions.

However, we can cause the program to terminate, or exit, by calling the sys.exit() function. Since this
function is in the sys module, we have to import sys before your program can use it.

import sys

while True:
print('Type exit to exit.")
response = input()
if response == ‘exit’:
sys.exit()
print('You typed ' + response + ".')

This program has an infinite loop with no break statement inside. The only way this program will end is
if the user enters exit, causing sys.exit() to be called.

When response is equal to exit, the program ends.

Since the response variable is set by the input() function, the user must enter exit in order to stop the
program.

CHAPTER 3: FUNCTIONS
1. def Statements with Parameters
2. Return Values and return Statements
3. The None Value

4. Keyword Arguments and print()

26 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

5. Local and Global Scope
6. The global Statement
7. Exception Handling

8. A Short Program: Guess the Number

Introduction

» A function is like a mini-program within a program.
» Example:

@ def hello():

=] print('Howdy!")
print(Howdy!!!")
print{ 'Hello there.')

© hello()
hello()
hello()

> The first line is a def statement @€)), which defines a function named hello().

> The code in the block that follows the def statement @ is the body of the function. This code is executed
when the function is called, not when the function is first defined.

> The hello() lines after the function @) are function calls.

» In code, a function call is just the function’s name followed by parentheses, possibly with some number
of arguments in between the parentheses.

» When the program execution reaches these calls, it will jump to the top line in the function and begin
executing the code there.

> When it reaches the end of the function, the execution returns to the line that called the function and
continues moving through the code as before.

» Since this program calls hello() three times, the code in the hello() function is executed three times. When
we run this program, the output looks like this:

Howdy !
Howdy! !
Hello there.
Howdy !
Howdy! !
Hello there.
Howdy !
Howdy! !
Hello there.

» A major purpose of functions is to group code that gets executed multiple times. Without a function
defined, we would have to copy and paste this code each time, and the program would look like this:

print(‘'Howdy!")
print('Howdy!!!")
print('Hello there.')
print(‘'Howdy!")
print('Howdy!!!")
print('Hello there.')
print('Howdy!")
print({'Howdy!!!"}
print('Hello there.")

27 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

YV VY

def Statements with Parameters

When we call the print() or len() function, we pass in values, called arguments in this context, by typing
them between the parentheses.

We can also define our own functions that accept arguments.

Example with output:

@ def hello(name):
e print('Hello ' + name)

Hello Alice

© hello('Alice') Hello Bob

hello{'Bob')

The definition of the hello() function in this program has a parameter called name €.

A parameter is a variable that an argument is stored in when a function is called. The first time
the hello() function is called, it’s with the argument 'Alice' €.

The program execution enters the function, and the variable name is automatically set to 'Alice', which is
what gets printed by the print() statement @).

One special thing to note about parameters is that the value stored in a parameter is forgotten when the
function returns.

Return Values and Return Statements

The value that a function call evaluates to is called the return value of the function.

Ex: len(‘Hello’) = Return values is 5

When creating a function using the def statement, we can specify what the return value should be with
a return statement.

A return statement consists of the following:

1. The return keyword

2. The value or expression that the function should return.

When an expression is used with a return statement, the return value is what this expression evaluates to.
For example, the following program defines a function that returns a different string depending on what
number it is passed as an argument.

©® import random

©® def getAnswer(answerNumber):
=] if answerNumber == 1:
return "It 1is certain’
elif answerNumber == 2:
return "It 1is decidedly so'
elif answerNumber == 3:
return 'Yes'
elif answerNumber == 4:
return 'Reply hazy try again’
elif answerNumber == §5:
return ‘Ask again later®
elif answerNumber ==
return ‘Concentrate and ask again®
elif answerNumber == 7:
return ‘My reply is no'
elif answerNumber ==
return 'Outlook not so good'
elif answerNumber == 9:
return 'Very doubtful®

© 1 = random.randint(1, 9)
© fortune = getAnswer(r)
© print(fortune)

28 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1

Y

Y

When this program starts, Python first imports the random module €.

Then the getAnswer() function is defined @. Because the function is being defined (and not called), the
execution skips over the code in it.

Next, the random.randint() function is called with two arguments, 1 and 9 €.

It evaluates to a random integer between 1 and 9 (including 1 and 9 themselves), and this value is stored
in a variable named r.

The getAnswer() function is called with r as the argument @.

The program execution moves to the top of the getAnswer() function @, and the value r is stored in a
parameter named answerNumber.

Then, depending on this value in answerNumber, the function returns one of many possible string values.
The program execution returns to the line at the bottom of the program that originally
called getAnswer() @.

The returned string is assigned to a variable named fortune, which then gets passed to a print() call @ and
is printed to the screen.

Note that since we can pass return values as an argument to another function call, we could shorten these
three lines into single line as follows:

r = random.randint(1, 9)
fortune - getAnswer () _ print(getAnswer (Tandom. Tandint(1, 9)))

print({fortuns)

The None Value

In Python there is a value called None, which represents the absence of a value.

None is the only value of the NoneType data type.

This value-without-a-value can be helpful when we need to store something that won’t be confused for a
real value in a variable.

One place where None is used is as the return value of print().

The print() function displays text on the screen, but it doesn’t need to return anything in the same
way len() or input() does. But since all function calls need to evaluate to a return
value, print() returns None.

>>> spam = print('Hello!')
Hello!

»»» None == spam

True

Behind the scenes, Python adds return None to the end of any function definition with no return statement.

Keyword Arguments and print()

Most arguments are identified by their position in the function call.

For example, random.randint(1, 10) is different from random.randint(10, 1).

The function call random.randint(1, 10) will return a random integer between 1 and 10, because the first
argument is the low end of the range and the second argument is the high end while random.randint(10,
1) causes an error.

However, keyword arguments are identified by the keyword put before them in the function call.
Keyword arguments are often used for optional parameters.

Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

For example, the print() function has the optional parameters end and sep to specify what should be printed
at the end of its arguments and between its arguments (separating them), respectively.

print(‘Hello") Hello
print(‘World") World

The two strings appear on separate lines because the print() function automatically adds a newline
character to the end of the string it is passed.

However, we can set the end keyword argument to change this to a different string.

For example, if the program were this:

print('Hello’, end="")
print(‘World") HelloWorld

The output is printed on a single line because there is no longer a new-line printed after 'Hello'. Instead,
the blank string is printed. This is useful if we need to disable the newline that gets added to the end of
every print() function call.

Similarly, when we pass multiple string values to print(), the function will automatically separate them
with a single space.

»»» print('cats', 'dogs', "mice')
cats dogs mice

But we could replace the default separating string by passing the sep keyword argument.

»»» print(‘'cats’, 'dogs’, 'mice’', sep=",")
cats,dogs,mice

Local and Global Scope

Parameters and variables that are assigned in a called function are said to exist in that function’s local
scope.

Variables that are assigned outside all functions are said to exist in the global scope.

A variable that exists in a local scope is called a local variable, while a variable that exists in the global
scope is called a global variable.

A variable must be one or the other; it cannot be both local and global.

When a scope is destroyed, all the values stored in the scope’s variables are forgotten.

There is only one global scope, and it is created when your program begins. When your program

terminates, the global scope is destroyed, and all its variables are forgotten.

A local scope is created whenever a function is called. Any variables assigned in this function exist within

the local scope. When the function returns, the local scope is destroyed, and these variables are forgotten.

Scopes matter for several reasons:

1. Code in the global scope cannot use any local variables.

2. However, a local scope can access global variables.

3. Code in a function’s local scope cannot use variables in any other local scope.

4. We can use the same name for different variables if they are in different scopes. That is, there can be
a local variable named spam and a global variable also named spam.

30 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Local Variables Cannot Be Used in the Global Scope

» Consider this program, which will cause an error when you run it:
Output = Error

Program
def spam(): Traceback (most recent call last):
eggs = 31337 File "C:/test3784.py", line 4, in <module>
spam() print(eggs)
print(eggs) NameError: name 'eggs’ 1s not defined

» The error happens because the eggs variable exists only in the local scope created when spam() is called.
» Once the program execution returns from spam, that local scope is destroyed, and there is no longer a
variable named eggs.

Local Scopes Cannot Use Variables in Other Local Scopes

» A new local scope is created whenever a function is called, including when a function is called from
another function. Consider this program:

def spam():
a = 099
e bacon()
© print({eggs)
def bacon():
ham = 101
Q 2ggs = 0

© spam{)

> When the program starts, the spam() function is called @), and a local scope is created.

The local variable eggs @ is set to 99.

> Then the bacon() function is called @, and a second local scope is created. Multiple local scopes can exist
at the same time.

» In this new local scope, the local variable ham is set to 101, and a local variable eggs—which is different
from the one in spam()’s local scope—is also created @ and set to 0.

» When bacon() returns, the local scope for that call is destroyed. The program execution continues in

Y

the spam() function to print the value of eggs @), and since the local scope for the call to spam() still exists
here, the eggs variable is set to 99.

Global Variables Can Be Read from a Local Scope

» Consider the following program:

def spam():
print({eggs)
eggs = 42
spam()
print{eggs)

31 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

» Since there is no parameter named eggs or any code that assigns eggs a value in the spam() function,
when eggs is used in spam(), Python considers it a reference to the global variable eggs. This is why 42 is

>

>

printed when the previous program is run.

Local and Global Variables with the Same Name

To simplify, avoid using local variables that have the same name as a global variable or another local

variable.
But technically, it’s perfectly legal to do so.
Example Output
def spam():
© eggs - "spam local’ bacon local
print(eggs) # prints "spam local' Spam local
def bacon(): bacon local
2] eggs = "bacon local® ElDl’JEI].
print(eggs) # prints "bacon local’
spam()
print(eggs) # prints "bacon local’
© eggs = "global’
bacon()
print{eggs) # prints "global'

There are actually three different variables in this program, but confusingly they are all named eggs. The
variables are as follows:

@ A variable named eggs that exists in a local scope when spam() is called.

@ A variable named eggs that exists in a local scope when bacon() is called.

@ A variable named eggs that exists in the global scope.

Since these three separate variables all have the same name, it can be confusing to keep track of which
one is being used at any given time. This is why we should avoid using the same variable name in different
scopes.

The Global Statement

If we need to modify a global variable from within a function, use the global statement.

If we have a line such as global eggs at the top of a function, it tells Python, “In this function, eggs refers
to the global variable, so don’t create a local variable with this name.”

For example:

Program Output

det spam(): spam
a global eggs
2] eggs = 'spam’

eggs = "global’
spam(}
print{eggs)

32 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Because eggs is declared global at the top of spam() €)), when eggs is set to 'spam' @, this assignment is

done to the globally scoped eggs. No local eggs variable is created.

There are four rules to tell whether a variable is in a local scope or global scope:

1. Ifavariable is being used in the global scope (that is, outside of all functions), then it is always a global
variable.

2. Ifthere is a global statement for that variable in a function, it is a global variable.

3. Otherwise, if the variable is used in an assignment statement in the function, it is a local variable.

4. But if the variable is not used in an assignment statement, it is a global variable.

Example:

Program Qutput

def spam(): spam
(1] global eggs
eggs = "spam’ # this is the global

def bacon():
2] eggs = "bacon' # this is a local

geT nami):
o print(eggs) # this is the global

eggs = 42 # this is the global
spam()
print(eggs)

In the spam() function, eggs is the global eggs variable, because there’s a global statement for eggs at the
beginning of the function).

In bacon(), eggs is a local variable, because there’s an assignment statement for it in that function @.

In ham() @), eggs is the global variable, because there is no assignment statement or global statement for
it in that function

In a function, a variable will either always be global or always be local. There’s no way that the code in a
function can use a local variable named eggs and then later in that same function use the
global eggs variable.

Note

If we ever want to modify the value stored in a global variable from in a function, we must use
a global statement on that variable.

If we try to use a local variable in a function before we assign a value to it, as in the following program,
Python will give you an error.

Program Qutput
det spam(): Traceback (most recent call last):
print{eggs) # ERROR! File "C:/test3784.py", line 6, in <modules
1] eggs = "spam local’ span()
File "C:/test3784.py", line 2, in spam
® gggs = "global’ print(eggs) # ERROR!
spam() UnboundLocalError: local variable 'eggs' referenced before assignment

This error happens because Python sees that there is an assignment statement for eggs in
the spam() function @) and therefore considers eggs to be local.

But because print(eggs) is executed before eggs is assigned anything, the local variable eggs doesn’t exist.
Python will not fall back to using the global eggs variable @).

33 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

Exception Handling

» If we don’t want to crash the program due to errors instead we want the program to detect errors, handle
them, and then continue to run.
» For example,

Program Qutput

def spam(divideBy): 21.0
return 42 / divideB 35
. y Traceback (most recent call last):
File "C:/zeroDivide.py", line &, in <module:

print(spam(2)) print(spam(o})
print(spam(12)) File "C:/zeroDivide.py”, line 2, in spam
print(spam(0)) return 42 / divideBy
print(spam(1)) ZeroDivisionError: division by zero

» A ZeroDivisionError happens whenever we try to divide a number by zero. From the line number given
in the error message, we know that the return statement in spam() is causing an error.

» Errors can be handled with try and except statements.

» The code that could potentially have an error is put in a try clause. The program execution moves to the
start of a following except clause if an error happens.

» We can put the previous divide-by-zero code in a try clause and have an except clause contain code to
handle what happens when this error occurs.

Program Qutput
def spam(divideBy): 21.0
try:
return 42 / divideBy 3.5
except ZeroDivisionError: Error: Invalid argument.
print(Error: Invalid argument.") None
42.0
print{spam(2})
print{spam(12))
print{spam{o})
print{spam(1})

» Note that any errors that occur in function calls in a try block will also be caught. Consider the following
program, which instead has the spam() calls in the try block:

Program Output

def spam(divideBy): 21.0

return 42 / divideBy 3.5

. Error: Invalid argument.
try:

print(spam{2))

print(spam(12)})

print(spam{0))

print(spam{1))

except ZeroDivisionError:
print(*Error: Invalid argument.')

» The reason print(spam(1)) is never executed is because once the execution jumps to the code in
the except clause, it does not return to the try clause. Instead, it just continues moving down as normal.

34 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

A Short program: Guess the Number

» This is a simple “guess the number” game. When we run this program, the output will look something like
this:

I am thinking of a number between 1 and 20.
Take a guess.

10

Your guess 1s too low.

Take a guess.

15

Your guess 1s too low.

Take a guess.

17

Your guess is too high.

Take a guess.

16

Good job! You guessed my number in 4 guesses!

» Code for the above program is:

This is 3 guess the number game.

import random

secretNumber = random. randint(1, 20)

print('I am thinking of a number between 1 and 20.")

Ask the player to guess 6 Times.
for guessesTaken in range(1, 7):
print('Take a guess.')
guess = int({input())

if guess ¢ secretNumber:
print('Your guess 1s too low. ")
elif guess » secretNumber:
print('Your guess is too high.")
else:
break # This condition 1s the correct guess!

if guess == secretNumber:
print{'Good job! You guessed my number in ° + str{guessesTaken) +
else:
print('Mope. The number I was thinking of was

guesses!')

]

+ str(secretlumber))

» Let’s look at this code line by line, starting at the top.

This is a guess the number game.
import random
secretNumber = random.randint(1, 20)

» First, a comment at the top of the code explains what the program does.

» Then, the program imports the random module so that it can use the random.randint() function to generate
a number for the user to guess.

» The return value, a random integer between 1 and 20, is stored in the variable secretNumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
print('Take a guess.')
guess = int{input())

35 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

Module 1 | Python

The program tells the player that it has come up with a secret number and will give the player six chances
to guess it.

The code that lets the player enter a guess and checks that guess is in a for loop that will loop at most six
times.

The first thing that happens in the loop is that the player types in a guess.

Since input() returns a string, its return value is passed straight into int(), which translates the string into
an integer value. This gets stored in a variable named guess.

if guess < secretNumber:
print('Your guess is too low.')
elif guess » secretMumber:
print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or greater than the secret number. In
either case, a hint is printed to the screen.

else:
break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it must be equal to the secret number,
in which case you want the program execution to break out of the for loop.

if guess == secretNumber:

print('Good job! You guessed my number in
else:

print('Nope. The number I was thinking of was

(]

+ str{guessesTaken) + ' guesses!')

(]

+ str(secretNumber))

After the for loop, the previous if...else statement checks whether the player has correctly guessed the
number and prints an appropriate message to the screen.

In both cases, the program displays a variable that contains an integer value
(guessesTaken and secretNumber).

Since it must concatenate these integer values to strings, it passes these variables to the str() function,
which returns the string value form of these integers.

Now these strings can be concatenated with the + operators before finally being passed to
the print() function call.

36 Subrahmanya H M, Assistant Professor, Dept. of CSE, GCEM, Bangalore

