Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Digital Design and Computer Organization(BCS302)

Module-3

Prepared by: Vinay G
Asst.Prof, Dept. of CSE
Gopalan college of Engineering,Bengaluru.

Dept of CSE,GCEM Page 1

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Basic Structure of Computers

Computer types:-

A computer can be defined as a fast electronic calculating machine that accepts the (data) digitized
input information process it according to a list of internally stored instructions and produces the
resulting output information.

List of instructions are called computer program and internal storage is called computer memory.
Types of computers

1. Personal computers: - This is the most common type found in homes, schools, Business
offices etc., It is the most common type of desk top computers with processing and storage
units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (1/0) graphics capability, but with
same dimensions as that of desktop computer. These are used in engineering applications of
interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to large
corporations that require much more computing power and storage capacity than work
stations. Internets associated with servers have become a dominant worldwide source of all
types of information.

5. Super computers: - These are used for large scale numerical calculations required in the
applications like weather forecasting and aircraft design and simulation.

Functional units:-
A computer consists of five functionally independent main parts input, output, memory, arithmetic
logic unit (ALU), and control unit.

Input ALU
[
/0 Processor
Memory
Output Control Unit

Dept of CSE,GCEM Page 2

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Figure: Functional units of computer

Functions of all computer are:
e Data PROCESSING
e Data STORAGE
e Data MOVEMENT
CONTROL-Coordinates How Information is Used

Information Handled by a Computer:-
Instructions/machine instructions
» Govern the transfer of information within a computer as well as between the computer and its
I/0 devices
» Specify the arithmetic and logic operations to be performed
Data
» Used as operands by the instructions
» Source program
Encoded in binary code — 0 and 1
e Input device accepts the coded information as source program i.e. high level language. This is
either stored in the memory or immediately used by the processor to perform the desired
operations.
e The program stored in the memory determines the processing steps. Basically the computer
converts one source program to an object program i.e. into machine language.
Finally the results are sent to the outside world through output device. All of these actions are
coordinated by the control unit.

Input unit: -
e The source program/high level languages program/coded information/simply data is fed to a
computer through input devices keyboard is a most common type.
e Whenever a key is pressed, one corresponding word or number is translated into its equivalent
binary code over a cable to either memory or processor.
Example: Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -
The function of the memory unit is store programs and data. It is basically to two types are
1. Primary memory
2. Secondary memory
1) Primary memory: - it is a fast memory that operates at the electronics speeds. Programs
must be stored in the memory while they are being executed. The memory contains a large
number of semiconductors storage cells, each capable of storing one bit of information.
These are processed in a group of fixed site called word.
To provide easy access to any word in memory, a distinct address is associated with each
word location.
Addresses are numbers that identify memory location.
Number of bits in each word is called word length of the computer. Programs must reside in
the memory during execution. Instructions and data can be written into the memory or read out under
the control of processor.

Dept of CSE,GCEM Page 3

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

e Memory in which any location can be reached in a short and fixed amount of time after
specifying its address is called random-access memory (RAM).

e The time required to access one word in called memory access time.

e Memory which is only readable by the user and contents of which can’t be altered is called
read only memory (ROM) it contains operating system.

e Caches are the small fast RAM units, which are coupled with the processor and are often
contained on the same IC chip to achieve high performance. Although primary storage is
essential it tends to be expensive.

2) Secondary memory: - Is used where large amounts of data and programs have to be stored,
particularly information that is accessed infrequently.
Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

e Most of the computer operators are executed in ALU of the processor like addition,
subtraction, division, multiplication, etc. the operands are brought into the ALU from memory
and stored in high speed storage elements called register.

e Then according to the instructions the operation is performed in the required sequence.

e The control and the ALU are many times faster than other devices connected to a computer

system.

e This enables a single processor to control a number of external devices such as key boards,
displays, magnetic and optical disks, sensors and other mechanical controllers.

Output unit:-
These actually are the counterparts of input unit. Its basic function is to send the processed
results to the outside world.
Examples: - Printer, speakers, monitor etc.

Control unit:-
The control unit effectively is the nerve center that sends signals to other units and senses
their states. The actual timing signals that govern the transfer of data between input unit,
processor, memory and output unit are generated by the control unit.

Basic operational concepts

To perform a given task an appropriate program consisting of a list of instructions is stored in the
memory. Individual instructions are brought from the memory into the processor, which executes the
specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, RO

This instruction adds the operand at memory location LOCA, to operand in register RO and places the
sum into register. This instruction requires the performance of several steps,

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched and added to the contents of R

3. Finally the resulting sum is stored in the register RO

Dept of CSE,GCEM Page 4

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

The preceding Add instruction combines a memory access operation with an ALU Operations. In
some other type of computers, these two types of operations are performed by separate instructions
for performance reasons.

Load LOCA, R1
Add R1, RO
The steps to execute the instructions can be enumerated as below:
e Step 1: Fetch the instruction from main memory into the processor
e Step 2: Fetch the operand at location LOCA from main memory into the processor
Register R1
e Step 3: Add the content of Register R1 and the contents of register RO
e Step 4: Store the result (sum) in RO.

The fig shows how memory & the processor can be connected. In addition to the ALU & the control
circuitry,

the processor contains a number of registers used for several different purposes.

The instruction register (IR):- Holds the instructions that are currently being executed. Its output is
available for the control circuits which generates the timing signals that control the various
processing elements in one execution of instruction.

The program counter PC: - This is another specialized register that keeps track of execution of a
program. It contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers RO through Rn-1.

The other two registers which facilitate communication with memory are: -

1. MAR - (Memory Address Register):- It holds the address of the location to be accessed.

2. MDR - (Memory Data Register):- It contains the data to be written into or read out of the
address location.

Memory
MAR MDR
Control
PC Ro
R1
- Processor
IR
=
-
-
ALU
Rn- 1
ngeneral purpose
registers

Figure : Connections between the processor and the memory

Dept of CSE,GCEM Page 5

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Operating steps are
1. Programs reside in the memory and usually get these through the input unit.
2. Execution of the program starts when the PC is set to point at the first instruction of the program.
3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the memory.
4. After the time required to access the memory elapses, the address word is read out of the memory
and loaded into the MDR.
5. Now contents of MDR are transferred to the IR & now the instruction is ready to be decoded and
executed.
6. If the instruction involves an operation by the ALU, it is necessary to obtain the required operands.
7. An operand in the memory is fetched by sending its address to MAR & Initiating a read cycle.
8. When the operand has been read from the memory to the MDR, it is transferred from MDR to the
ALU.
9. After one or two such repeated cycles, the ALU can perform the desired operation.
10. If the result of this operation is to be stored in the memory, the result is sent to MDR.
11. Address of location where the result is stored is sent to MAR & a write cycle is initiated.
12. The contents of PC are incremented so that PC points to the next instruction that is to be
executed.
e Normal execution of a program may be pre-empted (temporarily interrupted) if some devices
require urgent servicing, to do this one device raises an Interrupt signal.
e Aninterrupt is a request signal from an 1/0O device for service by the processor. The processor
provides the requested service by executing an appropriate interrupt service routine.
e The Diversion may change the internal stage of the processor its state must be saved in the
memory location before interruption. When the interrupt-routine service is completed the
state of the processor is restored so that the interrupted program may continue.

Bus structure

e A group of lines that serves a connecting path for several devices is called a bus.

e The simplest and most common way of interconnecting various parts of the computer is to use
bus.

e To achieve a reasonable speed of operation, a computer must be organized so that all its units
can handle one full word of data at a given time. A group of lines that serve as a connecting
port for several devices is called a bus.

e Since the bus can be used for only one transfer at a time, only two units can actively use the
bus at any given time. Bus control lines are used to arbitrate multiple requests for use of one
bus.

Input Output Memory Processor

Figure : Single bus structure

Dept of CSE,GCEM Page 6

Digital Design and Computer Organization (BCS302) Module 3: Basic

Structure of Computers , Machine Instructions and Programs

Single bus structure is
1. Low cost
2. Very flexible for attaching peripheral devices

Multiple bus structure certainly increases the performance but also increases the cost
significantly. All the interconnected devices are not of same speed and time leads to a bit of a
problem. This is solved by using cache registers (i.e. buffer registers). These buffers are
electronic registers of small capacity when compared to the main memory but of comparable
speed. The instructions from the processor at once are loaded into these buffers and then the
complete transfer of data at a fast rate will take place.

e Consider the transfer of an encoded character from processor to a character printer.
The processor sends character over the bus to the printer buffer.
Buffer is an electronic register which holds the information during the transfer of data.
After the buffer gets loaded the printer can start printing without future intervention by
the processor
The bus and the processor are no longer needed and can be released for other activity.
The printer continues printing the encoded character which is in the buffer.
The printer is not available for further transfers until the previous task is completed.
During this time the processor can go for any other instruction with other devices.

Performance

The most important measure of the performance of a computer is how quickly it can execute
programs. The speed with which a computer executes program is affected by the design of its
hardware. For best performance, it is necessary to design the compiles, the machine
instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the
performance of the entire computer system. It is affected by the speed of the processor, the
disk and the printer. The time needed to execute an instruction is called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a computer system, the
processor time depends on the hardware involved in the execution of individual machine instructions.
This hardware comprises the processor and the memory which are usually connected by the bus as
shown in the figure.

Main Cache Processor

Memory Memory

Bus

Dept of CSE(GCE Page 7

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Figure: The processor cache

e Let us examine the flow of program instructions and data between the memories and the
processor. At the start of execution, all program instructions and the required data are stored
in the main memory.

e As the execution proceeds, instructions are fetched one by one over the bus into the processor,
and a copy is placed in the cache later if the same instruction or data item is needed a second
time, it is read directly from the cache.

e The processor and relatively small cache memory can be fabricated on a single I1C chip. The
internal speed of performing the basic steps of instruction processing on chip is very high and
is considerably faster than the speed at which the instruction and data can be fetched from the
main memory.

e A program will be executed faster if the movement of instructions and data between the main
memory and the processor is minimized, which is achieved by using the cache.

Processor clock

e Processor circuits are controlled by a timing signal called clock.

e The clock defines the regular time intervals called clock cycles.

e To execute a machine instruction the processor divides the action to be performed into a
sequence of basic steps such that each step can be completed in one clock cycle. The
length P of one clock cycle is an important parameter that affects the processor
performance

e ltsinverse is the Clock rate, R=1/p. which is measured in cycles per second.

e Processor used in today’s personal computer and work station has a clock rates that range
from a few hundred million to over a billion cycles per second.

Basic performance equation
We now focus our attention on the processor time component of the total elapsed time.
e T — processor time required to execute a program that has been prepared in high-level
language
e N — number of actual machine language instructions needed to complete the execution
(note: loop)
e S — Average number of basic steps needed to execute one machine instruction. Each step
completes in one clock cycle
e R —clock rate is cycles per second

NxS
T 2052

R

This is often referred to as the basic performance equation.
We must emphasize that N, S & R are not independent parameters changing one may affect another.

Dept of CSE,GCEM Page 8

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Introducing a new feature in the design of a processor will lead to improved performance only if the
overall result is to reduce the value of T.

Clock rate
These are two possibilities for increasing the clock rate 'R".
e Improving the IC technology makes logical circuit faster, which reduces the time of
execution of basic steps. This allows the clock period P, to be reduced and the clock rate
R to be increased.
e Reducing the amount of processing done in one basic step also makes it possible to reduce
the clock period P..

Performance measurements
The performance measure is the time taken by the computer to execute a given bench mark.

e Benchmark refers to standard task used to measure how well a processor
operates. To evaluate the performance of Computers, a non-profit organization
known as SPEC-(System Performance Evaluation Corporation) selects and publishes
application programs for different domains.

e Accordingly, it gives performance measure for a computer as the time required to
execute a given benchmark program

Running time on the reference computer

SPEC rating =
Running time on the computer under test

If the SPEC rating = 50 Means that the computer under test is 50 times as fast as the ultra SPARC 10.
This is repeated for all the programs in the SPEC suit, and the geometric mean of the result is
computed.

Let SPECi be the rating for program ‘i’ in the suite. The overall SPEC rating for the computer is
given by

n l/n
SPEC rating= (I1 SPECi)
i=1
Where ‘n’ = number of programs in suite.
Since actual execution time is measured the SPEC rating is a measure of the combined effect of all

factors affecting performance, including the compiler, the OS, the processor, the memory of comp
being tested.

Machine Instructions and Programs

Memory locations and addresses

Dept of CSE,GCEM Page 9

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

e Number and character operands, as well as instructions, are stored in the memory of a
computer. The memory consists of many millions of storage cells, each of which can store a
bit of information having the value 0 or 1.

e Because a single bit represents a very small amount of information, bits are seldom handled
individually. The usual approach is to deal with them in groups of fixed size.

e For this purpose, the memory is organized so that a group of n bits can be stored or retrieved
in a single, basic operation. Each group of n bits is referred to as a word of information, and n
is called the word length. The memory of a computer can be schematically represented as a
collection of words.

le ,_!
= n bits

First word

Y

Second word

O E— i-th word

— > Last word

Figure : A signed integer

Modern computers have word lengths that typically range from 16 to 64 bits. If the word length of a
computer is 32 bits, a single word can store a 32-bit 2’s complement number or four ASCII
characters, each occupying 8 bits. A unit of 8 bits is called a byte.

8 bits 8 bits 8 bits 8 bits
ASCII ASCII ASCII ASCII
Character character character character

Figure : Four characters

e Accessing the memory to store or retrieve a single item of information, either a word or a
byte, requires distinct names or addresses for each item location. It is customary to use
numbers from 0 through 2X-1, for some suitable values of k, as the addresses of successive
locations in the memory.

e The 2 addresses constitute the address space of the computer, and the memory can have
up to 2% addressable locations. 24-bit address generates an address space of 2724
(16,777,216) locations. A 32-bit address creates an address space of 232 or 4G (4 giga)
locations.

Dept of CSE,GCEM Page 10

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Byte Addressability:-
e |tisimpractical to assign distinct addresses to individual bit locations in the memory.
e The most practical assignment is to have successive addresses refer to successive byte
locations in the memory — byte-addressable memory.
® Byte locations have addresses 0, 1, 2, ... If word length is 32 bits, they successive words are
located at addresses 0, 4, 8,...

Big-Endian and Little-Endian Assignments:-

Big-Endian: lower byte addresses are used for the most significant bytes (the left most bytes) of the
word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes (the
rightr_nost bytes)of the word

Word

address Byte address Byte address
0 0 1 2 3 0 3 2 1 0
4 4 5 G 7 4 7 G 5 4

g g e e g g | 1N 0 Dy

(a) Big-endian assignment (b} Little-endian assignment
Figure Byte and word addressing

Word Alignment:-
e Address ordering of bytes
e Word alignment
e Words are said to be aligned in memory if they begin at a byte addressing. that is a
multiple of the num of bytes in a word.
e 16-bit word: word addresses: 0, 2, 4,....
e 32-bit word: word addresses: 0, 4, 8,....
® 64-bit word: word addresses: 0, 8,16,....

Dept of CSE,GCEM Page 11

Digital Design and Computer Organization (BCS302) Module 3: Basic

Structure of Computers , Machine Instructions and Programs

Accessing Numbers, Characters, And Character Strings:-

A number usually occupies one word. It can be accessed in the memory by specifying its
word address.

Similarly, individual characters can be accessed by their byte address.

In many applications, it is necessary to handle character strings of variable length. The
beginning of the string is indicated by giving the address of the byte containing its first
character. Successive byte locations contain successive characters of the string.

There are two ways to indicate the length of the string.

A special control character with the meaning “end of string” can be used as the last character
in the string, or a separate memory word location or processor register can contain a number
indicating the length of the string in bytes.

Word location or processor register can contain a number indicating the length of the string in
bytes.

Memory operations

Both program instructions and data operands are stored in the memory. To execute an instruction, the
processor control circuits must cause the word (or words) containing the instruction to be transferred
from the memory to the processor. Operands and results must also be moved between the memory
and the processor.

Thus, two basic operations involving the memory are needed, namely, Load (or Read or Fetch) and
Store (or Write).

Load (or Read or Fetch)

The load operation transfers a copy of the contents of a specific memory location, memory
contents are unchanged.

To start a Load operation, the processor sends the address of the desired location to the
memory and requests that its contents are to be read.

The memory reads the data stored at that address and sends them to the processor

Store operation:

The store operation transfers an item of information from the processor to a specific memory
location, destroying the former contents of that location.

The processor sends the address of the desired location to the memory, together with the data
to be written into that location.

An information item of either one word or byte is transferred b/w Memory and Processor in a
single operation

An information item of either one word or one byte can be transferred between the processor and the
memory in a single operation. Actually, this is transfer in between the CPU register & main memory.

Instructions and instruction sequencing

A computer must have instructions capable of performing four types of operations.

Data transfers between the memory and the processor registers
Arithmetic and logic operations on data

Program sequencing and control

I/O transfers

Dept of CSE,GCEM Page 12

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Register Transfer Notation:-

e Transfer of information from one location in the computer to another. Possible locations that
may be involved in such transfers are memory locations processor registers, or registers in the
I/O subsystem..

e Example, names for the addresses of memory locations may be LOC, PLACE, A, VAR2;
processor registers names may be RO, R5; and I/O register names may be DATAIN,
OUTSTATUS, and so on.

e The contents of a location are denoted by placing square brackets around the name of the
location. Thus, the expression is

R1 < [LOC]
Means that the contents of memory location LOC are transferred into processor register R1.

As another example, consider the operation that adds the contents of registers R1 and R2, and then
places their sum into register R3. This action is indicated as
R3 « [R1] + [R2]

This type of notation is known as Register Transfer Notation (RTN). Note that the right-hand side of
an RTN expression always denotes a value, and the left-hand side is the name of a location where the
value is to be places, overwriting the old contents of that location.

Assembly Language Notation:-

e We can use assembly language format to represent machine instructions and programs. For
example, an instruction that causes the transfer described above, from memory location LOC
to processor register R1, is specified by the statement.

Move LOC, R1

e The contents of LOC are unchanged by the execution of this instruction, but the old contents
of register R1 are overwritten.

e The second example of adding two numbers contained in processor registers R1 and R2 and
placing their sum in R3 can be specified by the assembly language statement.

Add R1, R2, R3

Basic instruction types
The operation of adding two numbers is a fundamental capability in any computer. The statement

e C=A+B
In a high-level language program is a command to the computer to add the current values of the two
variables called A and B, and to assign the sum to a third variable, C. When the program containing
this statement is compiled, the three variables, A, B and C, are assigned to distinct locations in the
memory. We will use the variable names to refer to the corresponding memory location addresses.
According to address reference there three type of instruction:

e Three address instruction

e Two address instruction
e One address instruction

Three address instruction:

Dept of CSE,GCEM Page 13

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

The general format for three address instruction is:
Operation sourcel,source2,destination

The address instruction can be represented symbolically to execute RTN i.e
C<- [A]+[B]

Add AB,C

Where A,B,C are the variables. These variable names are assigned to the distinct location in the
memory. In this instruction operand A and B are the source operand and operand C is the destination
operand.
The number of bits required to represent such instruction include:
e Bits required to specify the three memory addresses of the three operands. If n-bits required to
specify one memory address,3n bits are required to specify three memory address.

e Bits required to specify the operation.

Two address instruction:
The general format for two address instruction is:
Operation sourcel,destination
The address instruction can be represented symbolically to execute RTN i.e
C<- [A]+[B]
Add A,B
Where A,B are the variables. These variable names are assigned to the distinct location in the
memory. In this instruction operand A is the source operand and operand B serve as both source and
destination operand.
The number of bits required to represent such instruction include:
e Bits required specifying the two memory addresses of the two operands. If n-bits required to
specify one memory address, 2n bits are required to specify two memory address.

e Bits required specifying the operation.

One address instruction:
The general format for two address instruction is:

Operation sourcel
The address instruction can be represented symbolically to execute RTN i.e

C<- [A]+[B]
Load A
Add B
Store C

Instruction loads the contents of variable A into the processor register called accumulator and add the
contents of accumulator to register B and store the result back into accumulator. Then store the
content of accumulator into register C

The number of bits required to represent such instruction include:

Dept of CSE,GCEM Page 14

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

e Bits required to specify the one memory addresses of the one operands. If n-bits required to
specify one memory address,1n bits are required to specify one memory address.

e Bits required to specify the operation

Example: Evaluate (A+B) * (C+D)

® Three-Address
1. ADD A,B.,R1
2. ADD C, D.R2
' 3. MIUL R1,R2.X

Example: Evaluate (A+B) * (C+D)

* Two-Address

MOV A.RI
ADD B,R1

i. MOV C,R2
4. ADD D,R2
5. MUL R2,R1
6. MOV R1.,X

—

(%}

Example: Evaluate (A+B) * (C+D)

® One-Address

:R1<— M[A] + M[B]
:R2 < M[C] + M[D]
: M[X] < R1 * R2

:R1 < M[A]
:R1 < R1 + M[B]
:R2 < M[C]
:R2 < R2 + M[D]
:R1<—R1*R2

: M[X] < R1

1. LOAD A ;AC «— M[A]
2. ADD B ;AC <= AC + M[B]
3. STORE T : M[T] <= AC
4. LOAD C ;AC <— M[C]
5. ADD D ;AC <= AC + M[D]
6. MUL T :AC <= AC * M[T]
7. STORE X s M[X] < AC
Dept of CSE,GCEM Page 15

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Example: Ewaluate (A+B) * (C+1ID)

- Zero-Address
1. PLISHL A TS <— .5
2. PLISHL B T TOS — B
3. ADD TOS ~— (A + B)
=+ PLISHL L T TOS — O
5. PLISHL I TOS =— I
&, ADD TOS ~— (C + D)
7 MITIL. ;TOS «—— (CHD)y*=(A+B)
s. POP > CM[X] ~— TOS

» INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING
we used the task C « [A] + [B] for illustration. Figure shows a possible program segment for this
task as it appears in the memory of a computer.

e The memory is byte addressable, word length is 32 bits and the processor has a number of
registers. We use a two address instruction format and instructions stored in successive
memory word locations, starting at location i. Since each instruction is 4 bytes long, the
second and third instructions start at addresses i + 4 and i + 8.

e The processor contains a register called the program counter (PC), which holds the address
of the instruction to be executed next. To begin executing a program, the address of its first
instruction (i in our example) must be placed into the PC.

e Then, the processor control circuits use the information in the PC to fetch and execute
instructions, one at a time, in the order of increasing addresses. This is called straight-line
sequencing.

e During the execution of each instruction, the PC is incremented by 4 to point to the next
instruction. Thus, after the Move instruction at location i + 8 is executed, the PC contains the
value i + 12,which is the address of the first instruction of the next program segment.

Address Contents
Begin execotion herg —a § Move A RO . .

) 3-instruction
f+ 4 Add B.IRO program

S @I Nt
i+ 8 Move ROC
A P

Data for

B the program
[y —

Figure: A Program for C&[A]+[B]
Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch,
the instruction is fetched from the memory location whose address is in the PC. This instruction is

Dept of CSE,GCEM Page 16

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

placed in the instruction register (IR) in the processor. At the start of the second phase, called
instruction execute, the instruction in IR is examined to determine which operation is to be
performed. The specified operation is then performed by the processor. This often involves fetching
operands from the memory or from processor registers, performing an arithmetic or logic operation,
and storing the result in the destination location. At some point during this two-phase procedure, the
contents of the PC are advanced to point to the next instruction.

When the execute phase of an instruction is completed, the PC contains the address of the next
instruction, and a new instruction fetch phase can begin. In most processors, the execute phase itself
is divided into a small number of distinct phases corresponding to fetching operands, performing the
operation, and storing the result

» Branching
Every time it is not possible to store a program in the consecutive memory location. After execution
of decision making instruction we have to follow one of the two program sequence. IN such case we
cannot use the straight —line sequencing. Here we have to use the branch instruction to transfer the
program control from one straight-lone sequence to another straight line sequencing.
Consider the task of adding a list of n numbers. The program outlined in Figure 2.9 is a
generalization of the program in above Figure.
The addresses of the memory locations containing the n numbers are symbolically given as NUM1,
NUM2, . .., NUMn, and a separate Add instruction is used to add each number to the contents of
register RO.
After all the numbers have been added, the result is placed in memory location SUM. Instead of
using a long list of Add instructions, it is possible to place a single Add instruction in a program loop,
as shown in Figure 2.10. The loop is a straight-line sequence of instructions executed as many times
as needed. It starts at location LOOP and ends at the instruction Branch>0. During each pass through
this loop, the address of the next list entry is determined, and that entry is fetched and added to RO.

Dept of CSE,GCEM Page 17

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

i Move NUMLRD Mowve NRI1
i+4 Add NUM2.RO ~ Clear RO
) - LOOP
i+8 Add NUM3.RO _ Detenmmine address of
- "MNeal” nuinber and add
Program ' "MNext” number to RO
loop]
Decrement R
i+4n-4 Add NUMaRO L Branch=0 LOOP
) Mowve ROSUM
i+4n Move ROSUM
SUM
SUM N n
NUMI
NUMI1
NUM2
NUM?2
NUMnA
NUM~#

Figure: A straight-line program for adding n | Figure: Using a loop to add n numbers
numbers

» Condition codes

The processor keeps track of information about the results of various operations for use by
subsequent conditional branch instructions. This is accomplished by recording the required
information in individual bits, often called condition code flags. These flags are usually grouped
together in a special processor register called the condition code register or status register.
Individual condition code flags are set to 1 or cleared to 0, depending on the outcome of the operation
performed.
e Carry/borrow flag: The carry bit is set when the summation of two 8 bit number is greater
than 1111 1111.A borrow bit is generated when a large number is subtracted from a smaller
number.

e Zero flag: The zero bit is set when the contents of register are zero after any operation. This
happens not only when we decrement the register, but also any arithmetic and logical
operation.

Dept of CSE,GCEM Page 18

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

e Negative or sign flag: In 2’s complement arithmetic, the most significant bit is a sign bit. If
the bit is logic 1,then number is negative number, otherwise a positive number.

e Auxiliary Flag:The auxiliary carry bit of status register is set when an addition in the 4 bit
cause a carry into the fifth bit.

e Overflow flag:This flag is set if the result of signed operation is too large to fit in the number
of bit available to represent it.

e Parity flag:When the result of an operation leaves the even number of 1’°s then parity is set.

Generating Memory Addresses

Let us return to fig b. The purpose of the instruction block at LOOP is to add a different number from
the list during each pass through the loop. Hence, the Add instruction in the block must refer to a
different address during each pass. How are the addresses to be specified? The memory operand
address cannot be given directly in a single Add instruction in the loop. Otherwise, it would need to

be modified on each pass through the loop.

The instruction set of a computer typically provides a number of such methods, called addressing

modes. While the details differ from one computer to another, the underlying concepts are the same.

Addressing Modes

Programs are normally written in a high-level language, which enables the programmer to use
constants, local and global variables, pointers, and arrays. The different ways in which the location
of an operand is specified in an instruction are referred to as addressing modes.

Table: Generic addressing modes

Dept of CSE,GCEM Page 19

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Name Assembler syntax Addressing function

Immediate #Value Operand = Value

Register Ri EA =Ri

Absolute (Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]

(LOC) EA = [LOC]

Index X(Ri) EA=[Ri]+ X

Base with index (Ri.Rj) EA =[Ri] + [R)]

Base with index X(Ri,Rj) EA=[Ri]+ [Rj]+ X

and offset

Relative X(PC) EA=|PC]+ X

Autoincrement (Ri)+ EA = [R:];
Increment Ri

Autodecrement —(Ri) Decrement Ri;

EA = [Ri]

EA = effective address
Valve = a signed number

Implementation of variables and constants
Variables and constants are the simplest data types and are found in almost every computer program.
In assembly language, a variable is represented by allocating a register or a memory location to hold
its value. Thus, the value can be changed as needed using appropriate instructions.

1) REGISTER MODE - The operand is the contents of a processor register; the name (address)

of the register is given in the instruction.
Move rl,r2
The effective address of register mode is Ea=Ri

2) ABSOLUTE MODE - The operand is in a memory location; the address of this location is
given explicitly in the instruction. (In some assembly languages, this mode is called Direct).
Move LOC, R2
The effective address of absolute mode is Ea=Loc
3) IMMEDIATE MODE - The operand is given explicitly in the instruction. For example, the
instruction Move #200, RO

Dept of CSE,GCEM Page 20

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Places the value 200 in register RO. Clearly, the immediate mode is only used to specify the value of
a source operand. Using a subscript to denote the immediate mode is not appropriate in assembly
languages. A common convention is to use the sharp sign (#) in front of the value to indicate that
this value is to be used as an immediate operand
The effective address of immediate mode is
Operand=value

4) INDIRECTION AND POINTERS:-
In the addressing modes that follow, the instruction does not give the operand or its address
explicitly, Instead, it provides information from which the memory address of the operand can be
determined. We refer to this address as the effective address (EA) of the operand.

Indirect mode — The effective address of the operand is the contents of a register or Memory
location whose address appears in the instruction.

Move (rl),r2

For example: Move #num,rl

Move (rl),r2

In the above instruction, the address of the num is copied into the register rl, whenever second
instruction is executed ,the content of the num is moved to the register r2.

The effective address of indirect mode is

Ea=(Ri) //register

Ea=(Loc) //memory

Add (RI),R0 Add (A)RO
. Main :
. memory .
B Operand A B
R1 B Register B Operand
(a) Through a general-purpose register (b) Through a memory location

Figure: Indirect Addressing

Dept of CSE,GCEM Page 21

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Address Contents

A e R NN Sl ARl A NI B

Move N,R1
Move #NUMI,R2 Initialization
Clear RO
—— LOOP Add (R2),R0
Add #4,R2
Decrement R1
Branch>0 LOQOP

Move R0O,SUM

SRR T T T ek s T TR R i R e R T G i

Figure: Use of indirect addressing in the program

In the program shown Register R2 is used as a pointer to the numbers in the list, and the operands are
accessed indirectly through R2. The initialization section of the program loads the counter value n
from memory location N into R1 and uses the immediate addressing mode to place the address value
NUML1, which is the address of the first number in the list, into R2.
Then it clears RO to 0. The first two instructions in the loop implement the unspecified instruction
block starting at LOOP. The first time through the loop, the Instruction Add (R2), RO fetches the
operand at location NUM1and adds it to RO. The second Add instruction adds 4 to the contents of the
pointer R2, so that it will contain the address value NUM2 when the above instruction is executed in
the second pass through the loop.
As another example of pointers, consider the C-language statement
A =*B; Where B is a pointer variable
This statement may be compiled into

Move B, R1

Move (R1), A

Using indirect addressing through memory, the same action can be achieved with

Move (B), A
Indirect addressing through registers is used extensively. The above program shows the flexibility it
provides. Also, when absolute addressing is not available, indirect addressing through registers
makes it possible to access global variables by first loading the operand’s address in a register.

INDEXING AND ARRAYS:-
A different kind of flexibility for accessing operands is useful in dealing with lists and arrays.

Index mode — the effective address of the operand is generated by adding a constant value to the
contents of a register

Move X(rl),r2

The register use may be either a special register provided for this purpose, or, more commonly, it
may be any one of a set of general-purpose registers in the processor.

Dept of CSE,GCEM Page 22

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

In either case, it is referred to as index register. We indicate the Index mode symbolically as X (Ri)
Where X denotes the constant value contained in the instruction and Ri is the name of the register
involved. The effective address of the operand is given by EA = X + [R]]

1l B2, MRS

Dyperarmrec]

(=) COifest is gieen as a consiant

o] BRI, 10HNES)

yperarm]

(b)) Off=set = in the ndex regester

Figure: Indexed addressing
Above Fig illustrates two ways of using the Index mode. In fig a, the index register, R1, contains the
address of a memory location, and the value X defines an offset (also called a displacement) from
this address to the location where the operand is found. An alternative use is illustrated in fig (5).
Here, the constant X corresponds to a memory address, and the contents of the index register define
the offset to the operand.
In either case, the effective address is the sum of two values; one is given explicitly in the instruction,
and the other is stored in a register.

RELATIVE ADDRESSING:-

Relative mode: The effective address is determined by the index mode using program counter in
place of the general purpose processor register.

EA=[pc]+x

This addressing mode commonly used to specify the target address in the branch instruction. For
example; Branch >0 LOOP

Causes program execution to go to the branch target location identified by the name LOOP if the
branch condition is satisfied. This location can be computed by specifying it as an offset from the
current value of the program counter. Since the branch target may be either before or after the branch
instruction, the offset is given as a signed number

Additional modes

Auto increment mode:The effective address of the operand is the content of a register specified in
the instruction. After accessing the operand ,the contents of this register are incremented to the
address the next instruction

For example: Mov (r2)+,r0

Dept of CSE,GCEM Page 23

Digital Design and Computer Organization (BCS302) Module 3: Basic

Structure of Computers , Machine Instructions and Programs

The effective address of auto increment mode is EA=[Ri]

-Ri)

Move N. Rl

Move #NUMI. R2

Clear RO
LOOP Add {(R1)+, RO
Decrement R
Branch=0 LOOP
Mave RO, SUM

Fig:- The Auto increment addressing mode used in program

Auto decrement mode — The contents of a register specified in the instruction are first automatically
decremented and are then used as the effective address of the operand. Notation is —(Ri)

Assembly lanquage:

>

Machine instructions are represented by patterns of Os and 1s. Such patterns are awkward to
deal with when discussing or preparing programs. Therefore, we use symbolic names to
represent the patterns. So far, we have used normal words, such as Load, Store, Add, and
Branch, for the instruction operations to represent the corresponding binary code patterns.
When writing programs for a specific computer, such words are normally replaced by
acronyms called mnemonics, such as LD, ST, ADD, and BR.

A shorthand notation is also useful when identifying registers, such as R3 for register 3.
Finally, symbols such as LOC may be defined as needed to represent particular memory
locations.

A complete set of such symbolic names and rules for their use constitutes a programming
language, generally referred to as an assembly language.

The set of rules for using the mnemonics and for specification of complete instructions and
programs is called the syntax of the language.

Dept of CSE,GCEM Page 24

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

» Programs written in an assembly language can be automatically translated into a sequence of
machine instructions by a program called an assembler. The assembler program is one of a
collection of utility programs that are a part of the system software of a computer.

» The user program in its original alphanumeric text format is called a source program, and the
assembled machine-language program is called an object program.

To make programming easier, usually write program in assembly language. They then translate the
assembly level language to machine level language. so that it can be loaded into memory and
executed.

The assembly text is usually divided into fields, separated by space and tabs. The format for typical
line from assembly language program can be given as

Labels: Mnemonic Operandl, Opreand2 ; comment

e The first field, which is optional, is the label field, used to specify symbolic labels.

e The second field is mnemonic, which is compulsory. All instruction must contain a
mnemonic.

e The third and following fields are operand. The presence of the operands depends on the
instruction. Some instruction have no operands, some have two or one operands.

Assembler Directives:
There are some instructions in assembly language program which are not a part of processor
instruction set. These instructions are instruction to the assembler, linker, loader. Then these
instruction are called assembler directives
The assembly language requires assembler directives for performing following basic function.
e To indicate starting location of the memory where the data block is stored and starting
location of the memory where code is stored.

e To define different types of variables or to set aside one or more storage location of
corresponding data type in memory.

e To indicate the assembler about the value of the variables.
e Toindicate start and end of subroutine program

The commonly used directives are :

ORIGIN: This directive tells assembler that where to place the data block in the memory or where to
start loading of object program in the memory. That is ORIGIN directive specifies the starting
memory location for data and code.

DB,DW,DD,DQ,DT: These directive are used to define different types of variables or to set aside
one or more storage location of the corresponding data types in the memory. These are know as data
control directives.

DB-define byte

DD-define double-word

DW-define word

DQ-define Quad-word

DT=define ten bytes

EQU directives: The EQU directive is used to redefine a data name or variable with another data
name, variable or immediate value. The directive should be define in a program before it is
referenced.

NUM EQU 200

Dept of CSE,GCEM Page 25

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

ST EQU ‘hello’

PROC directives: The procedure in the programs can be defined by PROC directive. The procedure
name must be present, must be unique and must follow name conventions for the language. After
PROC directive the term NEAR or FOR are issued to specify the type of the procedure.

ENDP directive: ENDP directive is used along with the PROC directive .The ENDP define the end
of procedure.

RESERVE Directive: RESERVE directive is used to reserve the number of memory location for the
given variable.

NUM RESERVE 200

As the assembler scans through a source programs, it keeps track of all names and the numerical
values that Correspond to them in a symbol table. Thus, when a name appears a second time, it is
replaced with its value from the table. A problem arises when a name appears as an operand before it
is given a value. For example,

This happens if a forward branch is required. A simple solution to this problem is to have the
assembler scan through the source program twice.

e During the first pass, it creates a complete symbol table. At the end of this pass, all names will
have been assigned numerical values. The assembler then goes through the source program a
second time and substitutes values for all names from the symbol table. Such an assembler is
called a two-pass assembler.

The assembler stores the object program on a magnetic disk. The object program must be loaded into
the memory of the computer before it is executed. For this to happen, another utility program called a
loader must already be in the memory.

When the object program begins executing, it proceeds to completion unless there are logical errors
in the program. The user must be able to find errors easily. The assembler can detect and report
syntax errors. To help the user find other programming errors, the system software usually includes a
debugger program. This program enables the user to stop execution of the object program at some
points of interest and to examine the contents of various processor registers and memory locations.

I\".‘Il.'-rr|-:|-|.|'-\. "\111|r:':-r-|r|§_:
address or data
lalx=l {Opreration imforomation
Assembler directives SUM B 2O
ORICGIIN 204
™ DA TAWVWORIDD 10
NI RESERVE SERLN]
ORICGIMN 104
Statements that START MOV N.I21
Fenerato MOVE FHEMUNMNL , R2
pnn sl e L "1.E Rid
instruactions IO »E™ AT {2 130
AT 4 TR
I 1
BCTE LOOP
MOV IE RO.SUTA
A ssembler directives RETITRIN
EINT» START

Figure: Assembly language representation for the program

Dept of CSE,GCEM Page 26

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

Number Notation:-

When dealing with numerical values, it is often convenient to use the familiar decimal notation. Of
course, these values are stored in the computer as binary numbers. In some situations, it is more
convenient to specify the binary patterns directly. Most assemblers allow numerical values to be
specified in different ways, using conventions that are defined by the assembly language syntax.

e Consider, for example, the number 93, which is represented by the 8-bit binary number
01011101. If this value is to be used an immediate operand, it can be given as a decimal
number, as in the instructions.

ADD #93, R1
Or as a binary number identified by a prefix symbol such as a percent sign, as in
ADD #%01011101, R1

e Binary numbers can be written more compactly as hexadecimal, or hex, numbers, in which
four bits are represented by a single hex digit. In hexadecimal representation, the decimal
value 93 becomes 5D. In assembly language, a hex representation is often identified by a
dollar sign prefix. Thus, we would write

ADD #$5D, R1

Basic input and output operations:

Consider a task that reads in character input from a keyboard and produces character output on a
display screen. A simple way of performing such I/O tasks is to use a method known as program-
controlled 1/0.

e The transfer of data between keyboard and processor and display device is called Input
/Output data transfer or 1/O data transfer

e The rate of data transfer from the keyboard to a computer is limited by the typing speed of the
user, which is unlikely to exceed a few characters per second.

e The rate of output transfers from the computer to the display is much higher. Due to the speed
between these devices we have to synchronization mechanism for proper transfer of data
between them.

Figure shows the typical bus connection for processor, keyboard and display. The DATAIN and
DATAOUT are the register by which the processor reads the contents from keyboard and sends the
data for display respectively. SIN and SOUT are status bit used to synchronize data transfer between
keyboard and processor and data transfer between display and processor respectively.

Bus
processor | DATAIN DATAOUT
E SIN j sSouUT
Keyboard Display

Figure: Bus connection for processor, keyboard, and display

Dept of CSE,GCEM Page 27

Digital Design and Computer Organization (BCS302) Module 3: Basic

Structure of Computers , Machine Instructions and Programs

When a key is pressed, the corresponding character code is stored in the DATAIN register
and SIN status bit is set to indicate that the valid character code is available in the DATAIN
register. Under the program control processor check the SIN bit and when it fiends SIN =1, it
read the contents of the DATAIN register. After the completion of read operation SIN is
automatically cleared to 0.and process repeats.

When the character is too transferred from the processor to the display, DATAOUT register
and SOUT status bit are used. Under program control, processor checks SOUT bit. If
SOUT=1lindicates that the display is ready to receive character. Therefore, when processor
wants to transfer data to the DATAOUT register and clears SOUT status to 0 and process
repeats

Stacks and queues

A computer program often needs to perform a particular subtask using the familiar subroutine
structure. In order to organize the control and information linkage between the main program
and the subroutine, a data structure called a stack is used. This section will describe stacks, as
well as a closely related data structure called a queue.

Data operated on by a program can be organized in a variety of ways.We have already
encountered data structured as lists. Now, we consider an important data structure known as a
stack.

A stack is a list of data elements, usually words or bytes, with the accessing restriction that
elements can be added or removed at one end of the list only. This end is called the top of the
stack, and the other end is called the bottom.

Another descriptive phrase, last-in-first-out (LIFO) stack, is also used to describe this type of
storage mechanism; the last data item placed on the stack is the first one removed when
retrieval begins

. The terms push and pop are used to describe placing a new item on the stack and removing
the top item from the stack, respectively.

O
Stack
pointer
register l
sSP >8 Current
= top element
17
739
Stack
BOTTOM a3 -1 Bottom
element
253

Figure: A stack of words in the memory

Another useful data structure that is similar to the stack is called a queue. Data are stored in and
retrieved from a queue on a first-in-first-out (FIFO) basis. Thus, if we assume that the queue grows in

Dept of CSE,GCEM Page 28

Digital Design and Computer Organization (BCS302) Module 3: Basic
Structure of Computers , Machine Instructions and Programs

the direction of increasing addresses in the memory, which is a common practice, new data are added
at the back (high-address end) and retrieved from the front (low-address end) of the queue. is either
completely full or completely empty.
Figure shows an example of a stack of word data items. The stack contains numerical values, with 43
at the bottom and —28 at the top. The stack pointer, SP, is used to keep track of the address of the
element of the stack that is at the top at any given time.
If we assume a byte-addressable memory with a 32-bit word length, the push operation can be
implemented as

Subtract SP, SP, #4

Store Rj, (SP)

where the Subtract instruction subtracts 4 from the contents of SP and places the result in SP.
Assuming that the new item to be pushed on the stack is in processor register Rj, the Store instruction
will place this value on the stack. These two instructions copy the word from Rj onto the top of the
stack, decrementing the stack pointer by 4 before the store (push) operation.
The pop operation can be implemented as
Load Rj, (SP)

Add SP, SP, #4
These two instructions load (pop) the top value from the stack into register Rj and then increment the
stack pointer by 4 so that it points to the new top element. Below Figure shows the effect of each of
these operations on the stack in next Figure.

S5 — 149
= —2H
17 5F —= 1)
TG T3im
= Swmck
= Siback
23 43
By | 19 | i | _28 |
{a)] After push from Hy () Adtaer pop imbo B 7

Figure: Effect of stack operation on the stack in previous figure

Dept of CSE,GCEM Page 29

