Module II: Multi Threaded Programming

Multi threaded programming

A thread is a basic unit of CPU utilization. It consists of a thread ID, program
counter, a stack, and a set of registers.

Traditional processes have a single thread of control. It is also called as
heavyweight process. There is one program counter, and one sequence of
instructions that can be carried out at any given time.

A multi-threaded application have multiple threads within a single process,
each having their own program counter, stack and set of registers, but sharing
common code, data, and certain structures such as open files. Such process are
called as lightweight process.

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread — ;

<«——— thread

single-threaded process

multithreaded process

Motivation

Threads are very useful in modern programming whenever a process has
multiple tasks to perform independently of the others

This is particularly true when one of the tasks may block, and it is desired to
allow the other tasks to proceed without blocking.

For example in a word processor, a background thread may check spelling and
grammar while a foreground thread processes user input (keystrokes), while
yet a third thread loads images from the hard drive, and a fourth does periodic
automatic backups of the file being edited.

In a web server - Multiple threads allow for multiple requests to be served
simultaneously. A thread is created to service each request; meanwhile
another thread listens for more client request.

In a web browser — one thread is used to display the images and another thread
is used to retrieve data from the network.

Dept of CSE, GCEM

Page 1

Module II: Multi Threaded Programming

(2) create new
(1) request thread to service
the request
client > server —> thread

U

(3) resume listening
for additional
client requests

Figure 4.2 Multithreaded server architecture.

Benefits

The four major benefits of multi-threading are:

1. Responsiveness - One thread may provide rapid response while other threads

are blocked or slowed down doing intensive calculations.

Multi threading allows a program to continue running even if part of it
is blocked or is performing a lengthy operation, thereby increasing
responsiveness to the user.

Resource sharing - By default threads share common code, data, and other
resources, which allows multiple tasks to be performed simultaneously in a
single address space.

Economy - Creating and managing threads is much faster than performing the
same tasks for processes. Context switching between threads takes less time.

Scalability, i.e. Utilization of multiprocessor architectures — Multithreading
can be greatly utilized in a multiprocessor architecture. A single threaded
process can make use of only one CPU, whereas the execution of a multi-
threaded application may be split among the available processors.
Multithreading on a multi-CPU machine increases concurrency. In a single
processor architecture, the CPU generally moves between each thread so
quickly as to create an illusion of parallelism, but in reality only one thread is
running at a time.

Multicore Programming

A recent trend in computer architecture is to produce chips with
multiple cores, or CPUs on a single chip.

A multi-threaded application running on a traditional single-core chip, would
have to execute the threads one after another. On a multi-core chip, the threads
could be spread across the available cores, allowing true parallel processing.

DeptofCSE,GCGEM Ppage2

Module II: Multi Threaded Programming

core 1 T4 T T4 Ta i ...

core 2 To Ta T Ta To e

single core | Ty To T3 T4 T4 T2 Ta T4 Ty

time

Figure 4.3 Concurrent execution on a single-core system.

time

Figure 4.4 Parallel execution on a Multicore System

For operating systems, multi-core chips require new scheduling algorithms to
make better use of the multiple cores available.

For application programmers, there are five areas where multi-core chips
present new challenges:

1. Dividing activities - Examining applications to find activities that can
be performed concurrently.

2. Balance - Finding tasks to run concurrently that provide equal value.
l.e. don't waste a thread on trivial tasks.

3. Data splitting - To prevent the threads from interfering with one
another.

4. Data dependency - If one task is dependent upon the results of another,
then the tasks need to be synchronized to assure access in the proper
order.

5. Testing and debugging - Inherently more difficult in parallel
processing situations, as the race conditions become much more
complex and difficult to identify.

Multithreading Models

There are two types of threads to be managed in a modern system: User
threads and kernel threads.

User threads are the threads that application programmers would put into their
programs. They are supported above the kernel, without kernel support.

Kernel threads are supported within the kernel of the OS itself. All modern OS
support kernel level threads, allowing the kernel to perform multiple tasks
simultaneously.

In a specific implementation, the user threads must be mapped to kernel
threads, using one of the following models.

Deptof CSEGCEM ~ Ppage3

Module II: Multi Threaded Programming

a) Many-To-One Model

In the many-to-one model, many user-level threads are all mapped onto a
single kernel thread.

o %

34— user thread

<«—— kernel thread

o Thread management is handled by the thread library in user space, which is
very efficient.

« Ifa blocking system call is made by one of the threads, then the entire process
blocks. Thus blocking the other user threads from continuing the execution.

e Only one user thread can access the kernel at a time, as there is only one kernel
thread. Thus the threads are unable to run in parallel on multiprocessors.

e Green threads of Solaris and GNU Portable Threads implement the many-to-
one model.

b) One-To-One Model

e The one-to-one model creates a separate kernel thread to handle each user
thread.

e One-to-one model overcomes the problems listed above involving blocking
system calls and the splitting of processes across multiple CPUs.

o However the overhead of managing the one-to-one model is more significant,
involving more overhead and slowing down the system.

e This model places a limit on the number of threads created.

e Linux and Windows from 95 to XP implement the one-to-one model for
threads.

<«—— user thread

DeptofCSE,GCGEM Page4

Module II: Multi Threaded Programming

¢) Many-To-Many Model

The many-to-many model multiplexes any number of user threads onto an
equal or smaller number of kernel threads, combining the best features of the
one-to-one and many-to-one models.

Users have no restrictions on the number of threads created.

Blocking kernel system calls do not block the entire process.

Processes can be split across multiple processors.

Individual processes may be allocated variable numbers of kernel threads, depending
on the number of CPUs present and other factors.

This model is also called as two-tier model.

It is supported by operating system such as IRIX, HP-UX, and Tru64 UNIX.

S S

%4— user thread

-—— kernel thread

Threading Issues
a) The fork() and exec() System Calls
The fork() system call is used to create a separate, duplicate process.
When a thread program calls fork(),
e The new process can be a copy of the parent, with all the threads
e The new process is a copy of the single thread only (that invoked the
process)

If the thread invokes the exec() system call, the program specified in the
parameter to exec() will be executed by the thread created.

b) Cancellation
Terminating the thread before it has completed its task is called thread
cancellation. The thread to be cancelled is called target thread.
Example : Multiple threads required in loading a webpage is suddenly
cancelled, if the browser window is closed.

Threads that are no longer needed may be cancelled in one of two ways:

1. Asynchronous Cancellation - cancels the thread immediately.

2. Deferred Cancellation — the target thread periodically check whether
it has to terminate, thus gives an opportunity to the thread, to terminate
itself in an orderly fashion.

In this method, the operating system will reclaim all the
resources before cancellation.

Deptof CSEGCEM Ppage5

Module II: Multi Threaded Programming

¢) Signal Handling
A signal is used to notify a process that a particular event has occurred.

All signals follow same path-
1) Asignal is generated by the occurrence of a particular event.
2) A generated signal is delivered to a process.
3) Once delivered, the signal must be handled.

A signal can be invoked in 2 ways : synchronous or asynchronous.

Synchronous signal — signal delivered to the same program. Eg — illegal memory
access, divide by zero error.

Asynchronous signal — signal is sent to another program. Eg — Ctrl C

In a single-threaded program, the signal is sent to the same thread. But, in multi-
threaded environment, the signal is delivered in variety of ways, depending on the
type of signal —

« Deliver the signal to the thread, to which the signal applies.

o Deliver the signal to every threads in the process.

« Deliver the signal to certain threads in the process.

o Deliver the signal to specific thread, which receive all the signals.

A signal can be handled by one of the two ways —
Default signal handler - signal is handled by OS.
User-defined signal handler - User overwrites the OS handler.

d) Thread Pools
In multithreading process, thread is created for every service. Eg — In web server,

thread is created to service every client request.

Creating new threads every time, when thread is needed and then deleting it when
it is done can be inefficient, as —

Time is consumed in creation of the thread.

A limit has to be placed on the number of active threads in the system. Unlimited
thread creation may exhaust system resources.

An alternative solution is to create a number of threads when the process first starts,
and put those threads into a thread pool.
e Threads are allocated from the pool when a request comes, and returned to the
pool when no longer needed(after the completion of request).
e When no threads are available in the pool, the process may have to wait until
one becomes available.

Benefits of Thread pool —

e Thread creation time is not taken. The service is done by the thread existing in
the pool. Servicing a request with an existing thread is faster than waiting to
create athread.

e The thread pool limits the number of threads in the system. This is important
on systems that cannot support a large number of concurrent threads.

Deptof CSEGCEM Page6

Module II: Multi Threaded Programming

The (maximum) number of threads available in a thread pool may be determined by
parameters like the number of CPUs in the system, the amount of memory and the
expected number of client request.

e) Thread-Specific Data

o Data of a thread, which is not shared with other threads is called thread
specific data.

e Most major thread libraries (pThreads, Win32, Java) provide support for
thread-specific data.

Example — if threads are used for transactions and each transaction has an ID.
This unique ID is a specific data of the thread.

f) Scheduler Activations

Scheduler Activation is the technique used for communication between the user-
thread library and the kernel.
It works as follows:
— the kernel must inform an application about certain events. This procedure
is known as an upcall.
— Upcalls are handled by the thread library with an upcall handler, and
upcall handlers must run on a virtual processor.

Example - The kernel triggers an upcall occurs when an application thread is
about to block. The kernel makes an upcall to the thread library informing that a
thread is about to block and also informs the specific ID of the thread.

The upcall handler handles this thread, by saving the state of the blocking thread
and relinquishes the virtual processor on which the blocking thread is running.

The upcall handler then schedules another thread that is eligible to run on the
virtual processor. When the event that the blocking thread was waiting for occurs,
the kernel makes another upcall to the thread library informing it that the
previously blocked thread is now eligible to run. Thus assigns the thread to the
available virtual processor.

-
j s— &l thread

LWP | =— lightweight process

| k |J=——kemel thread

LightweightProcess(LWP)

Deptof CSEEGCEM Ppage7

Module II: Multi Threaded Programming

Thread Libraries

e Thread libraries provide an API for creating and managing threads.
e Thread libraries may be implemented either in user space or in kernel space.
e There are three main thread libraries in use —

1. POSIX Pthreads - may be provided as either a user or kernel library, as
an extension to the POSIX standard.

2. Win32 threads - provided as a kernel-level library on Windows
systems.

3. Java threads - Since Java generally runs on a Java Virtual Machine, the
implementation of threads is based upon whatever OS and hardware
the JVM is running on, i.e. either Pthreads or Win32 threads depending
on the system.

o The following sections will demonstrate the use of threads in all three systems
for calculating the sum of integers from 0 to N in a separate thread, and storing
the result in a variable "sum".

4.3.1 Pthreads

e The POSIX standard (IEEE 1003.1c) defines the specification for pThreads,
not the implementation.

e pThreads are available on Solaris, Linux, Mac OSX, Tru64, and via public
domain shareware for Windows.

o Global variables are shared amongst all threads.

o One thread can wait for the others to rejoin before continuing.

e pThreads begin execution in a specified function, in this example the runner()
function.

o Pthread_create() function is used to create a thread.

Deptof CSEGCEM ~ Ppage8§

Module II: Multi Threaded Programming

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(g) */
void *runner (vold *param); /* the thread */

int main(int argc, char *argv(])
-

It
L

pthread t tid; /* the thread identifier */
pthread_attr.t attr; /* set of thread attributes */
if (azrgc I= 2) {
fprintf (stderr, "usage: a.out <integer values\n");
= W R R
if {atoil (argv[1]) < 0) {
fprintf (stderr, "%d must be »= 0\n",atoi(argv[l]));
return -1;

/* get the default attributes #*/
pthread attr init (&attr) ;

/* c¢reate the thread */

pthread create(&tid, &attr, runner,argv([1l]) ;
/* wait for the thread to exit */
pthread join (tid, NULL) ;

printf ("sum = %d\n", sum) ;

J

/* The thread will begin control in this function */
void *runner(void *param)
{

int i, upper = atoi(param);

gum = 0;
For- (L=l i <= Uppery; Gy
sum += 1;

pthread exit (0) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.
Figure 4.9

4.3.2 Win32 Threads
o Similar to pThreads. Examine the code example to see the differences, which
are mostly syntactic & nomenclature.
o Here summation() function is used to perform the separate thread function.
o CreateThread() is the function to create a thread.

Deptof CSEGCEM Ppage9

Module II: Multi Threaded Programming

#include <windows.h>

#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */
/* the thread runs in this separate function */

DWORD WINAPI Summation (LPVOID Param)
{
DWORD Upper = * (DWORD*) Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1i;
return 0;

}

int main(int argc, char *argv[])
{
DWORD ThreadlId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (arge != 2) {
fprintf (stderr, "An integer parameter is required\n");
return -1;
}
Param = atoi (argv[1l]);
if (Param < 0) {
fprintf (stderr, "An integer >= 0 is required\n");
return =l;

}

// create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, // default stack sgize
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish
WaitForSingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n", Sum) ;
}
}

Figure 4.7 Multithreaded C program using the Win32 API.

Deptof CSELGCEM Ppagel0

Module II: Multi Threaded Programming

4.3.3 Java Threads

e ALL Java programs use Threads.

class Sum
private int sum;

public int getSum() {
return sum;

public void setSum(int sum) {
this.sum = sum;

}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumvalue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int 4 = 0 1 <= upper; i++)
sum += i;
sumvValue.setSum(sum) ;

¥
}

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselInt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
Sum sumObject = new Sum() ;
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation (upper, sumObject));
thrd.start () ;
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum());
} catch (InterruptedException ie) { }
}
1

else
System.err.println("Usage: Summation <integer value>"); }

Figure 4.8 Java program for the summation of a non-negative integer.

Dept of CSE, GCEM

Module II: Multi Threaded Programming

e The creation of new Threads requires to implement the Runnable Interface,
which contains a built-in method "public void run()" . The Thread class will
have to overwrite the built-in function run(), in which the thread code should be
written.

e Creating a Thread Object does not start the thread running - To start the thread,
the built-in start() method should be invoked, which in turn call the run()
method(where statements to be executed by thread are written).

CPU SCHEDULING

3.1 BASIC CONCEPTS

In a single-processor system, only one process can run at a time; other processes must
wait until the CPU is free. The objective of multiprogramming is to have some process
running at all times in processor, to maximize CPU utilization.

In multiprogramming, several processes are kept in memory at one time. When one
process has to wait, the operating system takes the CPU away from that process and gives the
CPU to another process. This pattern continues. Every time one process has to wait, another
process can take over use of the CPU. Scheduling of this kind is a fundamental operating-
system function. Almost all computer resources are scheduled before use. The CPU is one of
the primary computer resources. Thus, its scheduling is central to operating-system design.

CPU-1/O Burst Cycle

Process execution consists of a cycle of CPU execution and 1/O wait. The state of process
under execution is called CPU burst and the state of process under I/O request & its handling
is called 1/O burst. Processes alternate between these two states. Process execution begins
with a CPU burst. That is followed by an 1/0 burst, which is followed by another CPU burst,
then another I/O burst, and so on. Eventually, the final CPU burst ends with a system request
to terminate execution as shown in the following figure:

=
-
-

load store
add store CPU burst
read from file

| wait for Lo I 17O burst
store increment
index CPU burst
write to file

I wait for Lo I /7O burst

load store
add store CPU burst

read from file

| wait for 'O 17O burst

DeptofCSE,GCGEM Ppagel2

Module II: Multi Threaded Programming

CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the processes
from the ready queue to be executed. The selection process is carried out by the short-term
scheduler (or CPU scheduler). The scheduler selects a process from the processes in memory
that are ready to execute and allocates the CPU to that process.

A ready queue can be implemented as a FIFO queue, a priority queue, a tree, or simply an
unordered linked list. All the processes in the ready queue are lined up waiting for a chance to
run on the CPU. The records in the queues are generally process control blocks (PCBs) of the
processes.

Non - Preemptive Scheduling — once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by terminating or by switching to the waiting
state.

Preemptive Scheduling — The process under execution, may be released from the CPU, in
the middle of execution due to some inconsistent state of the process.

Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher. The
dispatcher is the module that gives control of the CPU to the process selected by the short-
term scheduler. This function involves the following:

* Switching context
» Switching to user mode
« Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every process
switch. The time it takes for the dispatcher to stop one process and start another running is
known as the dispatch latency.

SCHEDULING CRITERIA

Different CPU scheduling algorithms have different properties, and the choice of a
particular algorithm may favour one class of processes over another. Many criteria have been
suggested for comparing CPU scheduling algorithms. The criteria include the following:

» CPU utilization - The CPU must be kept as busy as possible. Conceptually, CPU

utilization can range from 0 to 100 percent. In a real system, it should range from 40 to 90

percent .

» Throughput - If the CPU is busy executing processes, then work is done fast. One

measure of work is the number of processes that are completed per time unit, called

throughput.

» Turnaround time - From the point of view of a particular process, the important

criterion is how long it takes to execute that process. The interval from the time of

submission of a process to the time of completion is the turnaround time. Turnaround

time is the sum of the periods spent waiting to get into memory, waiting in the ready

gueue, executing on the CPU, and doing I/O.

Time spent waiting (to get into memory + ready queue + execution + 1/0O)

 Waiting time - The total amount of time the process spends waiting in the ready queue.

* Response time - The time taken from the submission of a request until the first response

is produced is called the response time. It is the time taken to start responding. In

interactive system, response time is given criterion.

It is desirable to maximize CPU utilization and throughput and to minimize turnaround
time, waiting time, and response time.

DeptofCSE,GCGEM Ppagel3

Module II: Multi Threaded Programming

SCHEDULING ALGORITHMS
CPU scheduling deals with the problem of deciding which of the processes in
the ready queue is to be allocated the CPU.

1. First-Come, First-Served Scheduling
Other names of this algorithm are:

e First-In-First-Out (FIFO)

e Run-to-Completion

e Run-Until-Done

First-Come-First-Served algorithm is the simplest scheduling algorithm. Processes are
dispatched according to their arrival time on the ready queue. This algorithm is
always nonpreemptive, once a process is assigned to CPU, it runs to completion.

Advantages :
e more predictable than other schemes since it offers time
e code for FCFS scheduling is simple to write and understand

Disadvantages:

e Short jobs(process) may have to wait for long time
Important jobs (with higher priority) have to wait
cannot guarantee good response time
average waiting time and turn around time is often quite long
lower CPU and device utilization.

Example:-
Process Burst Time

Pl 24

P2 3

P3 3

Suppose that the processes arrive in the order: Pl, P2 , P3
The Gantt.Chart for the schedule is:

I:)l P2 P3
0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1
The Gantt chart for the schedule is:

P2 Ps P1

DeptofCSE,GCGEM Ppagela

Module II: Multi Threaded Programming

Waiting time for P1 =6; P2=0; P3 =3
Average waiting time: (6 + 0 + 3)/3 =3
Much better than previous case

Here, there is a Convoy effect, as all the short processes wait for the completion of
one big process. Resulting in lower CPU and device utilization.
3.3.2 Shortest-Job-First Scheduling

This algorithm associates with each process the length of the process's next CPU
burst. When the CPU is available, it is assigned to the process that has the smallest
next CPU burst. If the next CPU bursts of two processes are the same, FCFS
scheduling is used to break the tie.

As an example of SJF scheduling, consider the following set of processes, with
the length of the CPU burst given in milliseconds:

Process Burst Time
P1 6
p2 8
p3 7
p4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:
| Py Py [P3 Pz |

|
!
0 3 9 18 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process Pa,
9 milliseconds for process Ps, and 0 milliseconds for process P4. Thus, the average
waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum
average waiting time for a given set of processes. Moving a short process before a
long one decreases the waiting time of the short process more than it increases the
waiting time of the long process. Consequently, the average waiting time decreases.

Although the SJF algorithm is optimal, it cannot be implemented at the level of
short-term CPU scheduling. There is no way to know the length of the next CPU
burst. The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let t, be the length of the nth CPU burst,
and let tn+1 be our predicted value for the next CPU burst. Then, for o, 0 < o <1,
define

Tatl = & by + (1 —)1y

The SJF algorithm can be either preemptive or nonpreemptive. The choice arises
when a new process arrives at the ready queue while a previous process is still
executing. The next CPU burst of the newly arrived process may be shorter than what
is left of the currently executing process. A preemptive SJF algorithm will preempt
the currently executing process, whereas a nonpreemptive SJF algorithm will allow
the currently running process to finish its CPU burst. Preemptive SJF scheduling is
sometimes called shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of the CPU
burst given in milliseconds:

DeptofCSE,GCGEM Ppagels

Module II: Multi Threaded Programming

Process Arrival Time Burst Time

P, 0 8
Py 1 4
Py 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted in the
following Gantt chart:

Ps

P Py : Py Pa

Process Py is started at time 0, since it is the only process in the queue. Process P2 arrives at
time 1. The remaining time for process P1 (7 milliseconds) is larger than the time required
by process P2 (4 milliseconds), so process P1 is preempted, and process P2 is scheduled. The
average waiting time for this example is ((10 -1) + (1-1) + (17 - 2) + (5- 3))/4 = 26/4 = 6.5
milliseconds.

Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

->SJF (preemptive)

P, | P, P3| P, P, P,
| | | | | | |
0 2 4 5 7 11 16

->Average waiting time =(9+ 1+ 0 +2)/4 =3

DeptofCSE,GCGEM Ppagele

26

Module II: Multi Threaded Programming

3.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm. A
priority is associated with each process, and the CPU is allocated to the process with
the highest priority. Equal-priority processes are scheduled in FCFS order. An SJF
algorithm is simply a priority algorithm where the priority (p) is the inverse of the
(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice

Versa.

As an example, consider the following set of processes, assumed to have arrived
at time 0, in the order Py, P2, ... , Ps, with the length of the CPU burst given in

milliseconds:
Process Burst Time Priority
/& 10 3
P> 1 1
P3 2 4
Py 1 <
P 5 2

Using priority scheduling, we would schedule these processes according to the

following Gantt chart:

Ps

Py

1 6

The average waiting time is 8.2 milliseconds.
Priority scheduling can be either preemptive or nonpreemptive. When a process
arrives at the ready queue, its priority is compared with the priority of the currently
running process. A preemptive priority scheduling algorithm will preempt the CPU if
the priority of the newly arrived process is higher than the priority of the currently
running process. A nonpreemptive priority scheduling algorithm will simply put the

new process at the head of the ready queue.

16

18 19

A major problem with priority scheduling algorithms is indefinite blocking, or
starvation. A process that is ready to run but waiting for the CPU can be considered
blocked. A priority scheduling algorithm can leave some low- priority processes
waiting indefinitely. In a heavily loaded computer system, a steady stream of higher-
priority processes can prevent a low-priority process from ever getting the CPU.

A solution to the problem of indefinite blockage of low-priority processes is
aging. Aging is a technique of gradually increasing the priority of processes that wait

in the system for a long time.

Dept of CSE, GCEM

Page 17

Module II: Multi Threaded Programming

3.3.3 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for
timesharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time slice, is
defined. A time quantum is generally from 10 to 100 milliseconds. The ready queue is
treated as a circular queue. The CPU scheduler goes around the ready queue,
allocating the CPU to each process for a time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU scheduler
picks the first process from the ready queue, sets a timer to interrupt after 1 time
quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less
than 1 time quantum. In this case, the process itself will release the CPU voluntarily.
The scheduler will then proceed to the next process in the ready queue. Otherwise, if
the CPU burst of the currently running process is longer than 1 time quantum, the
timer will go off and will cause an interrupt to the operating system. A context switch
will be executed, and the process will be put at the tail of the ready queue. The CPU
scheduler will then select the next process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst given
in milliseconds:

Process Burst Time

P 24
P, 3
P 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after the first
time quantum, and the CPU is given to the next process in the queue, process Po.
Since process P> does not need 4 milliseconds, it quits before its time quantum
expires. The CPU is then given to the next process, process Pz. Once each process has
received 1 time quantum, the CPU is returned to process P1 for an additional time
quantum. The resulting RR schedule is

Py Py B3 Py Py Py Py Py

4 7 10 14 18 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more than 1
time quantum in a row . If a process's CPU burst exceeds 1 time quantum, that
process is preempted arid is put back in the ready queue. The RR scheduling
algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is g, then each
process gets 1/n of the CPU time in chunks of at most q time units. Each process must
wait no longer than (n-1) x g time units until its next time quantum. For example,
with five processes and a time quantum of 20 milliseconds, each process will get up to
20 milliseconds every 100 milliseconds.

3.3.4 Multilevel Queue Scheduling
Dept of CSE, GCEM Page 18

Module II: Multi Threaded Programming

Another class of scheduling algorithms has been created for situations in which
processes are easily classified into different groups. For example, a common division
is made between foreground (interactive) processes and background (batch)
processes. These two types of processes have different response-time requirements
and so may have different scheduling needs. In addition, foreground processes may
have priority (externally defined) over background processes.

A multilevel queue scheduling algorithm partitions the ready queue into several
separate queues (Figure). The processes are permanently assigned to one queue,
generally based on some property of the process, such as memory size, process
priority, or process type. Each queue has its own scheduling algorithm. For example,
separate queues might be used for foreground and background processes. The
foreground queue might be scheduled by an RR algorithm, while the background
queue is scheduled by an FCFS algorithm.

highest priority

o e T S A =g |
nigradtive sdiingprocesses 4

eyl oertprooesses T |—

lowest priority

In addition, there must be scheduling among the queues, which is commonly
implemented as fixed-priority preemptive scheduling. For example, the foreground
queue may have absolute priority over the background queue.

Let's look at an example of a multilevel queue scheduling algorithm with five
queues, listed below in order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes
4. Batch processes

5. Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was running,
the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets a
certain portion of the CPU time, which it can then schedule among its various processes.
For instance, in the foreground-background queue example, the foreground queue can be
given 80 percent of the CPU time for RR scheduling among its processes, whereas the
background queue receives 20 percent of the CPU to give to its processes on an FCFS

basis.
Dept of CSE, GCEM Page 19

Module II: Multi Threaded Programming

3.3.5 Multilevel Feedback-Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes are
permanently assigned to a queue when they enter the system. The multilevel
feedback-queue scheduling algorithm, in contrast, allows a process to move between
queues. The idea is to separate processes according to the characteristics of their CPU
bursts. If a process uses too much CPU time, it will be moved to a lower-priority
queue. This scheme leaves 1/0-bound and interactive processes in the higher-priority
queues. In addition, a process that waits too long in a lower-priority queue may be
moved to a higher-priority queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three queues,
numbered from 0 to 2 (Figure). The scheduler first executes all processes in queue 0.
Only when queue 0 is empty will it execute processes in queue 1. Similarly, processes
in queue 2 will only be executed if queues 0 and 1 are empty. A process that arrives
for queue 1 will preempt a process in queue 2. A process in queue 1 will in turn be
preempted by a process arriving for queue 0.

DeptofCSE,GCGEM Page20

Module II: Multi Threaded Programming

> L

A process entering the ready queue is put in queue 0. A process in queue O is
given a time quantum of 8 milliseconds. If it does not finish within this time, it is
moved to the tail of queue 1. If queue O is empty, the process at the head of queue 1 is
given a quantum of 16 milliseconds. If it does not complete, it is preempted and is put
into queue 2. Processes in queue 2 are run on an FCFS basis but are run only when
queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU burst
of 8 milliseconds or less. Such a process will quickly get the CPU, finish its CPU
burst, and go off to its next I/O burst. Processes that need more than 8 but less than 24
milliseconds are also served quickly, although with lower priority than shorter
processes. Long processes automatically sink to queue 2 and are served in FCFS order
with any CPU cycles left over from queues 0 and 1.

In general, a multilevel feedback-queue scheduler is defined by the following
parameters:

 The number of queues

* The scheduling algorithm for each queue

» The method used to determine when to upgrade a process to a higher-priority
queue

» The method used to determine when to demote a process to a lower-priority
queue

» The method used to determine which queue a process will enter when that
process needs service

3.4 MULTIPLE-PROCESSOR SCHEDULING

3.4.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling decisions,
I/0 processing, and other system activities handled by a single processor—the master server.
The other processors execute only user code. This asymmetric multiprocessing is simple
because only one processor accesses the system data structures, reducing the need for data
sharing.

A second approach uses symmetric multiprocessing (SMP), where each processor is self-
scheduling. All processes may be in a common ready queue, or each processor may have its
own private queue of ready processes. Regardless, scheduling proceeds by having the
scheduler for each processor examine the ready queue and select a process to execute.

3.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on a specific
processor: The data most recently accessed by the process populates the cache for the

DeptofCSE,GCEM Ppage2l

Module II: Multi Threaded Programming

processor; and as a result, successive memory accesses by the process are often satisfied in
cache memory. Now, if the process migrates to another processor, the contents of cache
memory must be invalidated for the processor being migrated from, and the cache for the
processor being migrated to must be re-populated. Because of the high cost of invalidating
and re-populating caches, most SMP systems try to avoid migration of processes from one
processor to another and instead attempt to keep a process running on the same processor.
This is known as processor affinity, meaning that a process has an affinity for the processor
on which it is currently running.

Processor affinity takes several forms. When an operating system has a policy of
attempting to keep a process running on the same processor—but not guaranteeing that it will
do so— we have a situation known as soft affinity. Here, it is possible for a process to migrate
between processors. Some systems —such as Linux—also provide system calls that support
hard affinity, thereby allowing a process to specify that it is not to migrate to other processors.

3.4.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all processors to
fully utilize the benefits of having more than one processor. Otherwise, one or more
processors may sit idle while other processors have high workloads along with lists of
processes awaiting the CPU. Load balancing attempts to keep the workload evenly distributed
across all processors in an SMP system.

Load balancing is typically only necessary on systems where each processor has its own
private queue of eligible processes to execute. On systems with a common run queue, load
balancing is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue.

There are two general approaches to load balancing: push migration and pull migration.
With push migration, a specific task periodically checks the load on each processor and—if it
finds an imbalance—evenly distributes the load by moving (or pushing) processes from
overloaded to idle or less-busy processors. Pull migration occurs when an idle processor pulls
a waiting task from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems.

3.4.4 Symmetric Multithreading

SMP systems allow several threads to run concurrently by providing multiple physical
processors. An alternative strategy is to provide multiple logical—rather than physical—
processors. Such a strategy is known as symmetric multithreading (or SMT).

The idea behind SMT is to create multiple logical processors on the same physical
processor, presenting a view of several logical processors to the operating system, even on a
system with only-asingle physical processor. Each logical processor has its own architecture
state, which includes general-purpose and machine-state registers. Furthermore, each logical
processor issresponsible for its own interrupt handling, meaning that interrupts are delivered
to—and handled by—Ilogical processors rather than physical ones. Otherwise, each logical
processor shares the resources of its physical processor, such as cache memory and buses.
The following figure illustrates a typical SMT architecture with two physical processors, each
housing two logical processors. From the operating system's perspective, four processors are
available for work on this system.

logical || logical logical | | legical
CPU || CGPU CPU CPU
physical " physicat "
CPU CPU!

{ sysiem bus

DeptofCSE,GCEM Ppage22

Module II: Multi Threaded Programming

3.5 THREAD SCHEDULING

On operating systems that support user-level and kernel-level threads, it is kernel-level
threads—not processes—that are being scheduled by the operating system. User-level threads
are managed by a thread library, and the kernel is unaware of them. To run on a CPU, user-
level threads must ultimately be mapped to an associated kernel-level thread, although this
mapping may be indirect and may use a lightweight process (LWP).

3.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they are
scheduled. On systems implementing the many-to-one and many-to-many models, the thread
library schedules user-level threads to run on an available LWP, a scheme known as process-
contention scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. To decide which kernel thread to schedule onto a CPU, the kernel uses
system-contention scope (SCS). Competition for the CPU with SCS scheduling takes place
among all threads in the system.

Typically, PCS is done according to priority—the scheduler selects the runnable thread
with the highest priority to run. User-level thread priorities are set by the programmer. PCS
will typically preempt the thread currently running in favor of a higher-priority thread.

3.5.2 Pthread Scheduling
Pthreads identifies the following contention scope values:

o PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling.
o PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many model, the PTHREAD_SCOPE_PROCESS
policy schedules user-level threads onto available LWPs. The number of LWPs is maintained
by the thread library, perhaps using scheduler activations. The
PTHREAD_SCOPE_SYSTEM scheduling policy will create and bind an LWP for each user-
level thread on many-to-many systems, effectively mapping threads using the one-to-one
policy.

The Pthread IPC provides the following two functions for getting—and setting—the
contention scope policy;

* pthread_attr_setscope (pthread_attr_t *attr, int scope)

* pthread_attr_getscope (pthread_attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for the thread.
The second parameter for the pthread attr_setscope () function is passed either the
THREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS value, indicating how the
contention scope is to be set. In the case of pthread_attr_getscope(), this second parameter
contains a pointer to an int value that is set to the current value of the contention scope. If an
error occurs, each of these functions returns non-zero values.

DeptofCSE,GCGEM Ppage23

Module 2 Chap-2: Process Synchronization

Process Synchronization

5.1 Background

Since processes frequently needs to communicate with other processes therefore, there is a

need for a well- structured communication, without using interrupts, among processes.

A situation where several processes access and manipulate the same data concurrently and
the outcome of the execution depends on the particular order in which the access takes place,
is called a race condition.

To guard against the race condition ensure only one process at a time can be manipulating the

variable or data. To make such a guarantee processes need to be synchronized in some way

5.2 The Critical-Section Problem

Consider a system consisting of n processes {P0, P1, ..., Pn—1}. Each process has a segment
of code, called a critical section, in which the process may be changing common variables,
updating a table, writing a file, and so on. when one process is executing in its critical
section, no other process is allowed to execute in its critical section. The critical-section
problem is to design a protocol that the processes can use to cooperate. Each process must
request permission to enter its critical section. The section of code implementing this request
is the entry section. The critical section may be followed by an exit section. The remaining

code is the remainder section. The general structure of a typical process Pi is shown in Figure

do {

entry section

critical section
remainder section
} while (true);
General structure of a typical process BA,.
A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.

Dept of CSE, GCEM Page 1

Module 2 Chap-2: Process Synchronization

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

sections can participate in deciding which will enter its critical section next, and this selection

cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request to

enter its critical section and before that request is granted.

Two general approaches are used to handle critical sections in operating systems:

Preemptive kernels: A preemptive kernel allows a process to be preempted while it
IS running in kernel mode.

Nonpreemptive kernels.. A nonpreemptive kernel does not allow a process running
in kernel mode to be preempted; a kernel-mode process will run until it exits kernel
mode, blocks, or voluntarily yields control of the CPU.

5.3 Peterson’s Solution

A classic software-based solution to the critical-section problem known as Peterson’s

solution. It addresses the requirements of mutual exclusion, progress, and bounded waiting.

It Is two process solution.
Assume that the LOAD and STORE instructions are atomic; that is, cannot be
interrupted
The two processes share two variables:

int turn;

Boolean flag[2]
The variable turn indicates whose turn it is to enter the critical section. The flag array
is used to indicate if a process is ready to enter the critical section. flag[i] = true
implies that process Pi is ready.

The structure of process Pi in Peterson’s solution:

Dept of CSE, GCEM Page 2

Module 2 Chap-2: Process Synchronization

do {

flagli]l = true;
turn = j;
while (flaglj] && turn == j);

critical secHon

|f1ag[i] = false;

remainder section
} while (true);
e |t proves that
1. Mutual exclusion is preserved
2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

5.4 Synchronization Hardware
Software-based solutions such as Peterson’s are not guaranteed to work on modern computer
architectures. Simple hardware instructions can be used effectively in solving the critical-
section problem. These solutions are based on the locking —that is, protecting critical
regions through the use of locks.

do {
acqguire lock
critical section
release lock
remainder section
}while (TRUE),

Solution to Critical Section problem using locks
e Modern machines provide special atomic hardware instructions
Atomic = non-interruptable
e Either test memoryword and set value(TestAndSet()) Or swap contents of two
memory words(Swap()).

e The definition of the test and set() instruction

boolean test_and set(boolean *target) {
boolean rv = #target;
*target = true;

return rv,

}

Dept of CSE, GCEM Page 3

Module 2 Chap-2: Process Synchronization

e Using test and set() instruction, mutual exclusion can be implemented by declaring a
boolean variable lock, initialized to false. The structure of process Pi is shown in
Figure:

do {
while (test._and_set(&lock))
; /* do nothing =*/

/* critical =sectionm #*/
lock = false;

/#* remainder section #*/
} while (true);

Mutual-exclusion implementation with test and set().
e Using Swap() instruction, mutual exclusion can be provided as : A global Boolean
variable lock is declared and is initialized to false and each process has a local

Boolean variable key.

void Swap (boolean *a, boolean *b)

{
boolean temp = "a;
*a = *b;
b = temp:

¥

The definition of the Swap() instruction

do {
key = TRUE;
while (key == TRUE)
Swap (&lock, &key);
!/l critical section
lock = FALSE;

I remainder section

} while (TRUEY);
Mutual exclusion implementation with Swap() instruction

e Testand Set() instruction & Swap() Instruction do not satisfy the bounded-waiting requirement.

Dept of CSE, GCEM Page 4

Module 2 Chap-2: Process Synchronization

do {
waitingl[il = true;
key = true;
while (waitinglil && key)
key = test_and_set(&lock);
waitingl[i]l = false;

JS* critical section */
j =i+ 1) % n;

while ((j !'= i) && !waitingljl)
j =4 + 1) % n;

if (j == 1)
lock = false;
aelse
waitingljl = false;

/* remainder section */
} while (true);

. Bounded-waiting mutual exclusion with test and set()

5.5 Semaphores
The hardware-based solutions to the critical-section problem are complicated as well as
generally inaccessible to application programmers. So operating-systems designers build
software tools to solve the critical-section problem, and this synchronization tool called as
Semaphore.

e Semaphore S is an integer variable

e Two standard operations modify S: wait() and signal()

Originally called P() and V()

e Canonly be accessed via two indivisible (atomic) operations

e wait (5){
while S <=0
-/l no-op
S
}
e signal (S){
S++
}

e Must guarantee that no two processes can execute wait () and signal () on the same
semaphore at the same time.
Usage:
Semaphore classified into:

e Counting semaphore: Value can range over an unrestricted domain.

Dept of CSE, GCEM Page 5

Module 2 Chap-2: Process Synchronization

e Binary semaphore(Mutex locks): Value can range only between from 0 & 1. It
provides mutual exclusion.

Semaphore mutex; // initialized to 1
do {
wait (mutex);
/I Critical Section
signal (mutex);
// remainder section
1 while (TRUE);
e Consider 2 concurrently running processes:
S1,
signal(synch);
In process P1, and the statements
wait(synch);
S2;
Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked

signal(synch), which is after statement S1 has been executed.

Implementation:
The disadvantage of the semaphore is busy waiting i.e While a process is in critical
section, any other process that tries to enter its critical section must loop continuously
in the entry code. Busy waiting wastes CPU cycles that some other process might be
able to use productively. This type of semaphore is also called a spin lock because the
process spins while waiting for the lock.
Solution for Busy Waiting problem:
Modify the definition of the wait() and signal()operations as follows: When a process
executes the wait() operation and finds that the semaphore value is not positive, it must wait.
Rather than engaging in busy waiting, the process can block itself. The block operation places
a process into a waiting queue associated with the semaphore, and the state of the process is
switched to the waiting state. Then control is transferred to the CPU scheduler, which selects
another process to execute.
A process that is blocked, waiting on a semaphore S, should be restarted when some other

process executes a signal() operation. The process is restarted by a wakeup() operation, which

Dept of CSE, GCEM Page 6

Module 2 Chap-2: Process Synchronization

changes the process from the waiting state to the ready state. The process is then placed in the
ready queue.
To implement semaphores under this definition, define a semaphore as follows:
typedef struct {
int value;
struct process *list;
} semaphore;
Each semaphore has an integer value and a list of processes list. When a process must wait on
a semaphore, it is added to the list of processes. A signal() operation removes one process
from the list of waiting processes and awakens that process. Now, the wait() semaphore
operation can be defined as:
wait(semaphore *S) {
S->value--;
if (S->value <0) {

add this process to S->list;
block();

}
}
and the signal() semaphore operation can be defined as

signal(semaphore *S) {
S->value++;
if (S->value <=0) {
remove a process P from S->list;

wakeup(P);

}

The block() operation suspends the process that invokes it. The wakeup(P) operation resumes

the execution of a blocked process P.

5.6.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where two
or more processes are waiting indefinitely for an event that can be caused by only one of the
waiting processes, these processes are said to be deadlocked.

Dept of CSE, GCEM Page 7

Module 2 Chap-2: Process Synchronization

Consider below example: a system consisting of two processes, PO and P1, each accessing

two semaphores, S and Q, set to the value 1:

Py 5]
wait(S); wait(Q) ;
wait (@) ; wait(s);
signﬁi{S}; sign#l{ﬂ};
signal{Q) ; signal (S);

Suppose that PO executes wait(S) and then P1 executes wait(Q).When PO executes wait(Q), it
must wait until P1 executes signal(Q). Similarly, when P1 executes wait(S), it must wait until
PO executes signal(S). Since these signal() operations cannot be executed, PO and P1 are
deadlocked.

Another problem related to deadlocks is indefinite blocking or starvation.

5.7 Classic Problems of Synchronization

5.7.1 The Bounded-Buffer Problem:
e N buffers, each can hold one item
e Semaphore mutex initialized to the value 1
e Semaphore full initialized to the value 0
e Semaphore empty initialized to the value N

Code for producer is given below:

do {
/= -pr.od-uce an item in next_produced */

wait (empty) ;
wait(mutex) ;

/* add next_produced to the buffer =*/
signal (mutex);
signal (full);

} while (true);

Code for consumer is given below:

Dept of CSE, GCEM Page 8

Module 2 Chap-2: Process Synchronization

do {
wait(full);
wait(mutex) ;

/* remove an item from buffer to next_consumed =*/

signal (mutex) ;
signal (empty) ;

/* consume the item in next_consumed */

} whiieliérue};
5.7.2 The Readers—Writers Problem

e Adata set is shared among a number of concurrent processes
v Readers — only read the data set; they do not perform any updates

v" Writers— can both read and write
e Problem —allow multiple readers to read at the same time
v Only one single writer can access the shared data at the same time

o Several variations of how readers and writers are treated — all involve priorities.

v First variation — no reader kept waiting unless writer has permission to use
shared object
v’ Second variation- Once writer is ready, it performs asap.

e Shared Data

v Data set

v Semaphore mutex initialized to 1
v Semaphore wrt initialized to 1

v Integer readcount initialized to 0

The structure of writer process:

do {
wait(rv_mutex) ;

/* writing is performed */

signal (rv_mutex) ;
} while (true);

Dept of CSE, GCEM Page 9

Module 2 Chap-2: Process Synchronization

The structure of reader process:

do {
wait (mutex) ;
read_count++;
if (read _count == 1)
wait{rwv_mutex) ;
signal (mutex) ;

/* reading is performed =*/

wait(mutex) ;

read_count——;

if (read count == 0)
signal (rw_mutex) ;

signal (mutex);
} while (true);

5.7.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging to one
philosopher. In the center of the table is a bow! of rice, and the table is laid with five

single chopsticks.

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the
chopsticks that are between her and her left and right neighbors). A philosopher may pick up
only one chopstick at a time. When a hungry philosopher has both her chopsticks at the same
time, she eats without releasing the chopsticks. When she is finished eating, she puts down
both chopsticks and starts thinking again.

It is a simple representation of the need to allocate several resources among several processes
in a deadlock-free and starvation-free manner.

Solution: One simple solution is to represent each chopstick with a semaphore. A

philosopher tries to grab a chopstick by executing a wait() operation on that semaphore. She

Dept of CSE, GCEM Page 10

Module 2 Chap-2: Process Synchronization

releases her chopsticks by executing the signal() operation on the appropriate semaphores.
Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of philosopher i is
shown in Figure

do {
wait(chopstick[il);
wait(chopstick[(i+1) ¥ EB1);

/* eat for awhile =*/

signal (chopstick[il);
signal (chopstick[{i+1) ¥ 51)};

/* think for awhile */
} while (true);
Several possible remedies to the deadlock problem are replaced by:
e Allow at most four philosophers to be sitting simultaneously at the table.
e Allow a philosopher to pick up her chopsticks only if both chopsticks are available.
e Use an asymmetric solution—that is, an odd-numbered philosopher picks up first her

left chopstick and then her right chopstick, whereas an even numbered philosopher
picks up her right chopstick and then her left chopstick.

5.8 Monitors

Incorrect use of semaphore operations:

o Suppose that a process interchanges the order in

which the wait() and signal() operations on the semaphore mutex are executed,
resulting in the following execution:

signal(mutex);
critical section

wait(mutex);
o Suppose that a process replaces signal(mutex) with
wait(mutex). That is, it executes

wait(mutex);
critical section

wait(mutex);

Dept of CSE, GCEM Page 11

Module 2 Chap-2: Process Synchronization

In this case, a deadlock will occur.

o Suppose that a process omits the wait(mutex), or
the signal(mutex), or both. In this case, either mutual exclusion is violated or a
deadlock will occur.

Solution:

Monitor: An abstract data type—or ADT—encapsulates data with a set of functions to
operate on that data that are independent of any specific implementation of the ADT.

A monitor type is an ADT that includes a set of programmer defined operations that are
provided with mutual exclusion within the monitor. The monitor type also declares the
variables whose values define the state of an instance of that type, along with the bodies of
functions that operate on those variables. The monitor construct ensures that only one process
at a time is active within the monitor.

The syntax of a monitor type is shown in Figure:

monitor mMonitor name

{
/#* shared variable declarations =*/
function P1 (. . .) {
}
functien P2 (. . .)} {
}
function Pn (. . .) {
}
initializationcode (. . .) {
}
}

Schematic view of a monitor:

Dept of CSE, GCEM Page 12

Module 2 Chap-2: Process Synchronization

entry queue

A;d data

."; .\\
|IIII I.\n
IIII III
| II
|
|
| ||
I|I |I
\ /
.\ /

operations

initialization
code

To have a powerful Synchronization schemes a condition construct is added to the Monitor.

So synchronization scheme can be defined with one or more variables of type condition.
condition x, y;

The only operations that can be invoked on a condition variable are wait() and signal(). The
operation
x.wait();
means that the process invoking this operation is suspended until another process invokes
x.signal();
The x.signal() operation resumes exactly one suspended process. If no process is suspended,
then the signal() operation has no effect; that is, the state of x is the same as if the operation
had never been executed. Contrast this operation with the signal() operation associated with

semaphores, which always affects the state of the semaphore.

Dept of CSE, GCEM Page 13

Module 2 Chap-2: Process Synchronization

entry queue

shared data

X—bbik
Yy~

queues associated with
X, y conditions

[
‘{
I'
‘ |:| |:| D
',
\
\ operations /
initialization
code

5.8.2 Dining-Philosophers Solution Using Monitors

\

\

A deadlock-free solution to the dining-philosophers problem using monitor concepts. This
solution imposes the restriction that a philosopher may pick up her chopsticks only if both of
them are available.
Consider following data structure:
enum {THINKING, HUNGRY, EATING} state[5];

Philosopher i can set the variable state[i] = EATING only if her two neighbors are not eating:
(state[(i+4) % 5] '= EATING) and(state[(i+1) % 5] != EATING).
And also declare:

Condition self[5];
This allows philosopher i to delay herself when she is hungry but is unable to obtain the
chopsticks she needs.

A monitor solution to the dining-philosopher problem:

Dept of CSE, GCEM Page 14

Module 2 Chap-2: Process Synchronization

monitor DiningPhilosophers

{
enum { THINKING: HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (inti) {

state[i] = HUNGRY;

test(i);

if (state[i] I= EATING) self [i].wait;
}

void putdown (int i) {
state[i] = THINKING;
/I test left and right neighbors
test((i + 4) % 35);
test((i + 1) % 5);
}
void test (inti) {
if ((state[(i + 4) % 5] 1= EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] '= EATING)) {
state[i] = EATING ;
self[i].signal () ;
¥

initialization_code() {
for (inti =0;i<5; i++)
state[i] = THINKING;

}

5.8.3 Implementing a Monitor Using Semaphores

For each monitor, a semaphore mutex (initialized to 1) is provided. A process must execute
wait(mutex) before entering the monitor and must execute signal(mutex) after leaving the
monitor.

Since a signaling process must wait until the resumed process either leaves or waits, an
additional semaphore, next, is introduced, initialized to 0. The signaling processes can use
next to suspend themselves. An integer variable next_count is also provided to count the

number of processes suspended on next. Thus, each external function F is replaced by

Dept of CSE, GCEM Page 15

Module 2 Chap-2: Process Synchronization

wait (mutex) ;
bo;flll}f of F

if (next_count > 0)
signal (next);
else
signal (mutex) ;
Mutual exclusion within a monitor is ensured.
For each condition x, we introduce a semaphore x sem and an integer variable x count, both
initialized to 0. The operation x.wait() can now be implemented as
x_count++;
if (next_count >0)
signal(next);
else
signal(mutex);
wait(x_sem);
x_count--;

The operation x.signal() can be implemented as

if (x_count > 0) {
next_count++;
signal (x_sem) ;
wait (next);
next_count——;

}
5.8.4 Resuming Processes within a Monitor
If several processes are suspended on condition X, and an x.signal() operation is executed by
some process, then to determine which of the suspended processes should be resumed next,
one simple solution is to use a first-come, first-served (FCFS) ordering, so that the process
that has been waiting the longest is resumed first. For this purpose, the conditional-wait
construct can be used. This construct has the form

X.wait(c);

where ¢ is an integer expression that is evaluated when the wait() operation is executed. The
value of ¢, which is called a priority number, is then stored with the name of the process
that is suspended. When x.signal() is executed, the process with the smallest priority number

is resumed next.

Dept of CSE, GCEM Page 16

Module 2 Chap-2: Process Synchronization

monitor ResourcelAllocator

{

boolean busy;
condition x;

void acquire(int time) {
if (busy)
x.wait(time);
busy = true;

}

void release() |
busy = false;
x.signal();

}

initialization code() {
busy = false;
1

}

The ResourceAllocator monitor shown in the above Figure, which controls the allocation of
a single resource among competing processes.
A process that needs to access the resource in question must observe the following sequence:

R.acquire(t);
access the resource;

R.release();
where R is an instance of type ResourceAllocator.
The monitor concept cannot guarantee that the preceding access sequence will be observed.
In particular, the following problems can occur:
e A process might access a resource without first gaining access permission to the
resource.
e A process might never release a resource once it has been granted access to the
resource.

e A process might attempt to release a resource that it never requested.

e A process might request the same resource twice (without first releasing the resource).

Dept of CSE, GCEM Page 17

