Module IV

Module IV
Virtual-Memory Management

Virtual memory is a technique that allows the execution of processes that are not completely in memory.
One major advantage of this scheme is that programs can be larger than physical memory.

e In practice, most real processes do not need all their pages, or at least not all at once, for several

reasons:

o Error handling code is not needed unless that specific error occurs, some of which are quite
rare.

o Certain features of certain programs are rarely used.

e The ability to load only the portions of processes that are actually needed has several benefits:
o Programs could be written for a much larger address space (virtual memory space) than
physically exists on the computer.
o Because each process is only using a fraction of their total address space, there is more memory
left for other programs, improving CPU utilization and system throughput.
0 Less I/0 is needed for swapping processes in and out of RAM,
speeding things up.

The figure below shows the general layout of virtual memory, which can be much larger than physical
memory:

page O
page 1 TR
page 2 /—————‘—-\‘\
il M
==
i E 1 =] Ll
i R = .
=1 uEd
P i il
| page v physical

memory
virtual

memaory

Figure 9.1 Diagram showing virtual memory that is larger than physical memong

e The figure below shows virtual address space, which is the programmer’s logical view of process
memory storage. The actual physical layout is controlled by the process's page table.

Dept of CSE, GCEM Page 1

Module IV

e Note that the address space shown in Figure 9.2 is sparse - A great hole in the middle of the address

space is never used, unless the stack and/or the heap grow to fill the hole.

Figure 9.2 Virtual address space.

Max

0

'“15Emk

heap

data

e Virtual memory also allows the sharing of files and memory by multiple processes, with several

benefits:

e System libraries can be shared by mapping them into the virtual address space of more than one

process.

e Processes can also share virtual memory by mapping the same block of memory to more than one

process.

e Process pages can be shared during a fork() system call, eliminating the need to copy all of the pages

of the original (parent) process.

stack

|

stack

shared library

|

shared
pages

}

shared library

heap

data

code

|

heap

|

data

code

Figure 9.3 Shared library using virtual memory.

Dept of CSE, GCEM

Page 2

Module IV

9.2 Demand Paging

e The basic idea behind demand paging is that when a process is swapped in, its pages are not
swapped in all at once. Rather they are swapped in only when the process needs them. (on demand.)
This is termed as lazy swapper, although a pager is a more accurate term.

{

swap out

k'

o1 1] 21 31

program
A

ath 1 et 70

s8] e 1to[111
12 1314 15[]

16[]171?]18[;]19[:]

program
B \ swap in

20 j21 [J22[23]

111

Figure 9.4 Transfer of a paged memory to contiguous disk space.

e The basic idea behind demand paging is that when a process is swapped in, the pager only loads into

memory those pages that are needed presently.

e Pages that are not loaded into memory are marked as invalid in the page table, using the invalid bit. Pages

loaded in memory are marked as valid.

e If the process only ever accesses pages that are loaded in memory (memory resident pages), then the
process runs exactly as if all the pages were loaded in to memory.

Dept of CSE, GCEM

Page 3

Module IV

o
1
o A 2
valid—invalid
2 C ol 4 v 4 A
=" gl)] 1 [
4l E = Hi s] c©] B
5 E 4 i 7 —
S s ey ’ =]
6 i
7 h 7 o ¢ (I
" page table [
ey 1o I I I

\

-
\V]

-
w

-
Y

15

physical memory

Figure 9.5 Page table when some pages are not in main memory.

e On the other hand, if a page is needed that was not originally loaded up, then a page fault trap is
generated, which must be handled in a series of steps:

1. The memory address requested is first checked, to make sure it was a valid memory
request.
2. If the reference is to an invalid page, the process is terminated. Otherwise, if the page is not
present in memory, it must be paged in.
3. A free frame is located, possibly from a free-frame list.
4. A disk operation is scheduled to bring in the necessary page from disk.
5. After the page is loaded to memory, the process's page table is updated with the new frame
number, and the invalid bit is changed to indicate that this is now a valid page reference.
6. The instruction that caused the page fault must now be restarted from the beginning.

Dept of CSE, GCEM Page 4

Module IV

page is on

backing store /______,_\\
operating
system
reference trap
load M = [i
restart page table
instruction
free frame e ___,/
® @
reset page bring in
table missing page
physical
memory

Figure 9.6 Steps in handling a page fault.

e In an extreme case, the program starts execution with zero pages in memory. Here NO pages are
swapped in for a process until they are requested by page faults. This is known as pure demand
paging.

e The hardware necessary to support demand paging is the same as for paging and swapping: A page
table and secondary memory.

Performance of Demand Paging

e There is some slowdown and performance hit whenever a page fault occurs(as the required page is
not available in memory) and the system has to go get it from memory.

e There are many steps that occur when servicing a page fault and some of the steps are optional or
variable. But just for the sake of discussion, suppose that a normal memory access requires 200
nanoseconds, and that servicing a page fault takes 8 milliseconds. (8,000,000 nanoseconds, or
40,000 times a normal memory access.) With a page fault rate of p, (on a scale from 0 to 1), the
effective access time is now:

Effective access time = p * time taken to access memory in page fault+ (1-p)* time taken to access
memory
=p * 8000000+ (1-p)*(200)
=200 + 7,999,800 * p
Even if only one access in 1000 causes a page fault, the effective access time drops from 200
nanoseconds to 8.2 microseconds, a slowdown of a factor of 40 times. In order to keep the slowdown less
than 10%, the page fault rate must be less than 0.0000025, or one in 399,990 accesses.

Dept of CSE, GCEM Page 5

Module IV

9.3 Copy-on-Write
e The idea behind a copy-on-write is that the pages of a parent process is shared by the child process,
until one or the other of the processes changes the page. Only when a process changes any page
content, that page is copied for the child.
e Only pages that can be modified need to be labeled as copy-on-write. Code segments can simply be
shared.

Some systems provide an alternative to the fork() system call called a virtual memory fork, vfork(). In this
case the parent is suspended, and the child uses the parent's memory pages. This is very fast for process
creation, but requires that the child not modify any of the shared memory pages before performing the exec(
) system call.

physical
Process, memory process, physical
process; memory process,
r——’ il I page A
| pageB [LTl pageB | [
page C I Wit
Copy of page C
Figure 9.7 Before process 1 modifies page C. Figure 9.8 After process 1 modifies page C.

9.4 Page Replacement
e In order to make the most use of virtual memory, we load several processes into memory at the same
time. Since we only load the pages that are actually needed by each process at any given time, there
are frames to load many more processes in memory.
e |If some process suddenly decides to use more pages and there aren't any free frames available. Then
there are several possible solutions to consider:
1. Adjust the memory used by 1/0 buffering, etc., to free up some frames for user processes.
2. Put the process requesting more pages into a wait queue until some free frames become available.
3. Swap some process out of memory completely, freeing up its page frames.
4. Find some page in memory that isn't being used right now, and swap that page only out to disk,
freeing up a frame that can be allocated to the process requesting it. This is known as page
replacement, and is the most common solution. There are many different algorithms for page
replacement.
The previously discussed page-fault processing assumed that there would be free frames available on the
free-frame list. Now the page-fault handling must be modified to free up a frame if necessary, as follows:
1. Find the location of the desired page on the disk.

Dept of CSE, GCEM Page 6

Module IV

2. Find a free frame:
a. If there is a free frame, use it.
b. If there is no free frame, use a page-replacement algorithm to select an existing frame to be
replaced, known as the victim frame.
c. Write the victim frame to disk. Change all related page tables to indicate that this page is
no longer in memory.

3. Read in the desired page and store it in the frame. Change the entries in page table.

4. Restart the process that was waiting for this page.

frame valid—invalid bit

Y vl Ty
swap out
change victim i
o |i to invalid page
f |v <:> = ‘
f| victim 7
reset page
page table table for
new page swap
desired
page in

physical
memory

Figure 9.10 Page replacement.

e Note that step 2c adds an extra disk write to the page-fault handling, thus doubling the time required
to process a page fault. This can be reduced by assigning a modify bit, or dirty bit to each page in
memory, indicating whether or not it has been changed since it was last loaded in from disk. If the
page is not modified the bit is not set. If the dirty bit has not been set, then the page is unchanged,
and does not need to be written out to disk. Many page replacement strategies specifically look for
pages that do not have their dirty bit set.

e There are two major requirements to implement a successful demand paging system.
frame-allocation algorithm and a page-replacement algorithm. The former centers around how

many frames are allocated to each process, and the latter deals with how to select a page for
replacement when there are no free frames available.

Dept of CSE, GCEM Page 7

Module IV

e The overall goal in selecting and tuning these algorithms is to generate the fewest number of overall
page faults. Because disk access is so slow relative to memory access, even slight improvements to
these algorithms can yield large improvements in overall system performance.

e Algorithms are evaluated using a given string of page accesses known as a reference string.

Few Page Replacement algorithms —
a) FIFO Page Replacement

e Asimple and obvious page replacement strategy is FIFO, i.e. first-in-first-out.

e This algorithm associates with each page the time when that page was brought into memory. When a
page must be replaced, the oldest page is chosen.

e OraFIFO queue can be created to hold all pages in memory. As new pages are brought in, they are added
to the tail of a queue, and the page at the head of the queue is the next victim.

¢ Inthe following example, a reference string is given and there are 3 free frames. There are 20 page
requests, which results in 15 page faults.

reference string
7 0 1 2 0 3 0 4 2 3 2 1 2 0 1 7 0 1

Ll

Figure 9.12 FIFO page-replacement algorithm.

page frames

e Although FIFO is simple and easy to understand, it is not always optimal, or even efficient.
e Belady's anomaly tells that for some page-replacement algorithms, the page-fault rate may increase
as the number of allocated frames increases.

Dept of CSE, GCEM Page 8

Module IV

number of page faults

number of frames

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

b) Optimal Page Replacement

e The discovery of Belady's anomaly lead to the search for an optimal page-replacement algorithm,
which is simply that which yields the lowest of all possible page-faults, and which does not suffer
from Belady's anomaly.

e Such an algorithm does exist, and is called OPT or MIN. This algorithm is "Replace the page that
will not be used for the longest time in the future.”

e The same reference string used for the FIFO example is used in the example below, here the
minimum number of possible page faults is 9.

e Unfortunately OPT cannot be implemented in practice, because it requires the knowledge of future
string, but it makes a nice benchmark for the comparison and evaluation of real proposed new
algorithms.

reference string
7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1
| (ol o] [o] o] 4 0 0 o
(i i

page frames

Figure 9.14 Optimal page-replacement algorithm.

¢) LRU Page Replacement
e The LRU (Least Recently Used) algorithm, predicts that the page that has not been used in the
longest time is the one that will not be used again in the near future.
e Some view LRU as analogous to OPT, but here we look backwards in time instead of forwards.
e Figure 9.15 illustrates LRU for our sample string, yielding 12 page faults, (as compared to 15 for
FIFO and 9 for OPT.)

Dept of CSE, GCEM Page 9

Module IV

reference string

page frames

Figure 9.15 LRU page-replacement algorithm.

e LRU is considered a good replacement policy, and is often used. There are two simple approaches
commonly used to implement this:

1. Counters. With each page-table entry a time-of-use field is associated. Whenever a reference to a
page is made, the contents of the clock register are copied to the time-of-use field in the page-
table entry for that page. In this way, we always have the "time" of the last reference to each
page. This scheme requires a search of the page table to find the LRU page and a write to
memory for each memory access.

2. Stack. Another approach is to use a stack, and whenever a page is accessed, pull that page from
the middle of the stack and place it on the top. The LRU page will always be at the bottom of the
stack. Because this requires removing objects from the middle of the stack, a doubly linked list is
the recommended data structure.

e Neither LRU or OPT exhibit Belady's anomaly. Both belong to a class of page-replacement
algorithms called stack algorithms, which can never exhibit Belady's anomaly.

reference string
4 7 O F 1 0 1 2 1 2 7 1 2

" . 11
a b
1 2
(o] 1
7 0
4 4
stack stack
before after
a b

Figure 9.16 Use of a stack to record the most recent page references.

d) LRU-Approximation Page Replacement
e Many systems offer some degree of hardware support, enough to approximate LRU.

Dept of CSE, GCEM Page 10

Module IV

e In particular, many systems provide a reference bit for every entry in a page table, which is set
anytime that page is accessed. Initially all bits are set to zero, and they can also all be cleared at any
time. One bit distinguishes pages that have been accessed since the last clear from those that have not
been accessed.

d.1 Additional-Reference-Bits Algorithm

e An 8-bit byte(reference bit) is stored for each page in a table in memory.

e At regular intervals (say, every 100 milliseconds), a timer interrupt transfers control to the operating
system. The operating system shifts the reference bit for each page into the high-order bit of its 8-bit
byte, shifting the other bits right by 1 bit and discarding the low-order bit.

e These 8-bit shift registers contain the history of page use for the last eight time periods.

e |f the shift register contains 00000000, then the page has not been used for eight time periods.

e A page with a history register value of 11000100 has been used more recently than one with a value
of 01110111.

d.2 Second-Chance Algorithm
e The second chance algorithm is a FIFO replacement algorithm, except the reference bit is used to
give pages a second chance at staying in the page table.
e When a page must be replaced, the page table is scanned in a FIFO (circular queue) manner.
e Ifapage is found with its reference bit as ‘0’, then that page is selected as the next victim.
e [fthe reference bit value is ‘1°, then the page is given a second chance and its reference bit value is
cleared(assigned as‘0’).

reference pages reference pages
bits bits
next
wictim !E'
[1] [e]
]
circular queue of pages circular queue of pages

(a) (b)

Figure 9.17 Second-chance {(clock) page-replacement algorithm.

Dept of CSE, GCEM Page 11

Module IV

e Thus, a page that is given a second chance will not be replaced until all other pages have been
replaced (or given second chances). In addition, if a page is used often, then it sets its reference bit
again.

e This algorithm is also known as the clock algorithm.

One way to implement the second-chance algorithm is as a circular queue. A pointer indicates
which page is to be replaced next. When a frame is needed, the pointer advances until it finds a page
with a 0 reference bit. As it advances, it clears the reference bits. Once a victim page is found, the
page is replaced, and the new page is inserted in the circular queue in that position.

d.3 Enhanced Second-Chance Algorithm
e The enhanced second chance algorithm looks at the reference bit and the modify bit (dirty bit) as
an ordered page, and classifies pages into one of four classes:
1. (0, 0) - Neither recently used nor modified.
2. (0, 1) - Not recently used, but modified.
3. (1,0) - Recently used, but clean.
4. (1,1) - Recently used and modified.

e This algorithm searches the page table in a circular fashion, looking for the first page it can find in
the lowest numbered category. i.e. it first makes a pass looking for a (0, 0), and then if it can't find
one, it makes another pass looking fora (0, 1), etc.

e The main difference between this algorithm and the previous one is the preference for replacing clean
pages if possible.

e) Counting-Based Page Replacement
e There are several algorithms based on counting the number of references that have been made to a
given page, such as:

o Least Frequently Used, LFU: Replace the page with the lowest reference count. A problem
can occur if a page is used frequently initially and then not used any more, as the reference
count remains high. A solution to this problem is to right-shift the counters periodically,
yielding a time-decaying average reference count.

o Most Frequently Used, MFU: Replace the page with the highest reference count. The logic
behind this idea is that pages that have already been referenced a lot have been in the system
a long time, and we are probably done with them, whereas pages referenced only a few times
have only recently been loaded, and we still need them.

f) Page-Buffering Algorithms
e Maintain a certain minimum number of free frames at all times. When a page-fault occurs, go ahead
and allocate one of the free frames from the free list first, so that the requesting process is in memory
as early as possible, and then select a victim page to write to disk and free up a frame.

Dept of CSE, GCEM Page 12

Module IV

e Keep a list of modified pages, and when the I/O system is idle, these pages are written to disk, and
then clear the modify bits, thereby increasing the chance of finding a "clean" page for the next
potential victim and page replacement can be done much faster.

9.5 Allocation of Frames

e The absolute minimum number of frames that a process must be allocated is dependent on system
architecture.
e The maximum number is defined by the amount of available physical memory.

Allocation Algorithms
After loading of OS, there are two ways in which the allocation of frames can be done to the
processes.

e Equal Allocation - If there are m frames available and n processes to share them, each process gets
m / n frames, and the leftovers are kept in a free-frame buffer pool.

e Proportional Allocation - Allocate the frames proportionally depending on the size of the process. If
the size of process i is Si, and S is the sum of size of all processes in the system, then the allocation
for process Pi is ai = m * Si/ S. where m is the free frames available in the system.

Consider a system with a 1KB frame size. If a small student process of 10 KB and an interactive
database of 127 KB are the only two processes running in a system with 62 free frames.

With proportional allocation, we would split 62 frames between two processes, as follows-
m=62, S = (10+127)=137
Allocation for process 1 =62 X 10/137 ~ 4
Allocation for process 2 =62 X 127/137 ~57

Thus allocates 4 frames and 57 frames to student process and database respectively.
e Variations on proportional allocation could consider priority of process rather than just their size.
Global versus Local Allocation

e Page replacement can occur both at local or global level.

e With local replacement, the number of pages allocated to a process is fixed, and page replacement
occurs only amongst the pages allocated to this process.

e With global replacement, any page may be a potential victim, whether it currently belongs to the
process seeking a free frame or not.

e Local page replacement allows processes to better control their own page fault rates, and leads to
more consistent performance of a given process over different system load levels.

e Global page replacement is overall more efficient, and is the more commonly used approach.

Non-Uniform Memory Access (New)

Dept of CSE, GCEM Page 13

Module IV

Usually the time required to access all memory in a system is equivalent.

This may not be the case in multiple-processor systems, especially where each CPU is physically
located on a separate circuit board which also holds some portion of the overall system memory.

In such systems, CPUs can access memory that is physically located on the same board much faster
than the memory on the other boards.

The basic solution is akin to processor affinity - At the same time that we try to schedule processes
on the same CPU to minimize cache misses, we also try to allocate memory for those processes on
the same boards, to minimize access times.

9.6 Thrashing

Thrashing is the state of a process where there is high paging activity. A process that is spending more time
paging than executing is said to be thrashing.

9.6.1 Cause of Thrashing

When memory is filled up and processes starts spending lots of time waiting for their pages to page
in, then CPU utilization decreases(Processes are not executed as they are waiting for some pages),
causing the scheduler to add in even more processes and increase the degree of multiprogramming
even more. Thrashing has occurred, and system throughput plunges. No work is getting done,
because the processes are spending all their time paging.

In the graph given below , CPU utilization is plotted against the degree of multiprogramming. As the
degree of multiprogramming increases, CPU utilization also increases, although more slowly, until a
maximum is reached. If the degree of multiprogramming is increased even further, thrashing sets in,
and CPU utilization drops sharply. At this point, to increase CPU utilization and stop thrashing, we
must decrease the degree of multiprogramming.

thrashing

CPU utilization

degree of multiprogramming

Figure 9.18 Thrashing.

Dept of CSE, GCEM Page 14

Module IV

e Local page replacement policies can prevent thrashing process from taking pages away from other
processes, but it still tends to clog up the 1/0 queue.

9.6.2 Working-Set Model

e The working set model is based on the concept of locality, and defines a working set window, of
length delta. Whatever pages are included in the most recent delta page references are said to be in
the processes working set window, and comprise its current working set, as illustrated in Figure 9.20:

page reference table
... 261577 7751623412344434344413234443444 ..

Fa ,T P A _T
< | |
t t,
Ws(t,) ={1.25.6,7} WS(t,) = {3.4}

Figure 9.20 Working-set model.

e The selection of delta is critical to the success of the working set model - If it is too small then it does
not encompass all of the pages of the current locality, and if it is too large, then it encompasses pages
that are no longer being frequently accessed.

e The total demand of frames, D, is the sum of the sizes of the working sets for all processes (D=WSSi
). If D exceeds the total number of available frames, then at least one process is thrashing, because
there are not enough frames available to satisfy its minimum working set. If D is significantly less
than the currently available frames, then additional processes can be launched.

e The hard part of the working-set model is keeping track of what pages are in the current working set,
since every reference adds one to the set and removes one older page.

increase number
of frames

e U DPET bOUNd

page-fault rate
|

decrease number
of frames

number of frames

Figure 9.21 Page-fault frequency.

Dept of CSE, GCEM Page 15

Module IV

Page-Fault Frequency

e When page-fault rate is too high, the process needs more frames and when it is too low, the process
may have too many frames.

e The upper and lower bounds can be established on the page-fault rate. If the actual page-fault rate
exceeds the upper limit, allocate the process another frame or suspend the process. If the page-fault
rate falls below the lower limit, remove a frame from the process. Thus, we can directly measure and
control the page-fault rate to prevent thrashing.

Dept of CSE, GCEM Page 16

Module IV

Implementation of File System

File Concepts

The file system consists of two distinct parts: a collection of files, each storing related data, and a directory
structure, which organizes and provides information about all the files in the system.

A file is a collection of related information that is recorded on secondary storage. A file is a sequence
of bits, bytes, lines, or records, the meaning of which is defined by the file's creator and user.

a) File Attributes
A file is named, for the convenience of its human users, and is referred to by its name. A file's attributes vary
from one operating system to another . The attributes of a file are p-

o Name - The symbolic file name is the only information kept in humanreadable form. Some
special significance is given to names, and particularly extensions (.exe, .txt, etc.).

o ldentifier — It is a unique number, that identifies the file within the file system.
Type — Type of the file like text, executable, other binary, etc.

Location - . location of the file on that device.

Size - The current size of the file (in bytes, words, or blocks)

Protection - Access-control information (reading, writing, executing).

© O O O O

Time, date, and user identification —These data can be useful for protection, security, and usage
monitoring.

b) File Operations
The operating system provides system calls to create, write, read, reposition, delete, and truncate files.

e Creating a file - Two steps are necessary to create a file +
o Find space in the file system for the file.
o Make an entry for the new file in the directory.

e Writing a file - To write a file, the system call consists of both the name of the file and the
information to be written to the file. Given the name of the file, the system searches the directory to
find the file's location. The system must keep a write pointer to the location in the file where the next
write is to take place. The write pointer must be updated whenever a write occurs.

e Reading a file - To read from a file, the system call that specifies the name of the file and
where the next block of the file should be put. The directory is searched for the file, and the system
needs to keep a read pointer to the location in the file where the next read is to take place. Once the
read has taken place, the read pointer is updated.

e Repositioning within a file - The directory is searched for the file, and the file pointer
is repositioned to a given value. This file operation is also known as a file seek.

e Deleting a file — To delete a file, search the directory for the file. Release all file space, so
that it can be reused by other files, and erase the directory entry.

Dept of CSE, GCEM Page 17

that

Module IV

Truncating a file - The user may want to erase the contents of a file but keep its attributes.
Rather than forcing the user to delete the file and then recreate it, this function allows all attributes to
remain unchanged —except for file length. The file size is reset to zero.

Information about currently open files is stored in an open file table. It contains informations like:

o File pointer - records the current position in the file, for the next read or write access.

o File-open count - How many times has the current file been opened by different processes, at the
same time and not yet closed? When this counter reaches zero the file can be removed from the table.

o Disk location of the file — The information needed to locate the file on disk is kept in memory so
the system does not have to read it from disk for each operation.

o Access rights — The file access permissions are stored on the per-process table so that the

operating system can allow or deny subsequent 1/0 requests.

Some systems provide support for file locking.
o A shared lock is for reading only.

o A exclusive lock is for writing as well as reading.
o An advisory lock , it is up to the software developers to ensure that locks are acquired or

released.

door.)

o A mandatory lock , prevents any other process from accessing the locked file.. (A truly locked

o UNIX uses advisory locks, and Windows uses mandatory locks.

c) File Types

file type usual extension function

executable

exe, com, bin
or none

obj, o

ready-to-run machine-
language program

compiled, machine
language, not linked

source code in various

object

source code Cc, cC, java, pas,

asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor| wp, tex, rtf, various word-processor
doc formats

library

lib, a, so, dli

libraries of routines for
programmers

print or view

ps. pdf, jpg

ASCII or binary file in a
format for printing or
viewing

archive

arc, zip. tar

related files grouped into
one file, sometimes com-
pressed, for archiving

or storage

multimedia

mpeg, mov, rm,
mp3, avi

binary file containing
audio or A/V information

Figure 10.2 Common file types.

Dept of CSE, GCEM

Page 18

Module IV

File name consists of two parts: name and extension

The user and the operating system can identify the type of a file using the name.

Most operating systems allow users to specify a file name as a sequence of characters followed by a
period and terminated by an extension. Example : resume.doc, threads.c etc.

The system uses the extension to indicate the type of the file and the type of operations that can be
done on that file.

For instance, only a file with a ".corn", ".exe", or ".bat”, can be executed.

File Structure

The study of different ways of storing files in secondary memory such that they can be easily
accessed.

File types can be used to indicate the internal structure of the file. Certain files must be in a particular
structure that is understood by the operating system.

For example, the operating system requires that an executable file have a specific structure so that it
can determine where in memory to load the file and the location of the first instruction.

UNIX treats all files as sequences of bytes, with no further consideration of the internal structure.
Macintosh files have two forks - a resource fork, and a data fork. The resource fork contains
information relating to the Ul, such as icons and button images. The data fork contains the traditional
file contents-program code or data.

e) Internal File Structure

Disk systems typically have a well-defined block size determined by the size of a sector. A group of
sectors form a group

All disk 1/0 is performed in units of one block, and all blocks are the same size.

Logical records may even vary in length. Padding a number of logical records into physical blocks is
a common solution to this problem.

The packing can be done either by the user's application program or by the operating system. In
either case, the file may be considered a sequence of blocks.

All the basic 1/0 functions operate in terms of blocks.

Disk space is always allocated in terms of blocks. Some portion of last block(while storing a file) is
always wasted. This is called internal fragmentation.

10.2 Access Methods

The file information is accessed and read into computer memory. The information in the file can be accessed
in several ways.

a) Sequential Access

Here information in the file is processed in order, one record after the other.

Dept of CSE, GCEM Page 19

Module IV

e This mode of access is a common method; for example, editors and compilers usually access files in
this fashion.
e A sequential access file emulates magnetic tape operation, and generally supports a few operations:

o read next - read a record and advance the file pointer to the next position.
o write next - write a record to the end of file and advance the file pointer to the next position.

o sKip n records - May or may not be supported. ‘n’ may be limited to positive numbers, or may be
limited to +/- 1.

current position
beginning P end

< rewind :1: ;
read or write mmjp

Figure 10.3 Sequential-access file.

b) Direct Access

A file is made up of fixed-length logical records that allow programs to read and write records randomly.
The records can be rapidly accessed in any order.

Direct access are of great use for immediate access to large amount of information.
Eg : Database file. When a query occurs, the query is computed and only the selected rows are access
directly to provide the desired information.

Operations supported include:

e read n - read record number n. (position the cursor to n and then read the record)

e write n - write record number n. (position the cursor to n and then write the record)

e jump to record n— move to nth record (n- could be O or the end of file)

e Ifthe record length is L, there is a request for record ‘N’. Then the direct access to the starting byte of
record ‘N’ is at L*(N-1)

Eg: if 3rarecord is required and length of each record(L) is 50, then the starting position of 3rdrecord is L*(N-
1)
Address = 50*(3-1) = 100.

c) Other Access Methods(Indexed method)

e These methods generally involve the construction of an index for the file called index file.

e The index file is like an index page of a book, which contains key and address. To find a record in
the file, we first search the index and then use the pointer to access the record directly and find the
desired record.

Dept of CSE, GCEM Page 20

Module IV

e Anindexed access scheme can be easily built on top of a direct access system.

e For very large files, the index file itself is very large. The solution to this is to create an index for
index file. i.e. multi-level indexing.

logical record
last name number

Adams
Arthur
Asher smith, john social—securityl age
Smith <1
index file relative file

Figure 10.5 Example of index and relative files.

10.3 Directory Structure

Directory is a structure which contains filenames and information about the files like location, size,
type etc. The files are put in different directories. Partitioning is useful for limiting the sizes of individual file
systems, putting multiple file-system types on the same device, or leaving part of the device available for
other uses.

Partitions are also known as slices or minidisks. A file system can be created on each of these
parts of the disk. Any entity containing a file system is generally known as a volume.

" [directory |) " [directory |
parﬁtion A< Hide it ‘ L disk 2
l, - disk 1
(| directory artition C < s
[R files
partition B filos
' \ disk 3
~ 4

Figure 10.6 A typical file-system organization.

Dept of CSE, GCEM Page 21

Module IV

Directory Overview

The directory can be viewed as a symbol table that translates file names into their directory entries.
Directory operations to be supported include:

Search for a file - search adirectory structure to find the entry for a particular file.
Create a file — create new files and add to the directory

Delete a file - When afile is no longer needed, erase it from the directory

List a directory - listthe files in a directory and the contents of the directory entry.

0O O o O

o Rename a file — Change the name of the file. Renaming a file may also allow its position
within the directory structure to be changed.

o Traverse the file system - Access every directory and every file within a directory
structure.

Directory Structures -
a) Single-Level Directory
* It is the simplest directory structure.

* All files are contained in the same directory, which is easy to support and understand.

The limitations of this structure is that -
* All files are in the same directory must have unique names.

* Even a single user on a single-level directory may find it difficult to remember the names of all the
files as the number of files increases.

directory

files () @ @

Figure 10.7 Single-level directory.

b) Two-Level Directory
* Each user gets their own directory space - user file directory(UFD)

» File names only need to be unique within a given user's directory.

« A master file directory(MFD) is used to keep track of each users directory, and must be
maintained when users are added to or removed from the system.

* When a user refers to a particular file, only his own UFD is searched.
* All the files within each UFD are unique.

* To create a file for a user, the operating system searches only that user's UFD to ascertain whether
another file of that name exists.

Dept of CSE, GCEM Page 22

Module IV

. To delete a file, the operating system confines its search to the local UFD; thus, it cannot
accidentally delete another user's file that has the same name. The user directories themselves must
be created and deleted as necessary.

» This structure isolates one user from another. Isolation is an advantage when the users are completely
independent but is a disadvantage when the users want to cooperate on some task and to access one
another's files.

master file | |, o 1| yser2| user 3| user4
directory
" \
userfile |\ o | bo | a |test|| a |data test | x datal
directory

a 1
@ @ @ @
Figure 10.8 Two-level directory structure.

) Tree-Structured Directories

e A tree structure is the most common directory structure.

e The tree has a root directory, and every file in the system has a unique path name.

e Adirectory (or subdirectory) contains a set of files or subdirectories.

e One bit in each directory entry defines the entry as a file (0) or as a subdirectory (1). Special system
calls are used to create and delete directories.

e Path names can be of two types: absolute and relative. An absolute path begins at the root and
follows a down to the specified file, giving the directory names on the path. A relative path defines a
path from the current directory.

e For example, in the tree-structured file system of figure below if the current directory is
root/spell/mail, then the relative path name is prt/first and the files absolute path name
root/spell/mail/prt/jirst.

Dept of CSE, GCEM Page 23

Module IV

root l spell l bin 1program81
|(_mstat | mail , dist I | find l coijnt hex |reorder|] yol l e I mailJ
@ b b d @
rprog l copy prt l e);—; |reoi'der‘ Iilst] Z:J; | l hex count
° b 1
L list l obj l sp9111 L aft H last] first |

bbb o OO

Figure 10.9 Tree-structured directory structure.

Directories are stored the same as any other file in the system, except there is a bit that identifies
them as directories, and they have some special structure that the OS understands.

One question for consideration is whether or not to allow the removal of directories that are not
empty - Windows requires that directories be emptied first, and UNIX provides an option for deleting

entire sub-trees.

d) Acyclic-Graph Directories

When the same files need to be accessed in more than one place in the directory structure (e.g.
because they are being shared by more than one user), it can be useful to provide an acyclic-graph
structure. (Note the directed arcs from parent to child.) o UNIX provides two types of links
(pointer to another file)for implementing the acyclic-graph structure.

o A hard link (usually just called a link) involves multiple directory entries that both refer to
the same file. Hard links are only valid for ordinary files in the same filesystem.

o) A symbolic link, that involves a special file, containing information about where to find the
linked file. Symbolic links may be used to link directories and/or files in other filesystems, as well as
ordinary files in the current filesystem.

e Windows only supports symbolic links, termed shortcuts.
e Hard links require a reference count, or link count for each file, keeping track of how many
directory entries are currently referring to this file. Whenever one of the references is removed the link
count is reduced, and when it reaches zero, the disk space can be reclaimed.

Dept of CSE, GCEM

Page 24

Module IV

root | dict | spell

N

list all w | count count|words| list
I
m}

¥
fist | rade | w7

Y

Figure 10.10 Acyclic-graph directory structure.

L 4

e For symbolic links there is some question as to what to do with the symbolic links when the original file
is moved or deleted:
0 One option is to find all the symbolic links and adjust them also.
o Another is to leave the symbolic links dangling, and discover that they are no longer valid the
next time they are used.
o What if the original file is removed, and replaced with another file having the same name before
the symbolic link is next used?

Another approach to deletion is to preserve the file until all references to it are deleted. To implement this
approach, we must have some mechanism for determining that the last reference to the file has been deleted.

When a link or a copy of the directory entry is established, a new entry is added to the file-reference list.
When a link or directory entry is deleted, we remove its entry on the list. The file is deleted when its file-
reference list is empty.

e) General Graph Directory
e If cycles are allowed in the graphs, then several problems can arise:

o Search algorithms can go into infinite loops. One solution is to not follow links in search
algorithms. (Or not to follow symbolic links, and to only allow symbolic links to refer to directories)

o Sub-trees can become disconnected from the rest of the tree and still not have their reference
counts reduced to zero. Periodic garbage collection is required to detect and resolve this problem. (chkdsk in
DOS and fsck in UNIX search for these problems, among others, even though cycles are not supposed to be
allowed in either system. Disconnected disk blocks that are not marked as free are added back to the file
systems with made-up file names, and can usually be safely deleted.)

Dept of CSE, GCEM Page 25

Module IV

root avi ic fim
\
text | mail | count| book book | mail |unhex| hyp
| ‘
Qﬁ aID @
avi | count unhexj hex

Figure 10.11 General graph directory.

10.4 File-System Mounting

The basic idea behind mounting file systems is to combine multiple file systems into one large tree
structure.

The mount command is given a filesystem to mount and a mount point (directory) on which to
attach it.

Once a file system is mounted onto a mount point, any further references to that directory actually
refer to the root of the mounted file system.

Any files (or sub-directories) that had been stored in the mount point directory prior to mounting the
new filesystem are now hidden by the mounted filesystem, and are no longer available. For this
reason some systems only allow mounting onto empty directories.

Filesystems can only be mounted by root, unless root has previously configured certain filesystems to
be mountable onto certain pre-determined mount points. (E.g. root may allow users to mount floppy
filesystems to /mnt or something like it) Anyone can run the mount command to see what filesystems
are currently mounted.

Filesystems may be mounted read-only, or have other restrictions imposed.

Dept of CSE, GCEM Page 26

Module IV

users

Figure 10.12 File system. (a) Existing system. (b) Unmounted volume. Figure 10.13 Mount point.

The traditional Windows OS runs an extended two-tier directory structure, where the first tier of the
structure separates volumes by drive letters, and a tree structure is implemented below that level.

e Macintosh runs a similar system, where each new volume that is found is automatically mounted
and added to the desktop when it is found.

e More recent Windows systems allow filesystems to be mounted to any directory in the
filesystem, much like UNIX.

10.5 File Sharing

10.5.1 Multiple Users
e Ona multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.
o The group of other user IDs that may have some special access to the file.

o What access rights are afforded to the owner (User), the Group, and to the rest of the world (the
universe, a.k.a. Others.)

o Some systems have more complicated access control, allowing or denying specific accesses to
specifically named users or groups.

10.5.2 Remote File Systems

e The advent of the Internet introduces issues for accessing files stored on remote computers

Dept of CSE, GCEM Page 27

Module IV

o The original method was ftp, allowing individual files to be transported across systems as needed.
Ftp can be either account and password controlled, or anonymous, not requiring any user name or
password.

o Various forms of distributed file systems allow remote file systems to be mounted onto a local
directory structure, and accessed using normal file access commands. (The actual files are still
transported across the network as needed, possibly using ftp as the underlying transport mechanism.)
o The WWW has made it easy once again to access files on remote systems without mounting their
filesystems, generally using (anonymous) ftp as the underlying file transport mechanism.

a) The Client-Server Model

e When one computer system remotely mounts a filesystem that is physically located on another
system, the system which physically owns the files acts as a server, and the system which mounts
them is the client.

e User IDs and group IDs must be consistent across both systems for the system to work properly. (I.e.
this is most applicable across multiple computers managed by the same organization, shared by a
common group of users.)

e The same computer can be both a client and a server. (E.g. cross-linked file systems.)

e There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems only. Spoofing (a
computer pretending to be a different computer) is a potential security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which filesystems may be remotely mounted. Generally the information within
those subsystems is limited, relatively public, and protected by frequent backups.

e The NFS (Network File System) is a classic example of such a system.
b) Distributed Information Systems

e The Domain Name System, DNS, provides for a unique naming system across all of the Internet.

e Domain names are maintained by the Network Information System, NIS, which unfortunately has
several security issues. NIS+ is a more secure version, but has not yet gained the same widespread
acceptance as NIS.

e Microsoft's Common Internet File System, CIFS, establishes a network login for each user on a
networked system with shared file access. Older Windows systems used domains, and newer
systems (XP, 2000), use active directories. User names must match across the network for this
system to be valid.

e A newer approach is the Lightweight Directory-Access Protocol, LDAP, which provides a secure
single sign-on for all users to access all resources on a network. This is a secure system which is
gaining in popularity, and which has the maintenance advantage of combining authorization
information in one central location.

Dept of CSE, GCEM Page 28

Module IV

c¢) Failure Modes

e When a local disk file is unavailable, the result is generally known immediately, and is generally
non-recoverable. The only reasonable response is for the response to fail.

e However when a remote file is unavailable, there are many possible reasons, and whether or not it is
unrecoverable is not readily apparent. Hence most remote access systems allow for blocking or
delayed response, in the hopes that the remote system (or the network) will come back up
eventually.

10.5.3 Consistency Semantics

e Consistency Semantics deals with the consistency between the views of shared files on a networked
system. When one user changes the file, when do other users see the changes?
e The series of accesses between the open() and close() operations of a file is called the file session.

Examples of consistency semantics —
a) UNIX Semantics

e The UNIX file system uses the following semantics:
o Writes to an open file are immediately visible to any other user who has the file open.
oOne implementation uses a shared location pointer, which is adjusted for all sharing users.

e There is a single copy of the file, which may delay some accesses.
b) Session Semantics

o The Andrew File System, AFS uses the following semantics:
0 Writes to an open file are not immediately visible to other users.
o When a file is closed, any changes made become available only to users who open the file at a
later time.
o According to these semantics, a file can be associated with multiple (possibly different) views.
Almost no constraints are imposed on scheduling accesses. No user is delayed in reading or writing their
personal copy of the file.
e AFS file systems may be accessible by systems around the world. Access control is maintained
through (somewhat) complicated access control lists, which may grant access to the entire world (
literally) or to specifically named users accessing the files from specifically named remote
environments.

c) Immutable-Shared-Files Semantics

e Under this system, when a file is declared as shared by its creator, then the name cannot be re-used
by any other process and it cannot be modified.

Dept of CSE, GCEM Page 29

Module IV

10.6 Protection

The information in a computer system must be stored safely without any physical damage (the issue of
reliability) and improper access (the issue of protection).

Reliability is generally provided by duplicate copies of files. Many computers have systems
programs that automatically copy disk files to tape at regular intervals (once per day or week or month). The
damage could be due to hardware problems (such as errors in reading or writing), power surges or failures,
head crashes, dirt, temperature extremes, and vandalism.

10.6.1 Types of Access
Systems that do not permit access to the files of other users do not need protection. Thus, we could provide
complete protection by prohibiting access. Alternatively, we could provide free access with no protection.
Several different types of operations may be controlled:

e Read- Read from the file.

e Write- Write or rewrite the file.

e Execute - Load the file into memory and execute it.

e Append- Write new information at the end of the file.

e Delete - Delete the file and free its space for possible reuse.

e List - List the name and attributes of the file.

10.6.2 Access Control

To make access to files depending on the identity of the user. Different users may need different types of
access to a file or directory. The most general scheme to implement dependent access is to associate with
each file and directory an access-control list (ACL) specifying user names and the types of access allowed
for each user. When a user requests access to a particular file, the operating system checks the access list
associated with that file. If that user is listed for the requested access, the access is allowed. Otherwise, a
protection violation occurs, and the user job is denied access to the file.

If we want to allow everyone to read a file, we must list all users with read access. This technique has two
undesirable consequences:
e Constructing such a list may be a tedious, if we do not know in advance the list of users in the
system.
e The directory entry, must be of variable size, as the list grows, resulting in more complicated space
management.

These problems can be resolved by use of a condensed version of the access list. To condense the length of
the access-control list, many systems recognize three classifications of users in connection with each file:

e Owner- The user who created the file is the owner.

e Group - A set of users who are sharing the file and need similar access is a group, or work group.

e Universe- All other users in the system constitute the universe.

Dept of CSE, GCEM Page 30

Module IV

The most common recent approach is to combine access-control lists with owner, group, and universe access
control scheme.

10.6.3 Other Protection Approaches

Associate a password with each file.
Using of password is effective, but has a few disadvantages:
e The number of passwords that a user needs to remember maybe large
e If one password is used, then once the password is discovered, all the files can be accessed.

Some system allow users to associate a password to a subdirectory, rather than only to file.

10.7 File-System Structure

Disks provide the bulk of secondary storage on which a file system is maintained. The two characteristics
that make them a convenient medium for storing multiple files:

1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the block, and write it
back into the same place.

2. A disk can access directly any given block of information it contains. Thus, it is simple to access any file
either sequentially or randomly, and switching from one file to another requires only moving the read-write
heads and waiting for the disk to rotate.

e To improve I/O efficiency, 1/O transfers between memory and disk are performed in units of blocks.
Block sizes may range from 512 bytes to 4K or larger.(Rather than transferring a byte at a time,)

e A file system poses two quite different design problems.
e The first problem is defining how the file system should look to the user. This task involves
defining a file and its attributes, the operations allowed on a file, and the directory structure for
organizing files.
e The second problem is creating algorithms and data structures to map the logical file system
onto the physical secondary-storage devices.

e File systems organize storage on disk drives, and can be viewed as a layered design:
o At the lowest layer are the physical devices, consisting of the magnetic media, motors &
controls, and the electronics connected to them and controlling them. Modern disk put more and
more of the electronic controls directly on the disk drive itself, leaving relatively little work for
the disk controller card to perform.
o Lowest level, 1/0 Control consists of device drivers, which communicate with the devices by
reading and writing special codes directly to and from memory addresses corresponding to the
controller card's registers. Each controller card (device) on a system has a different set of
addresses (registers, ports) that it listens to, and a unique set of command codes and results
codes that it understands.
o The basic file system level works directly with the device drivers in terms of retrieving and
storing raw blocks of data, without any consideration for what is in each block.

Dept of CSE, GCEM Page 31

Module IV

o The file organization module knows about files and their logical blocks, and how they map to
physical blocks on the disk. In addition to translating from logical to physical blocks, the file
organization module also maintains the list of free blocks, and allocates free blocks to files as
needed.

o The logical file system deals with all of the meta data associated with a file (UID, GID, mode,
dates, etc), i.e. everything about the file except the data itself. This level manages the directory
structure and the mapping of file names to file control blocks, FCBs, which contain all of the
meta data as well as block number information for finding the data on the disk.

e The layered approach to file systems means that much of the code can be used uniformly for a wide
variety of different file systems, and only certain layers need to be filesystem specific.

e When a layered structure is used for file-system implementation, duplication of code is minimized.
The 1/0 control and sometimes the basic file-system code can be used by multiple file systems.

e Common file systems in use include the UNIX file system, UFS, the Berkeley Fast File System, FFS,
Windows systems FAT, FAT32, NTFS, CD-ROM systems I1SO 9660, and for Linux the extended file
systems ext2 and ext3 .

application programs

logical file system

'

file-organization module

v

basic file system

v

I/O control

v

devices

Figure 11.1 Layered file system.

10.8 File-System Implementation

On disk, the file system may contain information about how to boot an operating system stored there, the
total number of blocks, the number and location of free blocks, the directory structure, and individual files.

File systems store several important data structures on the disk:

e A boot-control block, (per volume) can contain information needed by the system to boot an
operating system from that volume. If the disk does not contain an operating system, this block can

Dept of CSE, GCEM Page 32

Module IV

be empty. It is typically the first block of a volume In UFS, it is called the boot block; in NTFS, it is
the partition boot sector.

e A volume control block, (per volume) contains volume (or partition) details, such as the number of
blocks in the partition, size of the blocks, freeblock count and free-block pointers, and free FCB
count and FCB pointers. In UFS, this is called a superblock; in NTFS, it is stored in. the master file
table.

o A directory structure (per file system), containing file names and pointers to corresponding
FCBs. UNIX uses inode numbers, and NTFS uses a master file table.

o The File Control Block, FCB, (per file) containing details about ownership, size,
permissions, dates, etc. UNIX stores this information in inodes, and NTFS in the master file
table as a relational database structure.

e There are also several key data structures stored in memory:
o An in-memory mount table contains information about each mounted volume..
o An in-memory directory cache of recently accessed directory information.
o A system-wide open file table, containing a copy of the FCB for every currently open file in
the system, as well as some other related information.
o A per-process open file table, containing a pointer to the system open file table as well as
some other information. (For example the current file position pointer may be either here or in
the system file table, depending on the implementation and whether the file is being shared or
not.)

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure 11.2 A typical file-control block.

e Figure 11.3 illustrates some of the interactions of file system components when files are created
and/or used:

o When a new file is created, a new FCB is allocated and filled out with important information
regarding the new file.

o When a file is accessed during a program, the open() system call reads in the FCB
information from disk, and stores it in the system-wide open file table. An entry is added to the

Dept of CSE, GCEM Page 33

Module IV

per-process open file table referencing the system-wide table, and an index into the per-process
table is returned by the open() system call. UNIX refers to this index as a file descriptor, and
Windows refers to it as a file handle.

o If another process already has a file open when a new request comes in for the same file, and
it is sharable, then a counter in the system-wide table is incremented and the per-process table is
adjusted to point to the existing entry in the system-wide table.

o When a file is closed, the per-process table entry is freed, and the counter in the system-wide
table is decremented. If that counter reaches zero, then the system wide table is also freed. Any
data currently stored in memory cache for this file is written out to disk if necessary.

1 =
f | [,J E:
' directory structure
open (file name) J ==
disectonstiiciure file-control block

user space kernel memory secondary storage
(a)

|)) O
{ | ’ data blocks
read (index) ﬂ— | —t l
per-process system-wide file-control block
; open-file table open-file table
|
user space kernel memory secondary storage
(b)

Figure 11.3 In-memory file-system structures. (a) File open. (b) File read.

10.8.1 Partitions and Mounting

e Physical disks are commonly divided into smaller units called partitions. They can also be combined
into larger units, but that is most commonly done for RAID installations and is left for later chapters.

e Partitions can either be used as raw devices (with no structure imposed upon them), or "cooked;'
containing a file system. they can be formatted to hold a filesystem (i.e. populated with FCBs and
initial directory structures as appropriate.) Raw partitions are generally used for swap space, and
may also be used for certain programs such as databases that choose to manage their own disk
storage system. Partitions containing filesystems can generally only be accessed using the file system
structure by ordinary users, but can often be accessed as a raw device also by root.

e Boot information can be stored in a separate partition. Again, it has its own format, because at boot
time the system does not have file-system device drivers loaded and therefore cannot interpret the
file-system format.

Dept of CSE, GCEM Page 34

Module IV

e The boot block is accessed as part of a raw partition, by the boot program prior to any operating
system being loaded. Modern boot programs understand multiple OSes and filesystem formats, and
can give the user a choice of which of several available systems to boot.

e The root partition contains the OS kernel and at least the key portions of the OS needed to complete
the boot process. At boot time the root partition is mounted, and control is transferred from the boot
program to the kernel found there. (Older systems required that the root partition lie completely
within the first 1024 cylinders of the disk, because that was as far as the boot program could reach.
Once the kernel had control, then it could access partitions beyond the 1024 cylinder boundary.)

e Continuing with the boot process, additional filesystems get mounted, adding their information into
the appropriate mount table structure. As a part of the mounting process the file systems may be
checked for errors or inconsistencies, either because they are flagged as not having been closed
properly the last time they were used, or just for general principals. Filesystems may be mounted
either automatically or manually. In UNIX a mount point is indicated by setting a flag in the in-
memory copy of the inode, so all future references to that inode get re-directed to the root directory
of the mounted filesystem.

10.8.2 Virtual File Systems

e Virtual File Systems, VFS, provide a common interface to multiple different filesystem types. In
addition, it provides for a unique identifier (vnode) for files across the entire space, including
across all filesystems of different types. (UNIX inodes are unique only across a single filesystem,
and certainly do not carry across networked file systems.)

e The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.
o The superblock object, representing a filesystem.
o The dentry object, representing an individual directory entry.

e Linux VFS provides a set of common functionalities for each filesystem, using function pointers
accessed through a table. The same functionality is accessed through the same table position for
all filesystem types, though the actual functions pointed to by the pointers may be filesystem-
specific. Common operations provided include open(), read(), write(), and mmap().

Dept of CSE, GCEM Page 35

Module IV

file-system interface

¥

VFS interface

h 4 ¥

local file system local file system remote file system
type 1 type 2 : type 1

——

network

Figure 11.4 Schematic view of a virtual file system.

Figure 11.4. The first layer is the file-system interface, based on the open(), read(), write(), and close() calls
and on file descriptors. The second layer is called the virtual file system (VFS) layer; it serves two important
functions:

1. It separates file-system-generic operations from their implementation by defining a clean VFS
interface. Several implementations for the VFS interface may coexist on the same machine, allowing
transparent access to different types of file systems mounted locally.

2. The VFS provides a mechanism for uniquely representing a file throughout a network. The VFS is
based on a file-representation structure, called a vnode, that contains a numerical designator for a
network-wide unique file. (UNIX inodes are unique within only a single file system.) This network-
wide uniqueness is required for support of network file systems.

The kernel maintains one vnode structure for each active node (file or directory).

10.9 Directory Implementation

The selection of directory-allocation and directory-management algorithms significantly affects the
efficiency, performance, and reliability of the file system. Directories need to be fast to search, insert, and
delete, with a minimum of wasted disk space.

a) Linear List

A linear list is the simplest and easiest directory structure to set up, but it does have some drawbacks.

The disadvantage of a linear list of directory entries is that finding a file requires a linear search.

To overcome this, a software cache is implemented to store the recently accessed directory structure.

Deletions can be done by moving all entries, flagging an entry as deleted, or by moving the last entry
into the newly vacant position.

A sorted list allows a binary search and decreases the average search time. However, the requirement
that the list be kept sorted may complicate creating and deleting files,

Dept of CSE, GCEM Page 36

Module IV

A linked list makes insertions and deletions into a sorted list easier, with overhead for the links.
An advantage of the sorted list is that a sorted directory listing can be produced without a separate
sort step.

b) Hash Table

With this method, a linear list stores the directory entries, but a hash data structure is also used.

The hash table takes a value computed from the file name and returns a pointer to the file name in the
linear list. Therefore, it can greatly decrease the directory search time.

Here collisions may occur. Collision is the situation where two file names hash to the same location.
Alternatively, a chained-overflow hash table can be used. Each hash entry can be a linked list instead
of an individual value, and we can resolve collisions by adding the new entry to the linked list.

The major disadvantage with a hash table are its generally fixed size and the dependence of the hash
function on that size. For example, assume that we make a linear-probing hash table that holds 64
entries. The hash function converts file names into integers from 0 to 63, for instance, by using the
remainder of a division by 64. If we later try to create a 65th file, we must enlarge the directory hash
table—say, to 128 entries. As a result, we need a new hash function that must map file names to the
range 0 to 127, and we must reorganize the existing directory entries to reflect their new hash-
function values.

10.10 Allocation Methods

The main problem is how to allocate space to these files so that disk space is utilized effectively and files
can be accessed quickly. Three major methods of allocating disk space are in wide use: contiguous, linked,
and indexed.

a) Contiguous Allocation

Contiguous Allocation requires that all blocks of a file be kept together contiguously.
Performance is very fast, because reading successive blocks of the same file generally requires no
movement of the disk heads, or at most one small step to the next adjacent cylinder.
Storage allocation is done by using one of the algorithms(first fit, best fit, worst fit).
The allocation of blocks contiguous leads to external fragmentation.
Problems can arise when files grow, or if the exact size of a file is unknown at creation time:
o Over-estimation of the file's final size increases external fragmentation and wastes
disk space.
o Under-estimation may require that a file be moved or a process aborted if the file
grows beyond its originally allocated space.
o If a file grows slowly over a long time period and the total final space must be
allocated initially, then a lot of space becomes unusable before the file fills the space.

Dept of CSE, GCEM Page 37

Module IV

e A variation is to allocate file space in large contiguous chunks, called extents. When a file outgrows

its original extent, then an additional one block is allocated. A pointer points from last block of

contiguous memory allocation to the extended chunk.

AR
Gl

. count

col 1 1 2] 3]
41 s 6.1 7[]
8l] ol J1o[J11[]
16117118 J19[]

(T o i

2ol J21[J22[J23[]
24 125 126 127[]

list

28@29[]30&331'@'

directory

file
count
tr
mail
list

start length

0] 2
14 3
19 6
28 4

6 2

Figure 11.5 Contiguous allocation of disk space.

b) Linked Allocation

e Disk files can be stored as linked lists, with the expense of the storage space consumed by each link.
(E.g. a block may be 508 bytes instead of 512.)
e Linked allocation involves no external fragmentation, does not require pre-known file sizes, and

allows files to grow dynamically at any time.
e Unfortunately linked allocation is only efficient for sequential access files, as random access requires

starting at the beginning of the list for each new location access.

e Allocating clusters of blocks reduces the space wasted by pointers, at the cost of internal

fragmentation.
e Another big problem with linked allocation is reliability if a pointer is lost or damaged. Doubly

linked lists provide some protection, at the cost of additional overhead and wasted space.

Dept of CSE, GCEM

Page 38

Module IV

g T T directory
iR fle start end

jeep 9 25

120 1814/ J15[]
16[_J17[J18[J19[]
20[J21[J22[]23[]
24 25126 127[]

28 129 180 J31[]

Figure 11.6 Linked allocation of disk space.

e The File Allocation Table, FAT, used by DOS is a variation of linked allocation, where all the links
are stored in a separate table at the beginning of the disk. The benefit of this approach is that the FAT
table can be cached in memory, greatly improving random access speeds.

directory entry
[test [IJ&&ET 217
name start block

a6 i .. -

618 [339 =

no. of disk blocks -1

FAT
Figure 11.7 File-allocation table.

c) Indexed Allocation

e Indexed Allocation combines all of the indexes(block numbers) for accessing each file into a
common block (for that file).
o Each file will have a common block called the index block.

Dept of CSE, GCEM Page 39

Module IV

T, directory
w file index block
o] 1EL\2D 3] lesp ‘J‘:"

4[] 5[] 7]

24[l2s5f [26l j27[]

28 _lz2ol 130 131

Figure 11.8 Indexed allocation of disk space.

e Some disk space is wasted (relative to linked lists or FAT tables) because an entire index block
must be allocated for each file, regardless of how many data blocks the file contains. This leads to
questions of how big the index block should be, and how it should be implemented. There are several
approaches:

o Linked Scheme - An index block is one disk block, which can be read and written in a single
disk operation. The first index block contains some header information, the first N block
addresses, and if necessary a pointer to additional linked index blocks.

o Multi-Level Index - The first index block contains a set of pointers to secondary index
blocks, which in turn contain pointers to the actual data blocks.

o Combined Scheme - This is the scheme used in UNIX inodes, in which the first 12 entries
data block pointers are stored directly in the inode, and then singly, doubly, and triply indirect
pointers provide access to more data blocks as needed. The advantage of this scheme is that
for small files (files stored in less than 12 blocks), the data blocks are readily accessible (‘up
to 48K with 4K block sizes); files up to about 4144K (using 4K blocks) are accessible with
only a single indirect block (which can be cached), and huge files are still accessible using a
relatively small number of disk accesses (larger in theory than can be addressed by a 32-bit
address, which is why some systems have moved to 64-bit file pointers.)

Dept of CSE, GCEM Page 40

Module IV

mode
owners (2)
timestamps (3)
—{data]
size block count
—{ data]
—{data]
direct blocks 7 :
:
: = F—{ data | ?@
single indirect — . :
2 —{ data | SNy
double indirect J_: L= data
triple indirect [—. — ‘er_Tzﬂ
[2——>{ data |

Figure 11.9 The UNIX inode.

Performance

e The optimal allocation method is different for sequential access files than for random access files,
and is also different for small files than for large files.

e Some systems support more than one allocation method, which may require specifying how the file
is to be used (sequential or random access) at the time it is allocated. Such systems also provide
conversion utilities.

e Some systems have been known to use contiguous access for small files, and automatically switch to
an indexed scheme when file sizes surpass a certain threshold.

e And of course some systems adjust their allocation schemes (e.g. block sizes) to best match the
characteristics of the hardware for optimum performance.

10.11 Free-Space Management:

The space created after deleting the files can be reused. Another important aspect of disk management is
keeping track of free space in memory. The list which keeps track of free space in memory is called the free-
space list. To create a file, search the free-space list for the required amount of space and allocate that space
to the new file. This space is then removed from the free-space list. When a file is deleted, its disk space is
added to the free-space list. The free-space list, is implemented in different ways as explained below.

a) Bit Vector
e Fast algorithms exist for quickly finding contiguous blocks of a given size

e One simple approach is to use a bit vector, in which each bit represents a disk block, set to 1 if free or
0 if allocated.

Dept of CSE, GCEM Page 41

Module IV

For example, consider a disk where blocks 2,3,4,5,8,9, 10,11, 12, 13, 17and 18 are free, and the rest of
the blocks are allocated. The free-space bit map would be
0011110011111100011

e Easy to implement and also very efficient in finding the first free block or ‘n’ consecutive free blocks
on the disk.
e The down side is that a 40GB disk requires over 5SMB just to store the bitmap.

b) Linked List

e Alinked list can also be used to keep track of all free blocks.

e Traversing the list and/or finding a contiguous block of a given size are not easy, but fortunately are
not frequently needed operations. Generally the system just adds and removes single blocks from the
beginning of the list.

e The FAT table keeps track of the free list as just one more linked list on the table.

free-space list head —

24 125 26

28 129 Iso[]31[]
v

Figure 11.10 Linked free-space list on disk.

c) Grouping

e A variation on linked list free lists. It stores the addresses of n free blocks in the first free block. The
first n-1 blocks are actually free. The last block contains the addresses of another n free blocks, and
S0 on.

e The address of a large number of free blocks can be found quickly.

d) Counting

Dept of CSE, GCEM Page 42

Module IV

e When there are multiple contiguous blocks of free space then the system can keep track of the
starting address of the group and the number of contiguous free blocks.

e Rather than keeping al list of n free disk addresses, we can keep the address of first free block and the
number of free contiguous blocks that follow the first block.

e Thus the overall space is shortened. It is similar to the extent method of allocating blocks.

e) Space Maps (New)

e Sun's ZFS file system was designed for huge numbers and sizes of files, directories, and even file
systems.

e The resulting data structures could be inefficient if not implemented carefully. For example, freeing
up a1l GB file on a 1 TB file system could involve updating thousands of blocks of free list bit maps
if the file was spread across the disk.

e ZFS uses a combination of techniques, starting with dividing the disk up into (hundreds of)
metaslabs of a manageable size, each having their own space map.

e Free blocks are managed using the counting technique, but rather than write the information to a
table, it is recorded in a log-structured transaction record. Adjacent free blocks are also coalesced
into a larger single free block.

e An in-memory space map is constructed using a balanced tree data structure, constructed from the
log data.

e The combination of the in-memory tree and the on-disk log provide for very fast and efficient
management of these very large files and free blocks.

Dept of CSE, GCEM Page 43

