
MODULE 2

The Relational Data Model and Relational Database Constraints

and Relational Algebra

2.1 Relational Model Concepts

 Domain: A (usually named) set/universe of atomic values, where by "atomic" we mean

simply that, from the point of view of the database, each value in the domain is
indivisible (i.e., cannot be broken down into component parts).


Examples of domains (some taken from page 147):

o USA_phone_number: string of digits of length
ten o SSN: string of digits of length nine
o Name: string of characters beginning with an upper case letter
o GPA: a real number between 0.0 and 4.0
o Sex: a member of the set { female, male }
o Dept_Code: a member of the set { CMPS, MATH, ENGL, PHYS, PSYC, ... }

These are all logical descriptions of domains. For implementation purposes, it is

necessary to provide descriptions of domains in terms of concrete data types (or
formats) that are provided by the DBMS (such as String, int, boolean), in a manner

analogous to how programming languages have intrinsic data types.

 Attribute: the name of the role played by some value (coming from some domain) in the
context of a relational schema. The domain of attribute A is denoted dom(A).

 Tuple: A tuple is a mapping from attributes to values drawn from the respective domains

of those attributes. A tuple is intended to describe some entity (or relationship between
entities) in the miniworld.


As an example, a tuple for a PERSON entity might be


{ Name --> "Rumpelstiltskin", Sex --> Male, IQ --> 143 }


 Relation: A (named) set of tuples all of the same form (i.e., having the same set of

attributes). The term table is a loose synonym. (Some database purists would argue that a
table is "only" a physical manifestation of a relation.)

 Relational Schema: used for describing (the structure of) a relation. E.g., R(A1, A2, ..., An)

says that R is a relation with attributes A1, ... An. The degree of a relation is the number of
attributes it has, here n.


Example: STUDENT(Name, SSN, Address)

(See Figure 5.1, page 149, for an example of a STUDENT relation/table having several
tuples/rows.)

One would think that a "complete" relational schema would also specify the domain of
each attribute.

 Relational Database: A collection of relations, each one consistent with its specified
relational schema.

2.1.2 Characteristics of Relations

Ordering of Tuples: A relation is a set of tuples; hence, there is no order associated with them.

That is, it makes no sense to refer to, for example, the 5th tuple in a relation. When a relation is

depicted as a table, the tuples are necessarily listed in some order, of course, but you should

attach no significance to that order. Similarly, when tuples are represented on a storage device,

they must be organized in some fashion, and it may be advantageous, from a performance

standpoint, to organize them in a way that depends upon their content.

Ordering of Attributes: A tuple is best viewed as a mapping from its attributes (i.e., the names

we give to the roles played by the values comprising the tuple) to the corresponding values.

Hence, the order in which the attributes are listed in a table is irrelevant. (Note that,

unfortunately, the set theoretic operations in relational algebra (at least how E&N define them)

make implicit use of the order of the attributes. Hence, E&N view attributes as being arranged as

a sequence rather than a set.)

Values of Attributes: For a relation to be in First Normal Form, each of its attribute domains

must consist of atomic (neither composite nor multi-valued) values. Much of the theory

underlying the relational model was based upon this assumption. Chapter 10 addresses the issue
of including non-atomic values in domains. (Note that in the latest edition of C.J. Date's book, he

explicitly argues against this idea, admitting that he has been mistaken in the past.)

The Null value: used for don't know, not applicable.

Interpretation of a Relation: Each relation can be viewed as a predicate and each tuple in that
relation can be viewed as an assertion for which that predicate is satisfied (i.e., has value true)

for the combination of values in it. In other words, each tuple represents a fact. Example (see
Figure 5.1): The first tuple listed means: There exists a student having name Benjamin Bayer,

having SSN 305-61-2435, having age 19, etc.

Keep in mind that some relations represent facts about entities (e.g., students) whereas others
represent facts about relationships (between entities). (e.g., students and course sections).

The closed world assumption states that the only true facts about the miniworld are those
represented by whatever tuples currently populate the database.

2.1.3 Relational Model Notation:

 R(A1, A2, ..., An) is a relational schema of degree n denoting that there is a relation R

having as its attributes A1, A2, ..., An.
 By convention, Q, R, and S denote relation names.
 By convention, q, r, and s denote relation states. For example, r(R) denotes one possible

state of relation R. If R is understood from context, this could be written, more simply, as
r.

 By convention, t, u, and v denote tuples.
 The "dot notation" R.A (e.g., STUDENT.Name) is used to qualify an attribute name, usually

for the purpose of distinguishing it from a same-named attribute in a different relation
(e.g., DEPARTMENT.Name).




2.2 Relational Model Constraints and Relational Database Schemas

Constraints on databases can be categorized as follows:

 inherent model-based: Example: no two tuples in a relation can be duplicates (because a
relation is a set of tuples)

 schema-based: can be expressed using DDL; this kind is the focus of this section.
 application-based: are specific to the "business rules" of the miniworld and typically

difficult or impossible to express and enforce within the data model. Hence, it is left to
application programs to enforce.

Elaborating upon schema-based constraints:

2.2.1 Domain Constraints: Each attribute value must be either null (which is really a non-value)
or drawn from the domain of that attribute. Note that some DBMS's allow you to impose the not

null constraint upon an attribute, which is to say that that attribute may not have the (non-)value

null.

2.2.2 Key Constraints: A relation is a set of tuples, and each tuple's "identity" is given by the

values of its attributes. Hence, it makes no sense for two tuples in a relation to be identical

(because then the two tuples are actually one and the same tuple). That is, no two tuples may
have the same combination of values in their attributes.

Usually the miniworld dictates that there be (proper) subsets of attributes for which no two tuples
may have the same combination of values. Such a set of attributes is called a superkey of its

relation. From the fact that no two tuples can be identical, it follows that the set of all attributes
of a relation constitutes a superkey of that relation.

A key is a minimal superkey, i.e., a superkey such that, if we were to remove any of its attributes,
the resulting set of attributes fails to be a superkey.

Example: Suppose that we stipulate that a faculty member is uniquely identified by Name and

Address and also by Name and Department, but by no single one of the three attributes

mentioned. Then { Name, Address, Department } is a (non-minimal) superkey and each of {
Name, Address } and { Name, Department } is a key (i.e., minimal superkey).

Candidate key: any key! (Hence, it is not clear what distinguishes a key from a candidate key.)

Primary key: a key chosen to act as the means by which to identify tuples in a relation.

Typically, one prefers a primary key to be one having as few attributes as possible.

2.2.3 Relational Databases and Relational Database Schemas

A relational database schema is a set of schemas for its relations (see Figure 5.5, page 157)
together with a set of integrity constraints.

A relational database state/instance/snapshot is a set of states of its relations such that no
integrity constraint is violated. (See Figure 5.6, page 159, for a snapshot of COMPANY.)

2.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

Entity Integrity Constraint: In a tuple, none of the values of the attributes forming the

relation's primary key may have the (non-)value null. Or is it that at least one such attribute must

have a non-null value? In my opinion, E&N do not make it clear!

Referential Integrity Constraint: (See Figure 5.7) A foreign key of relation R is a set of its

attributes intended to be used (by each tuple in R) for identifying/referring to a tuple in some

relation S. (R is called the referencing relation and S the referenced relation.) For this to make
sense, the set of attributes of R forming the foreign key should "correspond to" some superkey of

S. Indeed, by definition we require this superkey to be the primary key of S.

This constraint says that, for every tuple in R, the tuple in S to which it refers must actually be in
S. Note that a foreign key may refer to a tuple in the same relation and that a foreign key may be

part of a primary key (indeed, for weak entity types, this will always occur). A foreign key may
have value null (necessarily in all its attributes??), in which case it does not refer to any tuple in

the referenced relation.

Semantic Integrity Constraints: application-specific restrictions that are unlikely to be
expressible in DDL. Examples:

 salary of a supervisee cannot be greater than that of her/his supervisor
 salary of an employee cannot be lowered

2.3 Update Operations and Dealing with Constraint Violations.

For each of the update operations (Insert, Delete, and Update), we consider what kinds of

constraint violations may result from applying it and how we might choose to react.

2.3.1 Insert:

 domain constraint violation: some attribute value is not of correct domain
 entity integrity violation: key of new tuple is null
 key constraint violation: key of new tuple is same as existing one
 referential integrity violation: foreign key of new tuple refers to non-existent tuple

Ways of dealing with it: reject the attempt to insert! Or give user opportunity to try again
with different attribute values.

2.3.2 Delete:

 referential integrity violation: a tuple referring to the deleted one

exists. Three options for dealing with it:


 Reject the deletion
 Attempt to cascade (or propagate) by deleting any referencing tuples (plus those that

reference them, etc., etc.)
 modify the foreign key attribute values in referencing tuples to null or to some valid

value referencing a different tuple

2.3.3 Update:

 Key constraint violation: primary key is changed so as to become same as another

tuple's
 referential integrity violation:

o foreign key is changed and new one refers to nonexistent tuple
o primary key is changed and now other tuples that had referred to this one

violate the constraint

2.3.4 Transactions: This concept is relevant in the context where multiple users and/or

application programs are accessing and updating the database concurrently. A transaction is a

logical unit of work that may involve several accesses and/or updates to the database (such as

what might be required to reserve several seats on an airplane flight). The point is that, even

though several transactions might be processed concurrently, the end result must be as though

the transactions were carried out sequentially. (Example of simultaneous withdrawals from

same checking account.)

Module 2.4 - SQL

 The name SQL stands for Structured Query Language.

 The SQL language may be considered as one of the major reasons for the success of relational

databases in the commercial world.

 SQL is a comprehensive database language because

 It has statements for data definition ,database construction and database manipulation

 It does automatic query optimizations

 It has facilities for defining views on the database

 It has facilities for specifying security and authorization

 It has facilities for defining integrity constraints

 It has facilities for specifying transaction controls

 It also has rules for embedding SQL statements into a general-purpose programming language such as

Java or COBOL or C/C

4.1 SQL DATA DEFINITION AND DATA TYPES:

 SQL uses the terms table, row, and column for the formal relational model terms

relation, tuple, and attribute, respectively.

 The SQL command for data definition is the CREATE statement, which can be

used to create schemas, tables (relations), and domains as well as other constructs

such as views, assertions, and triggers.

4.1.1 Schema and Catalog Concepts in SQL:

The database schema concept can be used to group together tables and other

constructs that belong to the same database application.

An SQL schema is identified by a schema name, and includes an authorization

identifier to indicate the user or account who owns the schema, as well as

descriptors for each element in the schema.

Schema elements include tables, constraints, views, domains, and other constructs

(such as authorization grants) that describe the schema.

A schema is created via the CREATE SCHEMA statement, which can include all

the schema elements' definitions.

The schema can be assigned a name and authorization identifier, and the elements

can be defined later.

For example, the following statement creates a schema called COMPANY, owned

by the user with authorization identifier SMITH:

CREATE SCHEMA COMPANY AUTHORIZATION SMITH;

In general, not all users are authorized to create schemas and schema elements. The

privilege to create schemas, tables, and other constructs must be explicitly granted to the

relevant user accounts by the system administrator or DBA.

SQL2 uses the concept of a catalog - a named collection of schemas in an SQL

environment.

A catalog always contains a special schema called INFORMATION_SCHEMA, which

provides information on all the schemas in the catalog and all the element descriptors in

these schemas.

Integrity constraints such as referential integrity can be defined between relations only if

they exist in schemas within the same catalog.

4.1.2 The CREATE TABLE Command in SQL:

The CREATE TABLE command is used to specify a new table by giving it a name

and specifying its attributes and initial constraints.

The attributes are specified first, and each attribute is given a name, a data type to specify its

domain of values, and any attribute constraints, such as NOT NULL.

The key, entity integrity, and referential integrity constraints can be specified within the

CREATE TABLE statement after the attributes are declared, or they can be added later

using the ALTER TABLE command.

We can explicitly attach the schema name to the relation name, separated by a period.

CREATE TABLE COMPANY. EMPLOYEE...

rather than

CREATE TABLE EMPLOYEE …

 The relations declared through CREATE TABLE statements are called “base tables” or

base relations; this means that the relation and its rows are actually created and stored as a

file by the DBMS.

 Base relations are distinguished from “virtual relations”, created through the CREATE

VIEW statement, which may or may not correspond to an actual physical file.

In SQL the attributes in a base table are considered to be ordered in the sequence in which

they are specified in the CREATE TABLE statement. However, rows are not considered to

be ordered within a table.

Figure 8.1 shows sample data definition statements in SQL for the COMPANY database.

4.1.3 Attribute Data Types and Domains in SQL:

The basic data types available for attributes include numeric, character string, bit string,

boolean, date, and time.

a) Numeric data types include:

 integer numbers of various sizes (INTEGER or INT, and SMALLINT).

 floating-point (real) numbers of various precision (FLOAT or REALand DOUBLE

PRECISION).

 Formatted numbers which can be declared by using DECIMAL(i,j)or DEC(i,j) or

NUMERIC(i,j)-where i, the precision, is the total number of decimal digits and j, the scale, is

the number of digits after the decimal point. The default for scale is zero, and the default for

precision is implementation-defined.

b) Character-string data types are either:

 fixed length--CHAR(n) or CHARACTER(n), where n is the number of characters.

 varying length-VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n),

where n is the maximum number of characters.

 When specifying a literal string value, it is placed between single quotation marks

(apostrophes), and it is case sensitive (a distinction is made between uppercase and

lowercase.

 For fixed-length strings, a shorter string is padded with blank characters to the right.

For example, if the value 'Smith' is for an attribute of type CHAR(10), it is padded

with five blank characters to become 'Smith ' if needed.

 Padded blanks are generally ignored when strings are compared. For comparison purposes,

strings are considered ordered in alphabetic order;

If a string str1 appears before another string str2 in alphabetic order, then str1 is considered

to be less than str2.

 There is also a concatenation operator denoted by || (doublevertical bar) that can

concatenate two strings in SQL.

For example, 'abc' || 'XYZ' results in a single string 'abcXYZ'.

c) Bit-string data types are either of fixed length -BIT(n) or varying length-BIT

VARYING(n), where ‘n’ is the maximum number of bits.

 The default for ‘n’, the length of a character string or bit string, is 1.

 Literal bit strings are placed between single quotes but preceded by a B to distinguish them

from character strings;

For example, B'10101

d) A Boolean data type has the traditional values of TRUE or FALSE in SQL.

 Because of the presence of NULL values, a three-valued logic is used, so a third possible

value for a boolean data type is UNKNOWN.

e) New data types for date and time were added in SQL2.

 The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY

in the form YYYY-MM-DD.

 The TIME data type has at least eight positions, with the components HOUR, MINUTE,and

SECOND in the form HH:MM:SS.

 The < (less than) comparison can be used with dates or times-an earlier date is considered

to be smaller than a later date, and similarly with time.

 Literal values are represented by single-quoted strings preceded by the keyword DATE or

TIME;

For example, DATE '2002-09-27' or TIME '09: 12:47'.

f) A timestamp data type (TIMESTAMP) includes both the DATE and TIME fields, plus a

minimum of six positions for decimal fractions of seconds.

 Literal values are represented by single-quoted strings preceded by the keyword

TIMESTAMP, with a blank space between data and time;

For example, TIMESTAMP'2002-09-27 09:12:47 648302'.

g) Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type.

 This specifies an interval-a “relative value” that can be used to increment or decrement an

absolute value of a date, time, or timestamp.

 Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

Domain
It is possible to specify the data type of each attribute directly, as in Figure 8.1;

A domain can be declared, and the domain name can be used with the attribute
specification.

For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 8.1 for the attributes SSN

and SUPERSSN of EMPLOYEE, MGRSSN of DEPARTMENT, ESSN of WORKS_ON,

and ESSN of DEPENDENT.

4.2 SPECIFYING CONSTRAINTS IN SQL:

Basic constraints can be specified in SQL as part of table creation. These include:

 key and referential integrity constraints

 restrictions on attribute domains and NULLs

 constraints on individual tuples(rows) within a relation.

4.2.1 Specifying Attribute Constraints and Attribute Defaults:

 Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified

if NULL is not permitted for a particular attribute.

 NOT NULL is always implicitly specified for the attributes that are part of the primary key

of each relation, but it can be specified for any other attributes whose values are required not

to be NULL, as shown in Figure 8.1.

 It is also possible to define a default value for an attribute by appending the clause

DEFAULT <value> to an attribute definition.

 The default value is included in any new tuple if an explicit value is not provided for that

attribute. Figure 8.2 illustrates examples of specifying a default values to various attributes.

 If no default clause is specified, the default value is NULL for attributes that do not have

the NOT NULL constraint.

 Another type of constraint can restrict attribute or domain values using the

CHECK clause following an attribute or domain definition.

For example, suppose that department numbers are restricted to integer numbers between 1

and 20; then, we can change the attribute declaration of DNUMBER in the DEPARTMENT

table (see Figure 8.1) to the following:

DNUMBER INT NOT NULL CHECK (DNUMBER > 0 AND DNUMBER < 21);

 The CHECK clause can also be used in conjunction with the CREATE DOMAIN statement.

For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER CHECK (D_NUM > 0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes that refer

to department numbers in Figure 8.1, such as DNUMBER of DEPARTMENT, DNUM of

PROJECT, DNO ofEMPLOYEE, and so on.

4.2.2 Specifying Key and Referential Integrity Constraints:

The PRIMARY KEY clause specifies one or more attributes that make up the primary key

of a relation.

If a primary key has a single attribute, the clause can follow the attribute directly. For

example, the primary key of DEPARTMENT can be specified as follows

DNUMBER INT PRIMARY KEY;

The UNIQUE clause specifies alternate (secondary) keys, as illustrated in the

DEPARTMENTand PRO] ECT table declarations in Figure 8.1.

Referential integrity is specified via the FOREIGN KEY clause

A referential integrity constraint is violated when rows are inserted or deleted, or when a

foreign key or primary key attribute value is modified.

The default action that SQL takes for an integrity violation is to reject the update operation

that will cause a violation.

However, the schema designer can specify an alternative action to be taken if a referential

integrity constraint is violated, by attaching a referential triggered action clause to any

foreign key constraint.

 The options include SET NULL, CASCADE, and SET DEFAULT. An option must be

qualified with either ON DELETE or ON UPDATE as shown in figure 8.2.

 We illustrate this with the examples shown in Figure 8.2. Here, the database designer

chooses SET NULL ON DELETE and CASCADE ON UPDATE for the foreign key

SUPERSSN of EMPLOYEE (Figure 8.3)

This means that if the row for a supervising employee is deleted, the value of SUPERSSN is

automatically set to NULL for all employee rows that were referencing the deleted employee

tuple. On the other hand, if the SSN value for a supervising employee is updated (say,

because it was entered incorrectly), the new value is cascaded to SUPERSSN for all

employee tuples referencing the updated employee tuple.

Figure 8.3: One possible database state for the COMPANY database

4.2.3 Giving Names to Constraints:

 Figure 8.2 also illustrates how a constraint may be given a constraint name, following the

keyword CONSTRAINT.

 The names of all constraints within a particular schema must be unique.

 A constraint name is used to identify a particular constraint in case the constraint must be

dropped later and replaced with another constraint. Giving names to constraints is optional.

4.2.4 Specifying Constraints on Tuples Using CHECK:

In addition to key and referential integrity constraints, which are specified by special

keywords, other table constraints can be specified through additional CHECK clauses at the

end of a CREATE TABLE statement.

These can be called tuple-based constraints because they apply to each tuple individually

and are checked whenever a tuple is inserted or modified.

For example, suppose that the DEPARTMENT table in Figure 8.1 had an additional attribute

DEPT_CREATE_DATE, which stores the date when the department was created. Then we

could add the following CHECK clause at the end of the CREATE TABLE statement for the

DEPARTMENT table to make sure that a manager's start date is greater than the department

creation date:

CHECK (DEPT_CREATE_DATE < MGRSTARTDATE);

4.3 SCHEMA CHANGE STATEMENTS IN SQL:

Schema Change commands available in SQL can be used to alter a schema by adding or

dropping tables, attributes, constraints, and other schema elements.

4.3.1 The DROP Command:

The DROP command can be used to drop named schema elements, such as tables,

domains, or constraints.

It is also possible to drop a schema. For example, if a whole schema is not needed any more,

the DROP SCHEMA command can be used.

There are two drop behavior options: CASCADE and RESTRICT.

For example, to remove the COMPANY database schema and all its tables, domains, and

other elements, the CASCADE option is used as follows:

 DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it

has no elements in it; otherwise, the DROP command will not be executed.

If a base table within a schema is not needed any longer, the relation and its definition can be

deleted by using the DROP TABLE command.

For example, if we no longer wish to keep track of dependents of employees in the

COMPANY database of Figure 8.1, we can get rid of the DEPENDENT relation by issuing

the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not

referenced in any constraints (for example, by foreign key definitions in another relation) or

views.

With the CASCADE option, all such constraints and views that reference the table are

dropped automatically from the schema, along with the table itself.

The DROP command can also be used to drop other types of named schema elements, such

as constraints or domains.

4.3.2 The ALTER Command:

The definition of a base table or of other named schema elements can be changed by using

the ALTER command.

For base tables, the possible alter table actions include :

 Adding or dropping a column (attribute)

 Changing a column definition

 Adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the

EMPLOYEE base relations in the COMPANY schema, we can use the command:

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN job

VARCHAR(12);

We must still enter a value for the new attribute JOB for each individual EMPLOYEE

tuple. This can be done either by Specifying a default clause or by using the UPDATE

command

If no default clause is specified, the new attribute will have NULLs in all the tuples of the

relation immediately after the command is executed;

To drop a column, we must choose either CASCADE or RESTRICT for drop behavior.

If CASCADE is chosen, all constraints and views that reference the column are dropped

automatically from the schema, along with the column.

If RESTRICT is chosen, the command is successful only if no views or constraints (or

other elements) reference the column.

The following command removes the attribute ADDRESS from the EMPLOYEE base

table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause or by

defining a new default clause.

The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN MGRSSN DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN MGRSSN SET DEFAULT

"333445555";

It is possible to change the constraints specified on a table by adding or dropping a

constraint.

To be dropped, a constraint must have been given a name when it was specified.

For example, to drop the constraint named EMPSUPERFK in Figure 8.2 from the

EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE DROP CONSTRAINT EMPSUPERFK

CASCADE;

We can redefine a replacement constraint by adding a new constraint to the relation, if

needed. This is specified by using the ADD keyword in the ALTER TABLE statement

followed by the new constraint.

4.4 BASIC QUERIES IN SQL:

SQL has one basic statement for retrieving information from a database: the SELECT

statement.

4.4.1 The SELECT-FROM-WHERE Structure of Basic SQL Queries:

The basic form of the SELECT statement, sometimes called a mapping or a select- from-

where block, is formed of the three clauses SELECT, FROM, and WHERE and has the

following form:

SELECT <attribute list>

FROM <table list>

WHERE <condition>;

Where

 <attribute list> is a list of attribute names whose values are to be retrieved by the query.

 <table list> is a list of the relation names required to process the query.

 <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by

the query.

 In SQL, the basic logical comparison operators for comparing attribute values with one

another and with literal constants are =, <, <=, >, >=, and <>.

 These correspond to the relational algebra operators =, <, ~, >, ~, and *, respectively, and to

the c{c++ programming language operators =, <, <=, >, >=, and !=.

 Examples:

This query involves only the EMPLOYEE relation listed in the FROM clause. The

query selects the EMPLOYEE tuples that satisfy the condition of the WHERE clause, then

projects the result on the BDATE and ADDRESS attributes listed in the SELECT clause.

Figure 8.3a shows the result of query QO.

The result of query Ql is shown in Figure 8.3b

 The condition DNUM = DNUMBER relates a project to its controlling department.

 The condition MGRSSN = SSN relates the controlling department to the employee who

manages that department.

 The condition PLOCATION='Stafford' selects the specified project location.

The result of query Q2 is shown in Figure 8.3c.

4.4.2 Ambiguous Attribute Names, Aliasing, and Tuple Variables:

In SQL the same name can be used for two (or more) attributes as long as the attributes

are in different relations.

If this is the case, and if a query refers to two or more attributes with the same name, we

must qualify the attribute name with the relation name to prevent ambiguity.

This is done by prefixing the relation name to the attribute name and separating the two by

a period.

To illustrate this, suppose that the DNO and LNAME attributes of the EMPLOYEE relation

were called DNUMBER and NAME, and the DNAME attribute of DEPARTMENT was

also called NAME; then, to prevent ambiguity. Query Ql would be rephrased as shown in

QIA.

Ambiguity also arises in the case of queries that refer to the same relation twice, as in the

following example:

In this case, we are allowed to declare alternative relation names E and S, called

“aliases” or “tuple variables”, for the EMPLOYEE relation.

An alias can follow the keyword AS, as shown in Q8, or it can directly follow the relation

name-for example, by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8.

It is also possible to rename the relation attributes within the query in SQL by giving them

aliases.

For example, if we write EMPLOYEE AS E(FN, MI, LN, SSN, SD, ADDR, SEX, SAL,

SSSN, DNO) in the FROM clause, FN becomes an alias for FNAME, MI for MINH, LN for

LNAME, and so on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation;

 The first, E represents employees in the role of supervisees

 The second, S, represents employees in the role of supervisors. The result

of query Q8 is shown in Figure 8.3d.

Whenever one or more aliases are given to a relation, we can use these names to represent

different references to that relation. This permits multiple references to the same relation

within a query.

We could specify query Q1A as in Q1B:

4.4.3 Unspecified WHERE Clause and Use of the Asterisk:

 A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the

relation specified in the FROM clause qualify and are selected for the query result.

 If more than one relation is specified in the FROM clause and there is no WHERE clause,

then the CROSS PRODUCT-all possible tuple combinations-of these relations is selected.

For example, Query 9 selects all EMPLOYEE SSNS (Figure 8.3e), and Query 10

selects all combinations of an EMPLOYEE SSN and a DEPARTMENT DNAME (Figure

8.3f).

 It is extremely important to specify every selection and join condition in the WHERE

clause; if any such condition is overlooked then incorrect and very large relations may result.

 To retrieve all the attribute values of the selected tuples, we do not have to list the attribute

names explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes.

 Query Q1C retrieves all the attribute values of any EMPLOYEE who works in

DEPARTMENT number 5 (Figure 8.3g)

 Query Q1D retrieves all the attributes of an EMPLOYEE and the attributes of the

DEPARTMENT in which he or she works the 'Research' department.

 Query Ql0A specifies the CROSS PRODUCT of the EMPLOYEE and DEPARTMENT

relations.

4.4.4 Tables as Sets in SQL:

 An SQL table with a key is restricted to being a set, since the key value must be distinct in

each tuple.

 SQL usually treats a table not as a set but rather as a multiset;

 Duplicate tuples can appear more than once in a table, and in the result of a query.

 SQL does not automatically eliminate duplicate tuples in the results of queries, for the

following reasons:

 Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples

first and then eliminate duplicates.

 The user may want to see duplicate tuples in the result of a query.

 When an aggregate function (SUM,MAX,MIN,AVG) is applied to tuples, in most cases we

do not want to eliminate duplicates.

 If we do want to eliminate duplicate tuples from the result of an SQL query, we use the

keyword DISTINCT in the SELECT clause, meaning that only distinct tuples should remain

in the result.

 In general, a query with SELECT DISTINCT eliminates duplicates, whereas a query with

SELECT ALL does not.

 Specifying SELECT with neither ALL nor DISTINCT-as in our previous examples-is

equivalent to SELECT ALL.

 Query 11 retrieves the salary of every employee; if several employees have the same

salary, that salary value will appear as many times in the result of the query, as shown in

Figure 8.4(a).

 By using the keyword DISTINCT as in Q11A, we get only the distinct salary values , as

shown in Figure 8.4(b).

 SQL has directly incorporated some of the set operations of relational algebra.

 There is set union (UNION) operation

 There is set difference (EXCEPT) operation

 And there is set intersection (INTERSECT) operation

 The relations resulting from these set operations are sets of tuples; that is, duplicate tuples

are eliminated from the result.

 Because these set operations apply only to union-compatible relations, we must make sure

that the two relations on which we apply the operation have the same attributes and that

the attributes appear in the same order in both relations.

 The following example illustrates the use of UNION.

 The first SELECT query retrieves the projects that involve a 'Smith' as manager of the

department that controls the project

 The second SELECT retrieves the projects that involve a 'Smith' as a worker on the project.

 Applying the UNION operation to the two SELECT queries gives the desired result.

 Figure 8.5 illustrates the other multiset operations

4.4.5 Substring Pattern Matching and Arithmetic Operators:

 SQL allows comparison conditions on only parts of a character string, using the LIKE

comparison operator.

 This can be used for string pattern matching.

 Partial strings are specified using two reserved characters:

 % replaces an arbitrary number of zero or more characters and

 The underscore(_)replaces a single character.

 To retrieve all employees who were born during the 1950s, we can use Query 12A. Here,

'5' must be the third character of the string (according to our format for date), so we use the

value ' 5 ', with each underscore serving as a placeholder for an arbitrary character.

 If an underscore or % is needed as a literal character in the string, the character should be

preceded by an escape character, which is specified after the string using the keyword

ESCAPE.

For example, 'AB_CD\%EF' ESCAPE '\' represents the literal string AB_CD%EF',

because \ is specified as the escape character. Any character not used in the string can be

chosen as the escape character.

 If an apostrophe (') is needed, it is represented as two consecutive apostrophes (") so that it

will not be interpreted as ending the string.

 The standard arithmetic operators for addition (+), subtraction (-), multiplication (*), and

division (/) can be applied to numeric values or attributes with numeric domains.

 For string data types, the concatenate operator ‘||’ can be used in a query to append two

string values.

 For date, time, timestamp, and interval data types, operators include incrementing (+) or

decrementing (-) a date, time, or timestamp by an interval.

 Another comparison operator that can be used for convenience is BETWEEN, which is

illustrated in Query 14.

4.4.6 Ordering of Query Results:

 SQL allows the user to order the tuples in the result of a query by the values of one or

more attributes, using the ORDER BY clause.

 The default order is in ascending order of values.

 We can specify the keyword DESC if we want to see the result in a descending order of

values.

4.5. INSERT, DELETE, AND UPDATE STATEMENTS IN SQL:

In SQL, three commands can be used to modify the database: INSERT, DELETE, and

UPDATE. We discuss each of these in turn.

4.5.1 The INSERT Command:

 In its simplest form, INSERT is used to add a single tuple to a relation. We must specify the

relation name and a list of values for the tuple.

 The values should be listed in the same order in which the corresponding attributes were

specified in the CREATE TABLE command.

For example, to add a new tuple to the EMPLOYEE relation, we can use U1:

 A second form of the INSERT statement allows the user to specify explicit attribute names

that correspond to the values provided in the INSERT command.

 This is useful if a relation has many attributes but only a few of those attributes are to be

assigned values in the new tuple.

 However, the values must include all attributes with NOT NULL specification and no default

value.

 Attributes with NULL allowed or DEFAULT values are the ones that can be left out.

For example, to enter a tuple for a new EMPLOYEE for whom we know only the

FNAME,

LNAME, DNO, and SSN attributes, we can use U1A:

Attributes not specified in UlA are set to their DEFAULT or to NULL.

 It is also possible to insert into a relation multiple tuples separated by commas in a single

INSERT command. The attribute values forming each tuple are enclosed in parentheses.

INSERT INTO EMPLOYEE VALUES (('Richard', 'K', 'Marini', '653298653',

'1962-12-30', '98 Oak Forest,Katy,TX', 'M', 7000, '987654321', 4) , ('Roy', ‘J',

'Mathews', '653298654', '1968-11-23', '94 Fulkerson,NY', 'M', 9000, '987664351', 5));

 A DBMS that fully implements SQL-99 should support and enforce all the integrity

constraints that can be specified in the DDL. However, some DBMSs do not incorporate all

the constraints (like referential integrity), in order to maintain the efficiency of the DBMS

and because of the complexity of enforcing all constraints.

 If a system does not support some constraint, the users or programmers must enforce the

constraint.

 For example, if we issue the command in U2 on the database shown in Table 5.1, a DBMS

not supporting referential integrity will do the insertion even though no DEPARTMENT

tuple exists in the database with DNUMBER = 2.

 It is the responsibility of the user to check that any such constraints whose checks are not

implemented by the DBMS are not violated.

 A single INSERT command can be used for inserting multiple tuples into a relation in

conjunction with creating the relation and loading the relation with the result of a query.

For example, to create a temporary table DEPT_NAME that has the name, number of

employees, and total salaries for each department, we can write the statements in U3A and

U3B:

 We can now query DEPTS_INFO as we would any other relation; when we do not need it

any more, we can remove it by using the DROP TABLE command.

4.5.2 The DELETE Command:

 The DELETE command removes tuples from a relation.

 It includes a WHERE clause to select the tuples to be deleted. Tuples are explicitly deleted

from only one table at a time.

 However, the deletion may propagate to tuples in other relations if referential triggered

actions are specified in the referential integrity constraints of the DDL.

 Depending on the number of tuples selected by the condition in the WHERE clause, zero,

one, or several tuples can be deleted by a single DELETE command.

 A missing WHERE clause specifies that all tuples in the relation are to be deleted; however,

the table remains in the database as an empty table.

 The DELETE commands in U4A to U4D, if applied independently to the database of Table

5.1, will delete zero, one, four, and all tuples, respectively, from the EMPLOYEE relation:

4.5.3 The UPDATE Command:

 The UPDATE command is used to modify attribute values of one or more selected tuples.

 As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples

to be modified from a single relation.

 However, updating a primary key value may propagate to the foreign key values of tuples in

other relations if such a referential triggered action is specified in the referential integrity

constraints of the DDL.

 An additional SET clause in the UPDATE command specifies the attributes to be modified

and their new values.

 For example, to change the location and controlling department number of project number 10

to 'Bellaire' and 5, respectively, we use U5:

 Several tuples can be modified with a single UPDATE command.

Example to give all employees in the 'Research' department a 10 percent rise in

salary

4.6 ADDITIONAL FEATURES OF SQL:

 SQL has the capability to specify more general constraints, called assertions, using the

CREATE ASSERTION statement.

 SQL has language constructs for specifying views, also known as virtual tables, using the

CREATE VIEW statement. Views are derived from the base tables declared through the

CREATE TABLE statement.

 SQL has several different techniques for writing programs in various programming

languages that can include SQL statements to access one or more databases. These include

embedded SQL, dynamic SQL SQL/CLI (Call Language Interface) and its predecessor

ODBC (Open Data Base Connectivity), and SQL/PSM (Program Stored Modules).

 Each commercial RDBMS will have, in addition to the SQL commands, a set of commands

for specifying physical database design parameters, file structures for relations, and access

paths such as indexes. We call these commands a storage definition language (SDL).

 SQL has transaction control commands. These are used to specify units of database

processing for concurrency control and recovery purposes.

 SQL has language constructs for specifying the granting and revoking of privileges to users.

Privileges typically correspond to the right to use certain SQL commands to access certain

relations. Each relation is assigned an owner, and either the owner or the DBA staff can grant

to selected users the privilege to use an SQL statement-such as SELECT, INSERT,

DELETE, or UPDATE-to access the relation. In addition, the DBA staff can grant the

privileges to create schemas, tables, or views to certain users. These SQL commands-called

GRANT and REVOKE.

 SQL has language constructs for creating Triggers. These are generally referred to as active

database techniques, since they specify actions that are automatically triggered by events

such as database updates.

 SQL has incorporated many features from object-oriented models to have more powerful

capabilities, leading to enhanced relational systems known as object- relational. Capabilities

such as creating complex-structured attributes (also called nested relations), specifying

abstract data types (called DDTs or user-defined types) for attributes and tables, creating

object identifiers for referencing tuples, and specifying operations on these types.

 SQL and relational databases can interact with new technologies such as XML (eXtended

Markup Language) and OLAP (On Line Analytical Processing for Data Warehouses).

 Module 2.2-RELATIONAL ALGEBRA

2.1 UNARY RELATIONAL OPERATIONS: SELECT and PROJECT

2.1.1The SELECT Operation

 The SELECT operation is used to choose a subset of the tuples from a relation that satisfies a

selection condition.

 We can consider the SELECT operation to restrict the tuples in a relation to only those tuples that

satisfy the condition.

 The SELECT operation can also be visualized as a horizontal partition of the relation into two sets

of tuples—those tuples that satisfy the condition and are selected, and those tuples that do not

satisfy the condition and are discarded.

For example, to select the EMPLOYEE tuples whose department is 4, or those whose salary

is greater than $30,000, we can individually specify each of these two conditions with a

SELECT operation as follows:



where the symbol σ (sigma) is used to denote the SELECT operator and the selection condition is
a Boolean expression (condition) specified on the attributes of relation R.
The Boolean expression specified in <selection condition> is made up of a number of clauses of
the form

<attribute name> <comparison op> <constant value> or
<attribute name> <comparison op> <attribute name>

 Clauses can be connected by the standard Boolean operators and, or, and not to form a general
selection condition.
For example, to select the tuples for all employees who either work in department 4 and make
over $25,000 per year, or work in department 5 and make over $30,000, we can specify the
following SELECT operation:

 The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:
■ (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; otherwise,it is FALSE.
■ (cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE; otherwise, it is

FALSE.
■ (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

 The SELECT operator is unary; that is, it is applied to a single relation. Moreover, the selection

operation is applied to each tuple individually; hence, selection conditions cannot involve more

than one tuple.

 The degree of the relation resulting from a SELECT operation—its number of attributes—is the

same as the degree of R.

 The number of tuples in the resulting relation is always less than or equal to the number of tuples

in R. The fraction of tuples selected by a selection condition is referred to as the selectivity of the

condition.

Notice that the SELECT operation is commutative; that is,

1.1.2 The PROJECT Operation

The PROJECT operation, selects certain columns from the table and discards the other columns.

If we are interested in only certain attributes of a relation, we use the PROJECT operation to

project the relation over these attributes only.

Therefore, the result of the PROJECT operation can be visualized as a vertical partition of the

relation into two relations: one has the needed columns (attributes) and contains the result of

the operation, and the other contains the discarded columns.

For example, to list each employee’s first and last name and salary, we can use the

PROJECT operation as follows:

of the PROJECT operation is

where (pi) is the symbol used to represent the PROJECT operation, and <attribute list> is
the desired sublist of attributes from the attributes of relation R.
The result of the PROJECT operation has only the attributes specified in <attribute list> in the

same order as they appear in the list. Hence, its degree is equal to the number of attributes in
<attribute list>.
The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is
a set of distinct tuples, and hence a valid relation. This is known as duplicate elimination.

The general form

Note:

Consider the relational algebraic queries below:

1.1.3 Sequences of Operations and the RENAME Operation

 We must give names to the relations that hold the intermediate results.

 For example, to retrieve the first name, last name, and salary of all employees who work in
department number 5, we must apply a SELECT and a PROJECT operation. We can write a
single relational algebra expression, also known as an in-line expression, as follows:

 Figure 1.1(a) shows the result of this in-line relational algebra expression. Alternatively, we can

explicitly show the sequence of operations, giving a name to each intermediate relation, as:

:

 It is sometimes simpler to break down a complex sequence of operations by specifying
intermediate result relations than to write a single relational algebra expression. We can also use
this technique to rename the attributes in the intermediate and result relations.

 To rename the attributes in a relation, we simply list the new attribute names in parentheses, as in
the following example:

 We can also define a formal RENAME operation—which can rename either the relation name or
the attribute names, or both—as a unary operator. The general RENAME operation when applied
to a relation R of degree n is denoted by any of the following three forms:

where the symbol ρ (rho) is used to denote the RENAME operator, S is the new relation name,
and B1, B2, ..., Bn are the new attribute names.

 In SQL, a single query typically represents a complex relational algebra expression. Renaming in
SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

1.2 Relational Algebra Operations from Set Theory

1.2.1 The UNION, INTERSECTION, and MINUS Operations

We can define the three set operations UNION, INTERSECTION, and SET
DIFFERENCE on two union-compatible relations R and S as follows:

 UNION: The result of this operation, denoted by R ∪ S, is a relation that includes all tuples that

are either in R or in S or in both R and S. Duplicate tuples are eliminated.

For example, to retrieve the Social Security numbers of all employees who either work in

department 5 or directly supervise an employee who works in department 5, we can use
the UNION operation as follows:

The relation RESULT1 has the Ssn of all employees who work in department 5, whereas
RESULT2 has the Ssn of all employees who directly supervise an employee who works in
department 5. The UNION operation produces the tuples that are in either RESULT1 or
RESULT2 or both (see Figure 6.3), while eliminating any duplicates.

 INTERSECTION: The result of this operation, denoted by R ∩ S, is a relation that includes all
tuples that are in both R and S.

 SET DIFFERENCE (or MINUS or EXCEPT): The result of this operation, denoted by R – S, is

a relation that includes all tuples that are in R but not in S.

These are binary operations; that is, each is applied to two sets (of tuples).When these
operations are adapted to relational databases, the two relations on which any of these three
operations are applied must have the same type of tuples; this condition has been called union
compatibility or type compatibility.

Two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bn) are said to be union compatible (or

type compatible) if they have the same degree n and if dom(Ai) = dom(Bi) for i 1 to n This means
that the two relations have the same number of attributes and each corresponding pair of attributes
has the same domain.

1.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

 CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN—
which is denoted by ×.

 This is also a binary set operation, but the relations on which it is applied do not have to be union
compatible. This set operation produces a new element by combining every member (tuple) from
one relation (set) with every member (tuple) from the other relation (set).

 In general, the result of R(A1, A2, ..., An) × S(B1, B2, ..., Bm) is a relation Q with degree n + m
attributes Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.

 The resulting relation Q has one tuple for each combination of tuples—one from R and one from
S. Hence, if R has m tuples and S has n tuples, then R × S will have m*n tuples.

Example, suppose that we want to retrieve a list of names of each female employee’s
dependents. We can do this as follows:

1.3 Binary Relational Operations: JOIN and DIVISION

1.3.1 The JOIN Operation

 The JOIN operation, denoted by , is used to combine related tuples from two relations into single
“longer” tuples.

 To illustrate JOIN, suppose that we want to retrieve the name of the manager of each department.
to get the manager’s name, we need to combine each department tuple with the employee tuple
whose Ssn value matches the Mgr_ssn value in the department tuple.
We do this by using the JOIN

 The JOIN operation can be specified as a CARTESIAN PRODUCT operation followed by a
SELECT operation.

 Consider the earlier example illustrating CARTESIAN PRODUCT, which included the following
sequence of operations:

 The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An, B1, B2, ... , Bm)

In JOIN, only combinations of tuples satisfying the join condition appear in the result, whereas in

the CARTESIAN PRODUCT all combinations of tuples are included in the result.

 A general join condition is of the form

<condition> AND <condition> AND...AND <condition>

where each <condition> is of the form Ai θ Bj, Ai is an attribute of R, Bj is an attribute of S, Ai

and Bj have the same domain, and θ (theta) is one of the comparison operators {=, <, ≤, >, ≥, ≠}.

A JOIN operation with such a general join condition is called a THETA JOIN.

1.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

 The most common use of JOIN involves join conditions with equality comparisons only. Such a

JOIN, where the only comparison operator used is =, is called an EQUIJOIN. Both previous

examples were EQUIJOINs.

 Notice that in the result of an EQUIJOIN we always have one or more pairs of attributes that have

identical values in every tuple.

 For example, in Figure 6.6, the values of the attributes Mgr_ssn and Ssn are identical in every

tuple of DEPT_MGR (the EQUIJOIN result) because the equality join condition specified on these

two attributes requires the values to be identical in every tuple in the result. Because one of each

pair of attributes with identical values is superfluous, a new operation called NATURAL JOIN—

denoted by * was created to get rid of the second (superfluous) attribute in an EQUIJOIN

condition.

 The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of
join attributes) have the same name in both relations. If this is not the case, a renaming operation is
applied first.

 Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that

controls the project.

In the following example, first we rename the Dnumber attribute of DEPARTMENT to Dnum—so
that it has the same name as the Dnum attribute in PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT ← PROJECT * ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as follows:

DEPT ← ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)
PROJ_DEPT ← PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation, because it is
the only attribute with the same name in both relations.

For example, to apply a natural join on the Dnumber

attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

 In general, the join condition for NATURAL JOIN is constructed by equating each pair of join

attributes that have the same name in the two relations and combining these conditions with AND.

 A single JOIN operation is used to combine data from two relations so that related information can
be presented in a single table. These operations are also known as inner joins.

 A more general, but nonstandard definition for NATURAL JOIN is

Q ← R *(<list1>),(<list2>)S
In this case, <list1> specifies a list of i attributes from R, and <list2> specifies a list of i attributes
from S.

The NATURAL JOIN or EQUIJOIN operation can also be specified among multiple tables,
leading to an n-way join.
For example, consider the following three-way join:

1.3.3 A Complete Set of Relational Algebra Operations

 It has been shown that the set of relational algebra operations {σ, π, ∪, ρ, –, ×} is a complete set;

that is, any of the other original relational algebra operations can be expressed as a sequence of
operations from this set.

For example, the INTERSECTION operation can be expressed by using UNION and MINUS as
follows:

R ∩ S ≡ (R ∪ S) – ((R – S) ∪ (S – R))

JOIN operation can be specified as a CARTESIAN PRODUCT followed by a SELECT
operation, as we discussed:

A NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations.

1.3.4 The DIVISION Operation

 The DIVISION operation, denoted by ÷, is useful for a special kind of query that sometimes
occurs in database applications.
example is Retrieve the names of employees who work on all the projects that ‘John Smith’ works on.
To express this query using the DIVISION operation, proceed as follows.
First, retrieve the list of project numbers that ‘John Smith’ works on in the intermediate relation
SMITH_PNOS:

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee whose Ssn
is Essn works on the project whose number is Pno in the intermediate relation SSN_PNOS:

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security numbers:

 In general, the DIVISION operation is applied to two relations R(Z) ÷ S(X), where the attributes

of R are a subset of the attributes of S; that is, X ⊆ Z. Let Y be the set of attributes of R that are
not attributes of S;

 The DIVISION operation is defined for convenience for dealing with queries that involve
universal quantification or the all condition

 The DIVISION operation can be expressed as a sequence of π, ×, and – operations as follows:

1.3.5 Notation for Query Trees

 Here we describe about the notation typically used in relational systems to represent queries
internally. The notation is called a query tree or sometimes it is known as a query evaluation
tree or query execution tree.

 It includes the relational algebra operations being executed and is used as a possible data structure
for the internal representation of the query in an RDBMS.

 A query tree is a tree data structure that corresponds to a relational algebra expression.

 It represents the input relations of the query as leaf nodes of the tree, and represents the relational

algebra operations as internal nodes.

 An execution of the query tree consists of executing an internal node operation whenever its
operands (represented by its child nodes) are available, and then replacing that internal node by the
relation that results from executing the operation.

 The execution terminates when the root node is executed and produces the result relation for the
query.

Query tree for the abobe query (Q2) . In this, the three leaf nodes P, D, and E represent the three
relations PROJECT, DEPARTMENT, and EMPLOYEE.

 In order to execute query Q2, the node marked (1) in Figure 6.9 must begin execution before node
(2) because some resulting tuples of operation (1) must be available before we can begin to
execute operation (2). Similarly, node (2) must begin to execute and produce results before node

(3) can start execution, and so on.

 In general, a query tree gives a good visual representation and understanding of the query in terms
of the relational operations it uses and is recommended as an additional means for expressing
queries in relational algebra.

1.4 Additional Relational Operations
1.4.1 Generalized Projection

 The generalized projection operation extends the projection operation by allowing functions of
attributes to be included in the projection list.

 The generalized form can be expressed as:

π F1, F2, ..., Fn (R)

where F1, F2, ..., Fn are functions over the attributes in relation R and may involve
arithmetic operations and constant values.

Example:
EMPLOYEE (Ssn, Salary, Deduction, Years_service)
A report may be required to show Net Salary = Salary – Deduction, Bonus = 2000 * Years_service,
and Tax = 0.25 * Salary.
Then a generalized projection combined with renaming may be used as follows:

1.4.2 Aggregate Functions and Grouping

 Mathematical aggregate functions are applied on collections of values from the database.

Examples of such functions include retrieving the average or total salary of all employees or the

total number of employee tuples.

 Common functions applied to collections of numeric values include SUM, AVERAGE,

MAXIMUM, and MINIMUM. The COUNT function is used for counting tuples or values.

 We can define an AGGREGATE FUNCTION operation, using the symbol (pronounced script

F), to specify these types of requests as follows:

<grouping attributes> <function list> (R)

where <grouping attributes> is a list of attributes of the relation specified in R, and

<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function> is one of

the allowed functions—such as SUM, AVERAGE, MAXIMUM, MINIMUM,COUNT—and

<attribute> is an attribute of the relation specified by R.

 The resulting relation has the grouping attributes plus one attribute for each element in the

function list.

 For example, to retrieve each department number, the number of employees in the department,

and their average salary, while renaming the resulting attributes as indicated below, we write:

In the above example, we specified a list of attribute names—between parentheses in the

RENAME operation—for the resulting relation R.

If we do not want to rename the attributes then the above query we can write it as,

Note: If no grouping attributes are specified, the functions are applied to all the tuples in the

relation, so the resulting relation has a single tuple only.

For example,

Example queries and their results:

1.4.3 Recursive Closure Operations

 Recursive closure operation in relational algebra is applied to a recursive relationship between

tuples of the same type, such as the relationship between an employee and a supervisor.

 This relationship is described by the foreign key Super_ssn of the EMPLOYEE relation in Figures

3.5 and 3.6, and it relates each employee tuple (in the role of supervisee) to another employee

tuple (in the role of supervisor).

 An example of a recursive operation is to retrieve all supervisees of an employee e at all levels—

that is, all employees e’ directly supervised by e, all employees e’’ directly supervised by each

employee e’, all employees e’’’ directly supervised by each employee e’’, and so on.

 For example, to specify the Ssns of all employees e_ directly supervised—at level one—by the

employee e whose name is ‘James Borg’ (see Figure 3.6), we can apply the following operation:

 To retrieve all employees supervised by Borg at level 2—that is, all employees e’’ supervised by

some employee e’ who is directly supervised by Borg—we can apply another JOIN to the result

of the first query, as follows:

 To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we can apply the

UNION operation to the two results, as follows:

RESULT ← RESULT2 ∪ RESULT1

Example result:

 Although it is possible to retrieve employees at each level and then take their UNION, we cannot,

in general, specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels”without

utilizing a looping mechanism unless we know the maximum number of levels.

 An operation called the transitive closure of relations has been proposed to compute the recursive

relationship as far as the recursion proceeds.

1.4.4 OUTER JOIN Operations

 For a NATURAL JOIN operation R * S, only tuples from R that have matching tuples in S—and

vice versa—appear in the result. Hence, tuples without a matching (or related) tuple are eliminated

from the JOIN result. Tuples with NULL values in the join attributes are also eliminated.

 This type of join, where tuples with no match are eliminated, is known as an inner join. The join

operations we described earlier in Section 1.3 are all inner joins.

 This amounts to the loss of information if the user wants the result of the JOIN to include all the

tuples in one or more of the component relations.

 A set of operations, called outer joins, were developed for the case where the user wants to keep

all the tuples in R, or all those in S, or all those in both relations in the result of the JOIN,

regardless of whether or not they have matching tuples in the other relation. This satisfies the need

of queries in which tuples from two tables are to be combined by matching corresponding rows,

but without losing any tuples for lack of matching values.

 For example, suppose that we want a list of all employee names as well as the name of the

departments they manage if they happen to manage a department; if they do not manage one, we

can indicate it with a NULL value.

 We can apply an operation LEFT OUTER JOIN, denoted by , to retrieve the result as follows:

 The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R S; if

no matching tuple is found in S, then the attributes of S in the join result are filled with NULL

values.

 A similar operation, RIGHT OUTER JOIN, denoted by , keeps every tuple in the second, or

right, relation S in the result of R S.

 A third operation, FULL OUTER JOIN, denoted by , keeps all tuples in both the left and the right

relations when no matching tuples are found, filling them with NULL values as needed.

1.4.5 The OUTER UNION Operation

 The OUTER UNION operation was developed to take the union of tuples from two relations that

have some common attributes, but are not union (type) compatible.

7

 This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z) that are

partially compatible, meaning that only some of their attributes, say X, are union compatible.

 The attributes that are union compatible are represented only once in the result, and those

attributes that are not union compatible from either relation are also kept in the result relation T(X,

Y, Z). It is therefore the same as a FULL OUTER JOIN on the common attributes.

 Two tuples t1 in R and t2 in S are said to match if t1[X]=t2[X]. These will be combined (unioned)

into a single tuple in t. Tuples in either relation that have no matching tuple in the other relation

are padded with NULL values.

 For example, an OUTER UNION can be applied to two relations whose schemas are

STUDENT(Name, Ssn, Department, Advisor)

and INSTRUCTOR(Name, Ssn, Department,

Rank).

 Tuples from the two relations are matched based on having the same combination of values of the

shared attributes—Name, Ssn, Department.

 The resulting relation, STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

 All the tuples from both relations are included in the result, but tuples with the same (Name, Ssn,

Department) combination will appear only once in the result.

 Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereas tuples

appearing only in INSTRUCTOR will have a NULL for the Advisor attribute.

 A tuple that exists in both relations, which represent a student who is also an instructor, will have

values for all its attributes.

1.5 Examples of Queries in Relational Algebra

Query 1 Retrieve the name and address of all employees who work for the ‘Research’ department.

In a single line we can write the above query as,

Query 2. Retrieve the number of employees and the average salary of all the employees.

Query 3. For every project located in ‘Stafford’, list the project number,
the controlling department number, and the department
manager’s last name, address, and birth date.

Query 4. Find the names of employees who work on all the projects

controlled by department number 5.

Query 5. Make a list of project numbers for projects that involve an

employee whose last name is ‘Smith’, either as a worker or as a
manager of the department that controls the project.

Query 6. List the names of all employees with two or more dependents.

Query 7. Retrieve the names of employees who have no dependents.

Query 8. List the names of managers who have at least one dependent.

Module 2.3 Mapping conceptual Design into a logical design

 Relational Database Design Using ER-to-Relational Mapping

Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that
includes all the simple attributes of E.

EMPLOYEE
SSN Lname Fname

DEPARTMENT

NUMBER NAME

Step 2: For each weak entity type W in the ER schema with owner entity type E, create a
relation R, and include all simple attributes (or simple components of composite attributes) of W
as attributes. In addition, include as foreign key attributes of R the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s).

DEPENDENT
EMPL-SSN NAME Relationship

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T
that correspond to the entity types participating in R. Choose one of the relations, say S, and
include the primary key of T as a foreign key in S. Include all the simple attributes of R as
attributes of S.

DEPARTMENT

MANAGER-SSN StartDate

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S.
Include the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

EMPLOYEE
SupervisorSSN

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys
of participant relations as foreign keys in S. Their combination will be the primary key for S.
Simple attributes of R become attributes of S.

WORKS-FOR

EmployeeSSN DeptNumber

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an
attribute corresponding to A, plus the primary key K of the parent relation (entity type or
relationship type) as a foreign key in R. The primary key of R is the combination of A and K.

DEP-LOCATION

Location DEP-NUMBER

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R.
Include the primary keys of the relations participating in R as foreign keys in S. Simple attributes
of R map to attributes of S. The primary key of S is a combination of all the foreign keys that
reference the participants that have cardinality constraint > 1.

For a recursive relationship, we will need a new relation.

Questions

1. Define the following terms with an example for each.
2. Explain:
3. i) Domain constraint ii) Semantic integrity constraint iii) Functional

dependency constraint
4. List the characteristics of relation? Discuss any one?
5. Discuss various types of Inner Join Operations?
6. Discuss the characteristics of a relation, with an example
7. Briefly discuss the different types of update operations on relational database. show an example of
8. What is valid state and an invalid state,with respect to a database
9. Define referential integrity constraint. Explain the importance of referential integrity constraint. How is this

constraint implemented in SQL
10. Define referential integrity in each of the update operation

	Module 2.4 - SQL
	4.1 SQL DATA DEFINITION AND DATA TYPES:
	4.1.1 Schema and Catalog Concepts in SQL:
	4.1.2 The CREATE TABLE Command in SQL:
	CREATE TABLE COMPANY. EMPLOYEE...
	CREATE TABLE EMPLOYEE …

	4.1.3 Attribute Data Types and Domains in SQL:
	 The default for ‘n’, the length of a character string or bit string, is 1.

	Domain
	A domain can be declared, and the domain name can be used with the attribute specification.

	4.2 SPECIFYING CONSTRAINTS IN SQL:
	 key and referential integrity constraints
	 If no default clause is specified, the default value is NULL for attributes that do not have the NOT NULL constraint.
	Figure 8.3: One possible database state for the COMPANY database
	4.2.4 Specifying Constraints on Tuples Using CHECK:

	4.3 SCHEMA CHANGE STATEMENTS IN SQL:
	4.3.1 The DROP Command:
	There are two drop behavior options: CASCADE and RESTRICT.

	4.3.2 The ALTER Command:
	The definition of a base table or of other named schema elements can be changed by using the ALTER command.
	If RESTRICT is chosen, the command is successful only if no views or constraints (or other elements) reference the column.
	It is possible to change the constraints specified on a table by adding or dropping a constraint.

	4.4 BASIC QUERIES IN SQL:
	4.4.1 The SELECT-FROM-WHERE Structure of Basic SQL Queries:
	 In SQL, the basic logical comparison operators for comparing attribute values with one another and with literal constants are =, <, <=, >, >=, and <>.

	4.4.2 Ambiguous Attribute Names, Aliasing, and Tuple Variables:
	In SQL the same name can be used for two (or more) attributes as long as the attributes are in different relations.
	It is also possible to rename the relation attributes within the query in SQL by giving them aliases.

	4.4.3 Unspecified WHERE Clause and Use of the Asterisk:
	 If more than one relation is specified in the FROM clause and there is no WHERE clause, then the CROSS PRODUCT-all possible tuple combinations-of these relations is selected.
	 By using the keyword DISTINCT as in Q11A, we get only the distinct salary values , as shown in Figure 8.4(b).
	 Because these set operations apply only to union-compatible relations, we must make sure that the two relations on which we apply the operation have the same attributes and that the attributes appear in the same order in both relations.

	4.4.5 Substring Pattern Matching and Arithmetic Operators:
	 If an underscore or % is needed as a literal character in the string, the character should be preceded by an escape character, which is specified after the string using the keyword ESCAPE.
	 The standard arithmetic operators for addition (+), subtraction (-), multiplication (*), and division (/) can be applied to numeric values or attributes with numeric domains.

	4.4.6 Ordering of Query Results:
	 SQL allows the user to order the tuples in the result of a query by the values of one or more attributes, using the ORDER BY clause.

	4.5. INSERT, DELETE, AND UPDATE STATEMENTS IN SQL:
	4.5.1 The INSERT Command:
	4.5.2 The DELETE Command:
	4.5.3 The UPDATE Command:

	4.6 ADDITIONAL FEATURES OF SQL:
	2.1.1The SELECT Operation
	selection condition.
	<attribute name> <comparison op> <constant value> or

	1.1.2 The PROJECT Operation
	Note:

	1.2 Relational Algebra Operations from Set Theory
	1.3 Binary Relational Operations: JOIN and DIVISION
	 A general join condition is of the form

	1.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN
	DEPT ← ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT) PROJ_DEPT ← PROJECT * DEPT
	DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

	1.3.3 A Complete Set of Relational Algebra Operations
	R ∩ S ≡ (R ∪ S) – ((R – S) ∪ (S – R))

	1.3.4 The DIVISION Operation
	1.3.5 Notation for Query Trees
	1.4 Additional Relational Operations
	1.4.1 Generalized Projection
	Example:

	1.4.2 Aggregate Functions and Grouping
	<grouping attributes> <function list> (R)
	RESULT ← RESULT2 ∪ RESULT1

	1.4.4 OUTER JOIN Operations
	1.4.5 The OUTER UNION Operation
	STUDENT(Name, Ssn, Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank).
	STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

	1.5 Examples of Queries in Relational Algebra
	Query 1 Retrieve the name and address of all employees who work for the ‘Research’ department.
	Query 2. Retrieve the number of employees and the average salary of all the employees.

