Database Management System [18CS53]

Module 3
Chapter 1: SQL- Advances Queries

1.1 More Complex SQL Retrieval Queries
Additional features allow users to specify more complex retrievals from database

1.1.1 Comparisons Involving NULL and Three-Valued Logic
SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but
that it usually has one of three different interpretations—value

Example

1. Unknown value. A person’s date of birth is not known, so it is represented by NULL in the
database.

2. Unavailable or withheld value. A person has a home phone but does not want it to be
listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute. An attribute CollegeDegree would be NULL for a person who has no

olle sbecause i not apply o that person.
Eachual ULL jvaluelis c erwe ffe eryﬁ\l@lu in the various
database records. Whe ULL is invo inac aris opaatio , the ult is considered to

be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with
values TRUE, FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with
values TRUE or FALSE. It is therefore necessary to define the results (or truth values) of three-

valued logical expressions when the logical connectives AND, OR, and NOT are used

Table 5.1 Lcgical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
{c) NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Database Management System [18CS53]

The rows and columns represent the values of the results of comparison conditions, which would
typically appear in the WHERE clause of an SQL query.

In select-project-join queries, the general rule is that only those combinations of tuples that evaluate
the logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations
that evaluate to FALSE or UNKNOWN are not selected.

SQL allows queries that check whether an attribute value is NULL using the comparison operators
IS or IS NOT.
Example: Retrieve the names of all employees who do not have supervisors.

SELECT Fname, Lhame

FROM EMPLOYEE

WHERE Super_ssn IS NULL;
1.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons
Some queries require that existing values in the database be fetched and then used in a
comparison condition. Such queries can be conveniently formulated by using nested queries,

which are lect-from-where blocks within the WHERE clause of another query. That
other\guery'is called the outer o
Exam . Listthe project/nu

vers offproject hS\‘ an emgID€w nmh’ as
manager

SELECT DISTINCT Pnumber FROM PROJECT WHERE

Pnumber IN

(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND Lname="‘smith’);

Example2: List the project numbers of projects that have an employee with last name ‘Smith’ as

either manager or as worker.
SELECT DISTINCT Pnumber FROM PROJECT WHERE
Pnumber IN
(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND Lname="‘smith’)
OR
Pnumber IN
(SELECT Pno FROM WORKS_ON, EMPLOYEE WHERE Essn=Ssn AND
Lname=*‘smith’);
We make use of comparison operator IN, which compares a value v with a set (or multiset) of
values V and evaluates to TRUE if v is one of the elements in V.

Database Management System [18CS53]

The first nested query selects the project numbers of projects that have an employee with last name
‘Smith’ involved as manager. The second nested query selects the project numbers of projects that
have an employee with last name ‘Smith’ involved as worker. In the outer query, we use the OR
logical connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in the result

of either nested query.

SQL allows the use of tuples of values in comparisons by placing them within parentheses. For
example, the following query will select the Essns of all employees who work the same (project,
hours) combination on some project that employee ‘John Smith’ (whose Ssn = ‘“123456789’) works

on
SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN { SELECT Pno, Hours

FROM WORKS_ON
WHERE Essn="123456789");

In this example, the IN operator compares the subtuple of values in parentheses (Pno,Hours) within
each tuple in WORKS_ON with the set of type-compatible tuples produced by the nested query.

Nested Queries::Comparison @ tors
Other parisoh operators can be used tofco pﬁ ﬁ/alueﬁf 'tisi V.!he =
ANY (or'= SOME) oper returns TR he vallue v is alﬁso valtie'in the set Vand is

hence equivalent to IN. The two keywords ANY and SOME have the same effect. The keyword ALL

can also be combined with each of these operators. For example, the comparison condition (v >
ALL V) returns TRUE if the value v is greater than all the values in the set (or multiset) V. For
example is the following query, which returns the names of employees whose salary is greater than
the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

FROM EMPLOYEE

WHERE Dno=5);
In general, we can have several levels of nested queries. We can once again be faced with possible
ambiguity among attribute names if attributes of the same name exist—one in a relation in the
FROM clause of the outer query, and another in a relation in the FROM clause of the nested query.
The rule is that a reference to an unqualified attribute refers to the relation declared in the
innermost nested query.
To avoid potential errors and ambiguities, create tuple variables (aliases) for all tables referenced in
SQL query

Database Management System [18CS53]

Example: Retrieve the name of each employee who has a dependent with the same first name and
is the same sex as the employee

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name

AND E.Sex=D.Sex);
In the above nested query, we must qualify E.Sex because it refers to the Sex attribute of
EMPLOYEE from the outer query, and DEPENDENT also has an attribute called Sex.

1.1.3 Correlated Nested Queries
Whenever a condition in the WHERE clause of a nested query references some attribute of a
relation declared in the outer query, the two queries are said to be correlated.
Example:
SELECT E.Fname, E.Lhame

ROM E OYEE AS
HERE INy(SELECT, n
FRSe.com
WHERE E.Fname=D.Dependent_name @
AND E.Sex=D.Sex);
The nested query is evaluated once for each tuple (or combination of tuples) in the outer query. we
can think of query in above example as follows: For each EMPLOYEE tuple, evaluate the nested
query, which retrieves the Essn values for all DEPENDENT tuples with the same sex and name as

that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the result of the nested query,
then select that EMPLOYEE tuple.

1.1.4 The EXISTS and UNIQUE Functions in SQL
EXISTS Functions
The EXISTS function in SQL is used to check whether the result of a correlated nested query is
empty (contains no tuples) or not. The result of EXISTS is a Boolean value

* TRUE if the nested query result contains at least one tuple, or

* FALSE if the nested query result contains no tuples.
For example, the query to retrieve the name of each employee who has a dependent with the same
first name and is the same sex as the employee can be written using EXISTS functions as follows:

SELECT E.Fname, E.Lhame

Database Management System [18CS53]

FROM EMPLOYEE AS E

WHERE EXISTS (SELECT *

FROM DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND E.Fname=D.Dependent_name);
Example: List the names of managers who have at least one dependent

SELECT Fname, Lhame

FROM EMPLOYEE

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn=Essn)

AND

EXISTS (SELECT *

FROM DEPARTMENT

WHERE Ssn=Mgr_ssn);

In general, EXISTS(Q) returns TRUE if there is a| least one tuple in the result of the nested query Q,

“VTtIPulse.com

NOT EXISTS Functions
NOT EXISTS(Q) returns TRUE if there are no tuples in the result of nested query Q, and it returns
FALSE otherwise.
Example: Retrieve the names of employees who have no dependents.
SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM DEPENDENT
WHERE Ssn=Essn);

For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT tuples whose
Essn value matches the EMPLOYEE Ssn; if the result is empty, no dependents are related to the

employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lhame.

Example: Retrieve the name of each employee who works on all the projects controlled

by department number 5
SELECT Fname, Lname

Database Management System [18CS53]

FROM EMPLOYEE

WHERE NOT EXISTS ((SELECT Pnumber
FROM PROJECT

WHERE Dnum=5)

EXCEPT (SELECT Pno

FROM WORKS_ON

WHERE Ssn=Essn));

UNIQUE Functions
UNIQUE(Q) returns TRUE if there are no duplicate tuples in the result of query Q; otherwise, it
returns FALSE. This can be used to test whether the result of a nested query is a set or a multiset.

1.1.5 Explicit Sets and Renaming of Attributes in SQL

IN SQL it is possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses.

Example: Retrieve the Social Security numbers of all employees who work on project numbers 1, 2,

VEIPulse.com

WHERE PnoIN (1, 2, 3);
In SQL, it is possible to rename any attribute that appears in the result of a query by adding the

or3

qualifier AS followed by the desired new name
Example: Retrieve the last name of each employee and his or her supervisor
SELECT E.Lname AS Employee_name,
S.Lname AS Supervisor_name
FROM EMPLOYEE AS E,
EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;

Database Management System [18CS53]

1.1.6 Joined Tables in SQL and Outer Joins

An SQL join clause combines records from two or more tables in a database. It creates a set that
can be saved as a table or used as is. A JOIN is a means for combining fields from two tables by
using values common to each. SQL specifies four types of JOIN

1. INNER,

2. OUTER

3. EQUIJOIN and

4. NATURAL JOIN

INNER JOIN

An inner join is the most common join operation used in applications and can be regarded as the
default join-type. Inner join creates a new result table by combining column values of two tables (A
and B) based upon the join- predicate (the condition). The result of the join can be defined as the
outcome of first taking the Cartesian product (or Cross join) of all records in the tables (combining
every record in table A with every record in table B)—then return all records which satisfy the join

predicate
Example:/SELECT *[FROM e /Ee
INNERGQ! enmenlml Se.COI I l

employee.dno = department.dnumber;

EQUIJOIN and NATURAL JOIN
An EQUIJOIN is a specific type of comparator-based join that uses only equality comparisons in the

join-predicate. Using other comparison operators (such as <) disqualifies a join as an equijoin.

NATURAL JOIN is a type of EQUIJOIN where the join predicate arises implicitly by comparing all
columns in both tables that have the same column-names in the joined tables. The resulting joined

table contains only one column for each pair of equally named columns.

SELECT Fname, Lname, Address

FROM EMPLOYEE/NATURAL JOIN
DEPARTMENT

WHERE Dname="Research’;

Database Management System [18CS53]

If the names of the join attributes are not the same in the base relations, it is possible to rename the
attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can
be used to rename a relation and all its attributes in the FROM clause.

CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it will

produce rows which combine each row from the first table with each row from the second table.

OUTER JOIN
An outer join does not require each record in the two joined tables to have a matching record. The
joined table retains each record-even if no other matching record exists. Outer joins subdivide
further into

* Left outer joins

* Right outer joins

* Full outer joins
No implicit join-notation for outer joins exists in standard SQL.

» LEFT OUTER JOIN

Every tuple in left table must appear in result
If no matching tuple
Padded with NULL values for attributes of right table

(e lIT] s"lRetieve the names of employees and their supervisors-

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name ::m}f:::‘ ,::;:;s f"a,h =
FROM EMPLOYEE AS E, EMPLOYEE AS S result; an EMPLOYEE tuple
. ——= = whose value for Super_ssn is

WHERE E.Super_ssn=S.Ssn; Imp|IC|t inner join .\.’L"I_Lisadudedper
If the user requires that all
employees be included, an

Q8B: SELECT E.Lname AS Employee_name, OUTER JOIN must be used
S.Lname AS Supervisor_name i
FROM EMPLOYEE AS E|LEFT OUTER JOIN[EMPLOYEE AS S |

M E.Super_ssn=S.Ssn);

Database Management System [18CS53]

» RIGHT OUTER JOIN

Every tuple in right table must appear in result

If no matching tuple
Padded with NULL values for the attributes of left table

» FULL OUTER JOIN

a full outer join combines the effect of applying both left and right outer
joins.

» Where records in the FULL OUTER JOINed tables do not match, the
result set will have NULL values for every column of the table that lacks
a matching row.

For those records that do match, a single row will be produced in the
result set (containing fields populated from both tables).

» Not all SQL implementations have implemented the new
syntax of joined tables.

» In some systems, a different syntax was used to specify outer
joins by using the comparison operators +=,=+,and +=+ for
left, right, and full outer join, respectively

» For example, this syntax is available in Oracle.To specify the
left outer join in Q8B using this syntax, we could write the
query Q8C as follows:

Q8cC: SELECT E.Lname, S.Lname
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.Super ssn += S.Ssn;

Database Management System [18CS53]

MULTIWAY JOIN
It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined
table. This allows the specification of the join of three or more tables as a single joined table, which
is called a multiway join.
Example: For every project located in ‘Stafford’, list the project number, the controlling department
number, and the department manager’s last name,address, and birth date.

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber)

JOIN EMPLOYEE ON Mgr_ssn=Ssn)

WHERE Plocation="Stafford’;

1.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples into a single-tuple
summary. A number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The
COUNT function returns the number of tuples or values as specified in a query. The functions SUM,
MAX, MIN, and AVG can be applied to a set or multiset of numeric values and return, respectively,
the sum, i value, mini value, andiaverage (mean) of those values. These functions
can be used in the SELECTEla infa HAVING (€laus h we dntr ater unetions
MAX and’/MIN can al ed with atUs/ a&% i@emlues

have a total ordering among one another.

Examples
1. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the
average salary.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM EMPLOYEE;

2. Find the sum of the salaries of all employees of the ‘Research’ department, as well as the
maximum salary, the minimum salary, and the average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE Dname=‘Research’;

3. Count the number of distinct salary values in the database.
SELECT COUNT (DISTINCT Salary)
FROM EMPLOYEE;

Database Management System [18CS53]

4. To retrieve the names of all employees who have two or more dependents
SELECT Lname, Fname
FROM EMPLOYEE
WHERE (SELECT COUNT (*)
FROM DEPENDENT
WHERE Ssn=Essn) >= 2;

1.1.8 Grouping: The GROUP BY and HAVING Clauses

Grouping is used to create subgroups of tuples before summarization. For example, we may want
to find the average salary of employees in each department or the number of employees who work
on each project. In these cases we need to partition the relation into non overlapping subsets (or
groups) of tuples. Each group (partition) will consist of the tuples that have the same value of some
attribute(s), called the grouping attribute(s).

SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping
attributes, which should also appear in the SELECT clause, so that the value resulting from applying

each aggregate function to a group of tuples appears along with the value of the grouping
attribute(s
Exam For each department erieVHe rtg r@r, the‘umbere
. []
department, and their average salary.

SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

| Fname |Minit | Lname Ssn ***| Salary | Super_ssn Dno Dno |Count (*) | Avg (Salary)
’Jnhn B | Smith | 123456789 30000 | 333445555 5 > 5 4 33250
Frankln | T Wong | 333445555 40000 | 888665555 5 ™ 4 3 31000
Ramesh | K Narayan 666884444 38000 | 333445555 5 —- I 55000
Joyce A English = 453453453 |---| 25000 | 333445555 5 Result of Q24

Alicia J Zelaya | 999887777 25000 | 987654321 B

Jennifer S Wallace | 987654321 43000 | 888665555 4

Ahmad vV Jabbar | 987987987 25000 | 987654321 4

James E Bong 888665555 55000 | NULL 1 =

Grouping EMPLOYEE tuples by the value of Dno

If NULLs exist in the grouping attribute, then a separate group is created for all tuples with a NULL
value in the grouping attribute. For example, if the EMPLOYEE table had some tuples that had
NULL for the grouping attribute Dno, there would be a separate group for those tuples in the result
of query

Database Management System [18CS53]

Example: For each project, retrieve the project number, the project name, and the number of
employees who work on that project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;
Above query shows how we can use a join condition in conjunction with GROUP BY. In this case,
the grouping and functions are applied after the joining of the two relations.

HAVING provides a condition on the summary information regarding the group of tuples associated
with each value of the grouping attributes. Only the groups that satisfy the condition are retrieved in

the result of the query.

Example: For each project on which more than two employees work, retrieve the project number,
the project name, and the number of employees who work on the project.
SELECT Pnumber, Pname, COUNT (*)
ROJECTMWORKS_ON

Vi ulse.com

HAVING COUNT (*) > 2;

Priame Prumber | 2a Essn Pro Hours —— These groups are not selected by
ProductX 1 123456789 ; 395 - the HAVING condition of Q26.
ProductX 1 453453453 1 200 |
ProductY . 123456789 | 2 75 ||
ProductY 2 453453453 2 20,0
ProductY 2 333445555 | 2 10.0
ProductZ 3 666884444 | 3 40.0 N
ProductZ 3 333445555 & 10,0 | | k3
Computerization 10 ---| 333448558 | 10 100 ||
Computerization 10 990887777 [10 10.0
Computerization 10 987987887 | 10 350 | |
Recrganization 20 333445685 | 20 | 100 |
Rearganization 20 287654321 | 20 15.0
Reorganization 20 BBE665555 | 20 NULL | |
Newbenefiis 30 ©87087987 | 30 5.0]

Newbenefits 30 087654321 | 30 20,0
MNewbeneiils 30 £99887777 | 30 30.0

After applying the VWHERE clausa but before applying HAVING

Database Management System [18CS53]

Pname | Pnumber |-'-| Essn Pno | Hours Pname Count {*)
ProductY i 9 123456780 | 2 75 | | —®| Producty 3
ProductY | 2 453453453 | 2 20.0 J —= | Computerization 3
ProductY | P 333445555 | 2 10.0 || Reorganization 3
Computerization i0 333445555 | 10 100 || | Mawbanafils 3
Computerization 10 ...| DOOBBTTITIT | 10 10.0 — Result of Q26

| Gomputerzation | 10 987087987 | 10 | 850 | S ar et Sy
Reargamzation | 20 333445555 I 20 100 ||
Reorganization | 20 987664321 | 20 | 150 | |
Reorganization 20 BEAERSSS5 | 20 NULL |_|
Newbenefits 30 987987387 | 30 50 ||
Newbenefits 30 087654321 | 30 20.0 —
Newbenefits 30 900887777 | 30 | 300 | |

After applying the HAVING clauss condition

Example: For each project, retrieve the project number, the project name, and the number of
employees from department 5 who work on the project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Ssn=Essn AND Dno=5

Example: For each de entithat hasUt nSeﬁeQ, nCermmber

and the number of its employees who are making more than $40,000.
SELECT Dnumber, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno AND Salary>40000 AND
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5);

1.1.9 Discussion and Summary of SQL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—SELECT and
FROM—are mandatory.The query can span several lines, and is ended by a semicolon. Query
terms are separated by spaces, and parentheses can be used to group relevant parts of a query in
the standard way.The clauses are specified in the following order, with the clauses between square

brackets [...] being optional:

Database Management System [18CS53]

SELECT <attribute and function list>
FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]

[ORDER BY <attribute list> 1;

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause specifies all
relations (tables) needed in the query, including joined relations, but not those in nested queries.
The WHERE clause specifies the conditions for selecting the tuples from these relations, including
join conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a
condition on the groups being selected rather than on the individual tuples. Finally, ORDER BY
specifies an order for displaying the result of a query.

A query is evaluated conceptually by first applying the FROM clause to identify all tables involved in
the query or to materialize any joined tables followed by the WHERE clause to select and join
tuples, and then by GROUP BY and HAVING. ORDER BY is applied at the end to sort the query

result Eac spegial optimization routines to decide on an execution plan that is
U u S []

In general, there are numerous ways to specify the same query in SQL.This flexibility in specifying
queries has advantages and disadvantages.
= The main advantage is that users can choose the technique with which they are most
comfortable when specifying a query. For example, many queries may be specified with join
conditions in the WHERE clause, or by using joined relations in the FROM clause, or with
some form of nested queries and the IN comparison. From the programmer's and the
system’s point of view regarding query optimization, it is generally preferable to write a query
with as little nesting and implied ordering as possible.
= The disadvantage of having numerous ways of specifying the same query is that this may
confuse the user, who may not know which technique to use to specify particular types of
queries. Another problem is that it may be more efficient to execute a query specified in one
way than the same query specified in an alternative way

Database Management System [18CS53]

1.2 Specifying Constraints as Assertions and Actions as Triggers

1.2.1 Specifying General Constraints as Assertions in SQL

Assertions are used to specify additional types of constraints outside scope of built-in relational
model constraints. In SQL, users can specify general constraints via declarative assertions, using
the CREATE ASSERTION statement of the DDL.Each assertion is given a constraint name and is

specified via a condition similar to the WHERE clause of an SQL query.

General form :
CREATE ASSERTION <Name_of_assertion> CHECK (<cond>)
For the assertion to be satisfied, the condition specified after CHECK clause must return true.

For example, to specify the constraint that the salary of an employee must not be greater than the
salary of the manager of the department that the employee works for in SQL, we can write the
following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M,

YUPEHSE.com

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, which is followed
by a condition in parentheses that must hold true on every database state for the assertion to be

satisfied. The constraint name can be used later to refer to the constraint or to modify or drop it. Any
WHERE clause condition can be used, but many constraints can be specified using the EXISTS and

NOT EXISTS style of SQL conditions.

By including this query inside a NOT EXISTS clause, the assertion will specify that the result of this
query must be empty so that the condition will always be TRUE. Thus, the assertion is violated if the
result of the query is not empty
Example: consider the bank database with the following tables

e branch (branch_ _name. branch_city, assets)

e customer (customer_ _name, customer_street, customer city)

e account (account _number, branch_name, balance)

e Joan (loan_number., branch_name, amount)

e depositor (customer_name, account_number)

e borrower (customer_name, loan_ _number)

Database Management System [18CS53]

1. Write an assertion to specify the constraint that the Sum of loans taken by a customer does not
exceed 100,000
CREATE ASSERTION sumofloans
CHECK (100000> = ALL
SELECT customer_name,sum(amount)
FROM borrower b, loan |
WHERE b.loan_number=l.loan_number
GROUP BY customer_name);
2. Write an assertion to specify the constraint that the Number of accounts for each customer in a

given branch is at most two

CREATE ASSERTION NumAccounts

CHECK (2>=ALL

SELECT customer_name,branch_name, count(*)
FROM account A, depositor D

WHERE A.account_number = D.account_number
GROUP BY customer_name, branch_n

MIUPWlse.com

A trigger is a procedure that runs automatically when a certain event occurs in the DBMS. In many
cases it is convenient to specify the type of action to be taken when certain events occur and when
certain conditions are satisfied. The CREATE TRIGGER statement is used to implement such

actions in SQL.
General form:
CREATE TRIGGER <name>
BEFORE | AFTER | <events>
FOR EACH ROW |FOR EACH STATEMENT
WHEN (<condition>)
<action>

A trigger has three components
1. Event: When this event happens, the trigger is activated

e Three event types : Insert, Update, Delete
e Two triggering times: Before the event
After the event

Database Management System [18CS53]

2. Condition (optional): If the condition is true, the trigger executes, otherwise
skipped
3. Action: The actions performed by the trigger

When the Event occurs and Condition is true, execute the Action

Create Trigger ABC Create Trigger XYZ
Before Insert On After Update On Students
Students

; -

This trigger is activated when an insert statement This trigger is activated when an update

is issued, but before the new record is inserted —Zt;:ingt 's issued and after the update is

Does the trigger execute for each updated or deleted record, or once for the entire

\7TTTDi .r‘c/emsgegm

Create Trigger <name>
Before| After Insert| Update| Delete

For Each Row | For Each Statement —
This is the granularity

Create Trigger XYZ Create Trigger XYZ
After Update ON <tablename> Before Delete ON <tablename>
For each statement For each row
This trigger is activated once (per UPDATE This trigger is activated before deleting each

statement) after all records are updated record

Database Management System [18CS53]

In the action, you may want to reference:
« The new values of inserted or updated records (:new)
* The old values of deleted or updated records (:old)

Create Trigger EmpSal
After Insert or Update On Employee Inside “When”, the “new” and

For Each Row / “old” should not have “”
When (new.salary >150,000)

Begin
Trigger body if (:new.salary < 100,000) ...
End;

Inside the trigger body, they

“,”

should have

Examples:

1) If the employee salary increased by more than 10%, then increment the rank field by 1.

\/T l ycase of U1ate event only, we can specify which columns

Create Trigger EmpS
Before Update Of salary On Employee
For Each Row
Begin
IF (:new.salary > (:old.salary *.1.1)) Then
:new.rank := :old.rank + 1;
End IF;
End;
/

We changed the new value of rank field

w.n

The assignment operator has “:

2) Keep the bonus attribute in Employee table always 3% of the salary attribute

Create Trigger EmpBonus 4—__/ Indicate two events at the same time
Before Insert Or Update On Employee

For Each Row
Begin
:new.bonus := :new.salary * 0.03;

End; \
The bonus value is always computed

automatically

Database Management System [18CS53]

3. Suppose we want to check whenever an employee’s salary is greater than the salary of his or
her direct supervisor in the COMPANY database
= Several events can trigger this rule:
* inserting a new employee record
» changing an employee’s salary or
» changing an employee’s supervisor

= Suppose that the action to take would be to call an external stored procedure
SALARY_VIOLATION which will notify the supervisor

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
ON EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN))
INFORM_SUPERVISOR(NEW.Supervisor_ssn,NEW.Ssn);

. triglr is given t VPSAH_ OS@ch c@uelov‘orl
the trigger lat ®

activa
= In this example the events are: inserting a new employee record, changing an employee’s
salary, or changing an employee’s supervisor
= The action is to execute the stored procedure INFORM_SUPERVISOR

Triggers can be used in various applications, such as maintaining database consistency, monitoring

database updates.

Assertions vs. Triggers
= Assertions do not modify the data, they only check certain conditions. Triggers are more
powerful because the can check conditions and also modify the data
= Assertions are not linked to specific tables in the database and not linked to specific events.
Triggers are linked to specific tables and specific events
= All assertions can be implemented as triggers (one or more). Not all triggers can be
implemented as assertions

Database Management System [18CS53]

Example: Trigger vs. Assertion

All new customers opening an account must have opening balance >= $100. However, once the
account is opened their balance can fall below that amount.

T

We need triggers, assertions cannot be used Trigger Event: Before Insert

Create Trigger OpeningBal

Before Insert On Customer

For Each Row

Begin
IF (:new.balance is null or :new.balance < 100) Then
RAISE_APPLICATION_ERROR(-20004, 'Balance should be >= $100');
End IF;

End;

MR Tlse.com

A view in SQL terminology is a single table that is derived from other tables. other tables can be
base tables or previously defined views. A view does not necessarily exist in physical form; it is
considered to be a virtual table, in contrast to base tables, whose tuples are always physically
stored in the database. This limits the possible update operations that can be applied to views, but
it does not provide any limitations on querying a view. We can think of a view as a way of specifying
a table that we need to reference frequently, even though it may not exist physically.

For example, referring to the COMPANY database, we may frequently issue queries that retrieve
the employee name and the project names that the employee works on. Rather than having to
specify the join of the three tables EMPLOYEE,WORKS_ON, and PROJECT every time we issue
this query, we can define a view that is specified as the result of these joins. Then we can issue
queries on the view, which are specified as single table retrievals rather than as retrievals involving
two joins on three tables. We call the EMPLOYEE,WORKS_ON, and PROJECT tables the defining

tables of the view.

Database Management System [18CS53]

1.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual) table name
(or view name), a list of attribute names, and a query to specify the contents of the view. If none of
the view attributes results from applying functions or arithmetic operations, we do not have to
specify new attribute names for the view, since they would be the same as the names of the
attributes of the defining tables in the default case.

Example 1:

CREATE VIEW WORKS_ONT1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber;
Example 2:
CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
AS SELECT Dname, COUNT (*), SUM (Salary)

EEHPUlse.com

In example 1, we did not specify any new attribute names for the view WORKS_ON1. In this
case,WORKS_ONT1 inherits the names of the view attributes from the defining tables EMPLOYEE,
PROJECT, and WORKS_ON.

Example 2 explicitly specifies new attribute names for the view DEPT_INFO, using a one-to-one
correspondence between the attributes specified in the CREATE VIEW clause and those specified
in the SELECT clause of the query that defines the view.

WORKS_ORNA1

| Fname | Lname | Pname | Hours |

DEPT_INFO

| Dept_name | No_of emps | Total_sal |

We can now specify SQL queries on a view—or virtual table—in the same way we specify queries
involving base tables.

For example, to retrieve the last name and first name of all employees who work on the ‘ProductX’
project, we can utilize the WORKS_ON1 view and specify the query as :

Database Management System [18CS53]

SELECT Fname, Lhame
FROM WORKS_ON1
WHERE Pname='ProductX’;

The same query would require the specification of two joins if specified on the base relations
directly. one of the main advantages of a view is to simplify the specification of certain queries.

Views are also used as a security and authorization mechanism.

A view is supposed to be always up-to-date; if we modify the tuples in the base tables on which the
view is defined, the view must automatically reflect these changes. Hence, the view is not realized
or materialized at the time of view definition but rather at the time when we specify a query on the
view. It is the responsibility of the DBMS and not the user to make sure that the view is kept up-to-
date.

If we do not need a view any more, we can use the DROP VIEW command to dispose of it. For
example : DROP VIEW WORKS_ONT1;

1.3.3 View Implementation, View Update and Inline Views

The problem of efficiently implementing a view for querying is complex. Two main approaches have

beensuggested
= On ategy}| called qu |fi<H,ei OS eng o‘trans @) ery
(s itted by the into“a query d ng taBles: ex le,the que

a 0
SELECT Fname, Lhame
FROM WORKS_ON1
WHERE Pname='ProductX’;

would be automatically modified to the following query by the DBMS:
SELECT Fname, Lhame
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber
AND Pname=‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via complex queries that
are time-consuming to execute, especially if multiple queries are going to be applied to the same
view within a short period of time.

= The second strategy, called view materialization, involves physically creating a temporary view
table when the view is first queried and keeping that table on the assumption that other queries
on the view will follow. In this case, an efficient strategy for automatically updating the view table
when the base tables are updated must be developed in order to keep the view up-to-date.

Database Management System [18CS53]

Techniques using the concept of incremental update have been developed for this purpose,
where the DBMS can determine what new tuples must be inserted, deleted, or modified in a
materialized view table when a database update is applied to one of the defining base tables.

The view is generally kept as a materialized (physically stored) table as long as it is being queried. If
the view is not queried for a certain period of time, the system may then automatically remove the
physical table and recompute it from scratch when future queries reference the view.

Updating of views is complicated and can be ambiguous. In general, an update on a view defined
on a single table without any aggregate functions can be mapped to an update on the underlying
base table under certain conditions. For a view involving joins, an update operation may be mapped
to update operations on the underlying base relations in multiple ways. Hence, it is often not

possible for the DBMS to determine which of the updates is intended.

To illustrate potential problems with updating a view defined on multiple tables, consider the
WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of
‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:

VTEIPL|se.com

Lhame=
AND Pname='ProductX’;

This query can be mapped into several updates on the base relations to give the desired update

effect on the view. In addition, some of these updates will create additional side effects that affect
the result of other queries.
For example, here are two possible updates, (a) and (b), on the base relations corresponding to the
view update operation in UV1:
(a): UPDATEWORKS_ON

SET Pno= (SELECT Pnumber

FROM PROJECT

WHERE Pname="ProductY’)

WHERE Essn IN (SELECT Ssn

FROM EMPLOYEE

WHERE Lname="Smith’ AND Fname='John’)

AND

Pno= (SELECT Pnumber

FROM PROJECT

WHERE Pname='ProductX’);

Database Management System [18CS53]

(b): UPDATEPROJECT SET Pname = ‘ProductY’
WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the ‘ProductX’
PROJECT tuple and is the most likely desired update. However, (b) would also give the desired
update effect on the view, but it accomplishes this by changing the name of the ‘ProductX’ tuple in
the PROJECT relation to ‘ProductY’.

It is quite unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples with Pname =
‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal attribute of the
DEPT_INFO view does not make sense because Total_sal is defined to be the sum of the individual
employee salaries. This request is shown as UV2:

UV2: UPDATEDEPT_INFO

T Total_ 0000
A large number of updates on the underlying base relations s |sfy;svie pd!e.I I

Generally, a view update is feasible when only one possible update on the base relations can
accomplish the desired update effect on the view. Whenever an update on the view can be mapped
to more than one update on the underlying base relations, we must have a certain procedure for
choosing one of the possible updates as the most likely one.

In summary, we can make the following observations:

m A view with a single defining table is updatable if the view attributes contain the primary key of the
base relation, as well as all attributes with the NOT NULL constraint that do not have default
values specified.

m Views defined on multiple tables using joins are generally not updatable.

m Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view definition if a view

is to be updated. This allows the system to check for view updatability and to plan an execution

strategy for view updates. It is also possible to define a view table in the FROM clause of an SQL

query. This is known as an in-line view. In this case, the view is defined within the query itself.

Database Management System [18CS53]

1.4Schema Change Statements in SQL

Schema evolution commands available in SQL can be used to alter a schema by adding or
dropping tables, attributes, constraints, and other schema elements. This can be done while the
database is operational and does not require recompilation of the database schema.

1.4.1 The DROP Command

The DROP command can be used to drop named schema elements, such as tables, domains, or
constraints. One can also drop a schema. For example, if a whole schema is no longer needed, the
DROP SCHEMA command can be used.

There are two drop behavior options: CASCADE and RESTRICT. For example, to remove the
COMPANY database schema and all its tables, domains, and other elements, the CASCADE option
is used as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no
elements in it; otherwise, the DROP command will not be executed. To use the RESTRICT option,

the user must first individually drop each element in the schema, then drop the schema itself.

If a base relation within a sche o long edednth tion a defifition leted
by us the OP\TAB mmanUFr ag,@ no @r omk of
dependents of employees in the COMPANY database, , we can ggt rid of the DEPENDENT relation
by issuing the following command:

DROP TABLE DEPENDENT CASCADE;
If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not
referenced in any constraints (for example, by foreign key definitions in another relation) or views
or by any other elements. With the CASCADE option, all such constraints, views, and other
elements that reference the table being dropped are also dropped automatically from the schema,
along with the table itself.
The DROP TABLE command not only deletes all the records in the table if successful, but also
removes the table definition from the catalog. If it is desired to delete only the records but to leave
the table definition for future use, then the DELETE command should be used instead of DROP
TABLE.
The DROP command can also be used to drop other types of named schema elements, such as

constraints or domains.

1.4.2 The ALTER Command

Database Management System [18CS53]

The definition of a base table or of other named schema elements can be changed by using the
ALTER command. For base tables, the possible alter table actions include adding or dropping a

column (attribute), changing a column definition, and adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base
relation in the COMPANY schema , we can use the command:

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);
We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can
be done either by specifying a default clause or by using the UPDATE command individually on
each tuple. If no default clause is specified, the new attribute will have NULLs in all the tuples of the
relation immediately after the command is executed; hence, the NOT NULL constraint is not allowed
in this case.
To drop a column, we must choose either CASCADE or RESTRICT for drop behavior. If CASCADE
is chosen, all constraints and views that reference the column are dropped automatically from the
schema, along with the column. If RESTRICT is chosen, the command is successful only if no views
or constraints (or other schema elements) reference the column.
For example, the following command removes_the attribute Address from the EMPLOYEE base

VP eHse-eom

It is also possible to alter a column definition by dropping an existing default clause or by defining a
new default clause. The following examples illustrate this clause:
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET DEFAULT

333445555,

Alter Table - Alter/Modify Column

To change the data type of a column in a table, use the following syntax:
ALTER TABLE table_name
MODIFY column_name datatype;

For example we can change the data type of the column named "DateOfBirth" from date to year in
the "Persons" table using the following SQL statement:

ALTER TABLE Persons

ALTER COLUMN DateOfBirth year;

Database Management System [18CS53]

Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two- or
four-digit format.

VTUPulse.com

Database Management System [18CS53]

Chapter 2: Database Application Development

2.1 Introduction

We often encounter a situations in which we need the greater flexibility of a general-purpose
programming language in addition to the data manipulation facilities provided by SQL.For example,
we may want to integrate a database applications with GUI or we may want to integrate with other

existing applications.

2.2 Accessing Databases from applications

SQL commands can be executed from within a program in a host language such as C or Java. A
language to which SQL queries are embedded are called Host language.

2.2.1 Embedded SQL

The use of SQL commands within a host language is called Embedded SQL. Conceptually,

embeddin andsiin language program is straight forward. SQL statements can be
used Wherever ment| in ol Iaig gSae. SQ‘ stat rmearly
markeddso thatfla pr SSOF can ithd t b indoki e“eempiler for thel host

language. Any host language variable used to pass arguments into an SQL command must be
declared in SQL.
There are two complications:

1. Data types recognized by SQL may not be recognized by the host language and vice versa
- This mismatch is addressed by casting data values appropriately before passing them to or
from SQL commands.
2. SQL is set-oriented
- Addressed using cursors

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host language variables
must be prefixed by a colon(:) in SQL statements and be declared between the commands

EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION

Database Management System [18CS53]

The declarations are similar to C, are separated by semicolons. For example, we can declare
variables ¢_sname, c_sid, c_rating, and c_age (with the initial ¢ used as a naming convention to
emphasize that these are host language variables) as follows:
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION
The first question that arises is which SQL types correspond to the various C types, since we have
just declared a collection of C variables whose values are intended to be read (and possibly set) in
an SQL run-time environment when an SQL statement that refers to them is executed. The SQL-92
standard defines such a correspondence between the host language types and SQL types for a
number of host languages. In our example, c_sname has the type CHARACTER(20) when referred
to in an SQL statement, c_sid has the type INTEGER, crating has the type SMALLINT, and c_age
has the type REAL.

report at went wrong if an error condition arises when
me a aSc@ two‘pecilmwﬁng
an TATE. o

= SQLCODE is the older of the two and is defined to return some negative value when an

errors,

error condition arises, without specifying further just what error a particular negative
integer denotes.
= SQLSTATE, introduced in the SQL-92 standard for the first time, associates predefined
values with several common error conditions, thereby introducing some uniformity to how
errors are reported.
One of these two variables must be declared. The appropriate C type for SQLCODE is long and the
appropriate C type for SQLSTATE is char [6] , that is, a character string five characters long.

Embedding SQL statements
All SQL statements embedded within a host program must be clearly marked with the details
dependent on the host language. In C, SQL statements must be prefixed by EXEC SQL. An SQL
statement can essentially appear in any place in the host language program where a host language
statement can appear.
Example: The following embedded SQL statement inserts a row, whose column values are based
on the values of the host language variables contained in it, into the sailors relation

EXEC SQL INSERT INTO sailors VALUES (:c_sname, :c_sid, :c_rating,:c_age);

Database Management System [18CS53]

The SQLSTATE variable should be checked for errors and exceptions after each Embedded SQL
statement.SQL provides the WHENEVER command to simplify this task:

EXEC SQL WHENEVER [SQLERROR | NOT FOUND] [CONTINUE|GOTO stmt]
If SQLERROR is specified and the value of SQLSTATE indicates an exception, control is
transferred to stmt, which is presumably responsible for error and exception handling. Control is
also transferred to stmt if NOT FOUND is specified and the value of SQLSTATE is 02000, which
denotes NO DATA.

2.2.2 Cursors

A major problem in embedding SQL statements in a host language like C is that an impedance
mismatch occurs because SQL operates on sets of records, whereas languages like C do not
cleanly support a set-of-records abstraction. The solution is to essentially provide a mechanism that
allows us to retrieve rows one at a time from a relation- this mechanism is called a cursor
We can declare a cursor on any relation or on any SQL query. Once a cursor is declared, we can
= open it (positions the cursor just before the first row)
Fetch the next row
sor (to the

Y S C|fy| io

next row,to the w after the next n, to the first row or previous row
se the cur: I

PTIISE.COM

Cursor allows us to retrieve the rows in a table by positioning the cursor at a particular row and
reading its contents.
Basic Cursor Definition and Usage
Cursors enable us to examine, in the host language program, a collection of rows computed by an
Embedded SQL statement:
= We usually need to open a cursor if the embedded statement is a SELECT. we can avoid
opening a cursor if the answer contains a single row
= |INSERT, DELETE and UPDATE statements require no cursor. some variants of DELETE
and UPDATE use a cursor.
Examples:
i) Find the name and age of a sailor, specified by assigning a value to the host variable c_sid,
declared earlier
EXEC SQL SELECT s.sname,s.age
INTO :c_sname, .c_age
FROM Sailaor s
WHERE s.sid=:c.sid;

Database Management System [18CS53]

The INTO clause allows us assign the columns of the single answer row to the host variable
¢c_snhame and c_age. Therefore, we do not need a cursor to embed this query in a host language
program.

i) Compute the name and ages of all sailors with a rating greater than the current value of the host
variable c_minrating
SELECT s.sname,s.age
FROM sailors s WHERE s.rating>:c_minrating;
The query returns a collection of rows. The INTO clause is inadequate. The solution is to use a
cursor:
DECLARE sinfo CURSOR FOR
SELECT s.sname,s.age
FROM sailors s
WHERE s.rating>:c_minrating;
This code can be included in a C program and once it is executed, the cursor sinfo is defined.
We can open the cursor by using the syntax:
OPEN sinfo;

A cursor befthought of as ‘pointing’ to a ew/in t ollegtion of an S q iated
with it. n thefcursatll is opéne Is positioned'ju f first ‘:w.
We can'Use the FETC mand to rea first row of ¢ rsinfo i ostlanguage variables:

FETCH sinfo INTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next row and the
column values in the row are copied into the corresponding host variables. By repeatedly executing
this FETCH statement, we can read all the rows computed by the query, one row at time.
When we are done with a cursor, we can close it:

CLOSE sinfo;
iii) To retrieve the name, address and salary of an employee specified by the variable ssn

//Program Segment El:
0) loop =1 ;
1) while (loop) {

2) prompt ("Enter a Social Security Number: ", ssn) ;

3) EXEC SQL

4) SELECT Fname, Minit, Lname, Address, Salary

5) INTO :fname, :minit, :lname, :address, :salary

6) FROM EMPLOYEE WHERE Ssn = :ssn ;

7) if (SQLCODE = = 0) printf(fname, minit, lname, address, salary)

8) else printf("Social Security Number does not exist: ", ssn) ;

9) prompt ("More Social Security Numbers (enter 1 for Yes, 0 for No): ", loop) ;

10) }

Database Management System [18CS53]

Properties of Cursors
The general form of a cursor declaration is:
DECLARE cursomame [INSENSITIVE] [SCROLL] CURSOR
[WITH HOLD]
FOR some query
[ORDER BY order-item-list]
[FOR READ ONLY | FOR UPDATE]
A cursor can be declared to be a read-only cursor (FOR READ ONLY) or updatable cursor (FOR
UPDATE).If it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned. For example, if sinfo is an updatable
cursor and open, we can execute the following statement:
UPDATE Sailors S
SET S.rating = S.rating -1
WHERE CURRENT of sinfo;
A cursor is updatable by default unless it is a scrollable or insensitive cursor in which case it is read-
only by default.

If theakeyword SCROLL i : rsor i ro , Whic a hat i f the
FETC mmand can be used iti cursorig,v ible ways; @ @ se, only the basic
i ,isa ed o

FETCH Command, whic

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a private copy
of the collection of answer rows. Otherwise, and by default, other actions of some transaction could

modify these rows, creating unpredictable behavior.

A holdable cursor is specified using the WITH HOLD clause, and is not closed when the transaction

is committed.

Optional ORDER BY clause can be used to specify a sort order. The order-item-list is a list of order-
items. An order-item is a column name, optionally followed by one of the keywords ASC or DESC
Every column mentioned in the ORDER BY clause must also appear in the select-list of the query

associated with the cursor; otherwise it is not clear what columns we should sort on

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows have the same minage

value, these rows are sorted further in descending order by rating

Database Management System [18CS53]

8 25.5
3 255
7 35.0

Dynamic SQL
Dynamic SQL Allow construction of SQL statements on-the-fly. Consider an application such as a
spreadsheet or a graphical front-end that needs to access data from a DBMS. Such an application
must accept commands from a user and, based on what the user needs, generate appropriate SQL
statements to retrieve the necessary data. In such situations, we may not be able to predict in
advance just what SQL statements need to be executed. SQL provides some facilities to deal with
such situations; these are referred to as Dynamic SQL.

Example:

sqlstring *DELETE FROM Sailors WHERE rating>5"};
XEC SQL PR adyto >sqlstring;
canr s O . COIT
= The first statement declares the C variable c¢_sqistring and initializes its value to the string
representation of an SQL command
= The second statement results in this string being parsed and compiled as an SQL command,

with the resulting executable bound to the SQL variable readytogo

= The third statement executes the command

2.3 An Introduction to JDBC

Embedded SQL enables the integration of SQL with a general-purpose programming language. A
DBMS-specific preprocessor transforms the Embedded SQL statements into function calls in the
host language. The details of this translation vary across DBMSs, and therefore even though the
source code can be compiled to work with different DBMSs, the final executable works only with one
specific DBMS.

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase Connectivity, also

enable the integration of SQL with a general-purpose programming language.

= In contrast to Embedded SQL, ODBC and JDBC allow a single executable to access

different DBMSs Without recompilation.

Database Management System [18CS53]

» While Embedded SQL is DBMS-independent only at the source code level, applications
using ODBC or JDBC are DBMS-independent at the source code level and at the level of the
executable

= |n addition, using ODBC or JDBC, an application can access not just one DBMS but several
different ones simultaneously

= (ODBC and JDBC achieve portability at the level of the executable by introducing an extra
level of indirection

= All direct interaction with a specific DBMS happens through a DBMS-specific driver.

A driver is a software program that translates the ODBC or JDBC calls into DBMS-specific calls.
Drivers are loaded dynamically on demand since the DBMSs the application is going to access
are known only at run-time. Available drivers are registered with a driver manager a driver does
not necessarily need to interact with a DBMS that understands SQL. It is sufficient that the
driver translates the SQL commands from the application into equivalent commands that the
DBMS understands.

An application that interacts with a data source through ODBC or JDBC selects a data source,
dynamically loads the corresponding driver, and establishes a connection with the data source.

ere i thelinu of open cBnnections. An application can have several open
VoTodi erent da rma nnegdtionBhas t@:@nmat is,
changes from on ctign are Visible t copnegtions nngctiop has
committed its changes. While a connection is open, transactions are executed by submitting

SQL statements, retrieving results, processing errors, and finally committing or rolling back. The
application disconnects from the data source to terminate the interaction.

2.3.1 Architecture

The architecture of JDBC has four main components:

= Application
= Driver manager
» Drivers

= Data sources

Database Management System [18CS53]

Application

= jnitiates and terminates the connection with a data source

= sets transaction boundaries, submits SQL statements and retrieves the results

Driver manager

= | oad JDBC drivers and pass JDBC function calls from the application to the correct driver
» Handles JDBC initialization and information calls from the applications and can log all
function calls

» Performs some rudimentary error checking

Drivers

= Establishes the connection with the data source
= Submits requests and returns request results

= Translates data, error formats, and error codes from a form that is specific to the data source
into the JDBC standard

Data sourc
\/f HPeHse-com
[]

Drivers in JDBC are classified into four types depending on the architectural relationship between
the application and the data source:

Type | Bridges:
» This type of driver translates JDBC function calls into function calls of another API that is not
native to the DBMS.
= An example is a JDBC-ODBC bridge; an application can use JDBC calls to access an
ODBC compliant data source. The application loads only one driver, the bridge.
= Advantage:
e it is easy to piggyback the application onto an existing installation, and no new
drivers have to be installed.
= Drawbacks:
e The increased number of layers between data source and application affects
performance

o the user is limited to the functionality that the ODBC driver supports.

Database Management System [18CS53]

Type Il Direct Translation to the Native API via Non-Java Driver:
¢ This type of driver translates JDBC function calls directly into method invocations of the API
of one specific data source.
e The driver is usually ,written using a combination of C++ and Java,; it is dynamically
linked and specific to the data source.
= Advantage
o This architecture performs significantly better than a JDBC-ODBC bridge.
= Disadvantage
¢ The database driver that implements the API needs to be installed on each
computer that runs the application.
Type lli~~Network Bridges:
= The driver talks over a network to a middleware server that translates the JDBC requests
into DBMS-specific method invocations.
= In this case, the driver on the client site is not DBMS-specific.
= The JDBC driver loaded by the application can be quite small, as the only functionality it
needs to implement is sending of SQL statements to the middleware server.

= The mi e server can then use a Type Il JDBC driver to connect to the data source.
Type\lV-Direct Translationfto t m tive ARI Driver:
Instead of\calli > DBMS API direc t@ve& c@u \mBMS

through Java sockets

—

= |n this case, the driver on the client side is written in Java, but it is DBMS-specific. It
translates JDBC calls into the native API of the database system.

= This solution does not require an intermediate layer, and since the implementation is all
Java, its performance is usually quite good.

2.4 JDBC CLASSES AND INTERFACES

JDBC is a collection of Java classes and interfaces that enables database access from programs
written in the Java language. It contains methods for connecting to a remote data source, executing
SQL statements, examining sets of results from SQL statements, transaction management, and
exception handling.

The classes and interfaces are part of the java.sql package. JDBC 2.0 also includes the javax.sql
package, the JDBC Optional Package. The package javax.sql adds, among other things, the
capability of connection pooling and the Row-Set interface.

Database Management System [18CS53]

2.4.1 JDBC Driver Management

In JDBC, data source drivers are managed by the Drivermanager class, which maintains a list of all
currently loaded drivers. The Drivermanager class has methods registerDriver, deregisterDriver, and
getDrivers to enable dynamic addition and deletion of drivers.
The first step in connecting to a data source is to load the corresponding JDBC driver. The following
Java example code explicitly loads a JDBC driver:
Class.forName("oracle/jdbc.driver.OracleDriver");
There are two other ways ofregistering a driver. We can include the driver with -Djdbc.
drivers=oracle/jdbc. driver at the command line when we start the Java application. Alternatively, we
can explicitly instantiate a driver, but this method is used only rarely, as the name of the driver has
to be specified in the application code, and thus the application becomes sensitive to changes at the
driver level.

After registering the driver, we connect to the data source.

2.4.2 Connections

A session with a data source is started through creation of a Connection object; Connections are

spegified t C URL, that usesithe jdbc protocol. Such a URL has the form
[]

String uri = .. jdbc:oracle:www.bookstore.com:3083..
Connection connection;

try
{
Connection connection =
DriverManager.getConnection(url, userld,password);
}
catch(SQLException excpt)
{
System.out.printin(excpt.getMessageO);
return;
}

Program code: Establishing a Connection with JDBC
In JDBC, connections can have different properties. For example, a connection can specify the
granularity of transactions. If autocommit is set for a connection, then each SQL statement is

Database Management System [18CS53]

considered to be its own transaction. If autocommit is off, then a series of statements that compose

a transaction can be committed using the commit() method of the Connection class, or aborted

using the rollback() method. The Connection class has methods to set the autocommit mode

(Connection. setAutoCommit) and to retrieve the current autocommit mode (getAutoCommit). The

following methods are part of the Connection interface and permit setting and getting other

properties:

public void setRead®@nly @ anyreadO
These two ions atlo t
are rcad only.

public int getTransactionlsolation() throws SQLException and

public void setTransactionlsolation(int 1) throws SQLException.

- These two functions get and set the current level of isolation for transactions
handled in the current connection. All five SQL levels of isolation are possible, and
argument / can be set as follows:

- TRANSACTION_NONE
- TRANSACTION_READ_UNCOMMITTED
- TRANSACTION_READ_COMMITTED
- TRANSACTION_REPEATABLE_READ
- TRANSACTION_SERIALIZABLE
public boolean getReadOnlyO throws SlException and

) WE) Excepti
p r the ansaxmough
o

public boolean isClosed() throws SQLEXxception.

thel us

this connecti

- Checks whether the current connection has already been closed.

setAutoCommit and get AutoCommit.

In case an application establishes many different connections from different parties (such as a Web

server), connections are often pooled to avoid this overhead. A connection pool is a set of

established connections to a data source. WWhenever a new connection is needed, one of the

connections from the pool is used, instead of creating a new connection to the data source.

2.4.3 Executing SQL Statements

JDBC supports three different ways of executing statements:

e Statement
¢ PreparedStatement, and

e CallableStatement.

The Statement class is the base class for the other two statement classes. It allows us to query the

data source with any static or dynamically generated SQL query.

Database Management System [18CS53]

The PreparedStatement class dynamically generates precompiled SQL statements that can be
used several times; these SQL statements can have parameters, but their structure is fixed when
the PreparedStatement object is created.

/ I'initial quantity is always zero

String sql = "INSERT INTO Books VALUES('?, 7,'?,?,0, 7)";

PreparedStatement pstmt = con.prepareStatement(sql);

/ I now instantiate the parameters with values

/ I a,ssume that isbn, title, etc. are Java variables that

/ I contain the values to be inserted

pstmt.clearParameters() ;

pstmt.setString(l, isbn);

pstmt.setString(2, title);

pstmt.setString(3, author);

pstmt.setFloat(5, price);

pstmt.setInt(6, year);

int numRows = pstmt.executeUpdate();

Vram ode:SQL Upd ime ragte tObjec‘
The SQL query specifiesthe query string, es ¢ for vaﬁes e;amem are

set later using methods setString, setFloat,and setint. The "?” placeholders can be used anywhere
in SQL statements where they can be replaced with a value. Examples of places where they can
appear include the WHERE clause (e.g., 'WHERE author=?"), or in SQL UPDATE and INSERT
statements. The method setString is one way to set a parameter value; analogous methods are
available for int, float, and date. It is good style to always use clearParameters() before setting
parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In the example, we used
the executeUpdate command, which is used if we know that the SQL statement does not return
any records (SQL UPDATE, INSERT,ALTER, and DELETE statements). The executeUpdate
method returns

- an integer indicating the number of rows the SQL statement modified;

- 0 for successful execution without modifying any rows.
The executeQuery method is used if the SQL statement returns data, such as in a regular SELECT

query. JDBC has its own cursor mechanism in the form of a ResultSet object.

Database Management System [18CS53]

2.4.4 ResultSets
ResultSet cursors in JDBC 2.0 are very powerful; they allow forward and reverse scrolling and in-
place editing and insertions. In its most basic form, the ResultSet object allows us to read one row
of the output of the query at a time. Initially, the ResultSet is positioned before the first row, and we
have to retrieve the first row with an explicit call to the next() method. The next method returns false
if there are no more rows in the query answer, and true other\vise. The code fragment shown below
illustrates the basic usage of a ResultSet object:

ResultSet rs=stmt.executeQuery(sqlQuery);

/I rs is now a cursor

/ I first call to rs.nextO moves to the first record

/I rs.nextO moves to the next row

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next())

{

/ | process the data

Whiletnext() allows u§| to retrie logically next in uery r armout in
the qu nswer in other ways too: U S e CO

= previous() moves back one row. @

= absolute(int num) moves to the row with the specified number.

= relative(int num) moves forward or backward (if num is negative) relative to the current

position. relative (-1) has the same effect as previous.
= first() moves to the first row, and last() moves to the last row.

Matching Java and SQL Data Types

In considering the interaction of an application with a data source, the issues we encountered in the
context of Embedded SQL (e.g., passing information between the application and the data source
through shared variables) arise again. To deal with such issues, JDBC provides special data types
and specifies their relationship to corresponding SQL data types. Table 2.4.4 shows the accessor
methods in a ResultSet object for the most common SQL datatypes.

With these accessor methods, we can retrieve values from the current row of the query result
referenced by the ResultSet object. There are two forms for each accessor method. One method

retrieves values by column index, starting at one, and the other retrieves values by column name.

Database Management System [18CS53]

The following example shows how to access fields of the current ResultSet row using accesssor

methods.
ResultSet rs=stmt.executeQuery(sqlQuery);

String sqlQuerYi
ResultSet rs = stmt.executeQuery(sqlQuery)
while (rs.nextO)
{
isbn = rs.getString(l);
title = rs.getString(" TITLE");
/I process isbn and title

}
SQL Type Java class ResultSet get method
BIT Boolean getBoolean()
CHAR String getString()
VARCHAR String getString()
getDouble()

REAL Double getFloat()
DATE java.sql.Date getDate()
TIME java.sql.Time getTime()
TIMESTAMP java.sql.TimeStamp getTimestamp()

Table 2.4.4 : Reading SQL Datatypes from a ResultSet Object

2.4.5 Exceptions and Warnings
Similar to the SQLSTATE variable, most of the methods in java. sql can throw an exception of the
type SQLException if an error occurs. The information includes SQLState, a string that describes
the error (e.g., whether the statement contained an SQL syntax error). In addition to the standard
getMessage() method inherited from Throwable, SQLException has two additional methods that
provide further information, and a method to get (or chain) additional exceptions:

= public String getSQLState() returns an SQLState identifier based on the SQL:1999

specification
= public int getErrorCode () retrieves a vendor-specific error code.

Database Management System [18CS53]

= public SQLException getNextExceptionO gets the next exception in a chain of exceptions
associated with the current SQLException object.

An SQLWarning is a subclass of SQLException. Warnings are not as severe as errors and the
program can usually proceed without special handling of warnings. Warnings are not thrown like
other exceptions, and they are not caught as part of the try-catch block around a java.sql statement.
We need to specifically test whether warnings exist. Connection, Statement, and ResultSet
objects all have a getWarnings() method with which we can retrieve SQL warnings if they exist.
Duplicate retrieval of warnings can be avoided through clearWarnings(). Statement objects clear
warnings automatically on execution of the next statement; ResultSet objects clear warnings every
time a new tuple is accessed.
Typical code for obtaining SQLWarnings looks similar to the code shown below:
try
{
stmt = con.createStatement();
warning = con.getWarnings();
while(warning != null)

[LAPise-eom
warning =warning. e ngQO; etﬂext rnin
}

con.clear\Varnings() ;
stmt.executeUpdate(queryString);
warning = stmt.getWarnings();
while(warning != null)
{
/ I handleSQLWarnings / / code to process warning
warning = warning.getNextWarningO; / /get next warning
}
}//endtry
catch (SQLException SQLe)
{
/ I code to handle exception
}//end catch

Database Management System [18CS53]

2.4.6 Examining Database Metadata
We can use the DatabaseMetaData object to obtain information about the database system itself,

as well as information from the database catalog. For example, the following code fragment shows
how to obtain the name and driver version of the JDBC driver:
Databa..seMetaData md = con.getMetaD<Lta():
System.out.printin("Driver Information:");
System.out.printin("Name:" + md.getDriverNameO
+"; version:" + mcl.getDriverVersion());
The DatabaseMetaData object has many more methods (in JDBC 2.0, exactly 134). Some of the
methods are:
= public ResultSet getCatalogs() throws SqLException. This function returns a
ResultSet that can be used to iterate over all public int getMaxConnections()
throws SqLException the catalog relations.This function returns the maximum
number of connections possible.
Example: code fragment that examines all database metadata
DatabaseMetaData dmd = con.getMetaDataO;
ResultSet tablesRS = dmd.getTables(null,null,null,null);

VT Pulse.com

tableNarne = tablesRS .getString("TABLE_NAME");
/ 1 print out the attributes of this table
System.out.printin("The attributes of table"
+ tableName + " are:");

ResultSet columnsRS = dmd.getColums(null,null,tableName, null);
while (columnsRS.next())
{

System.out.print(colummsRS.getString("COLUMN_NAME")

+1);
}
/ I print out the primary keys of this table
System.out.printin("The keys of table" + tableName + " are:");
ResultSet keysRS = dmd.getPrimaryKeys(null,null,tableName);
while (keysRS. next ())

{
System.out.print(keysRS.getStringC'COLUMN_NAME") +" ");

Database Management System [18CS53]

}
7 steps for jdbc :

1. Import the package
-- import java.sql.*;

2. Load and register the driver
—class.forname();

3. Establish the connection
-- Connection con;

4. Create a Statement object
-- Statement st;

5. Execute a query
- st.execute();

6. Process the result

7. Close the connection

Step 2: load the corresponding JDBC driver
Class.forName("oracIe/jdbc.driveIracleDriver");

Step 3: createja session W' sogrce th h jon of ctiomyobj
nnegtion connection = Driver ng.ﬁnecti (datrI I l
userld, password); ©
EX: Connection con= DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xesid","system","ambika");
Step 4.create a statement object
» JDBC supports three different ways of executing statements:
- Statement
- PreparedStatement and

- CallableStatement.

The Statement class is the base class for the other two statement classes. It allows us to
query the data source with any static or dynamically generated SQL query.

* The PreparedStatement class dynamically generates precompiled SQL statements that
can be used several times

CallableStatement are used to call stored procedures from JDBC. CallableStatement is a
subclass of PreparedStatement and provides the same functionality.
* Example:
Statement st=con.createStatement();
Step 5: executing a query

Database Management System [18CS53]

String query=“select * from students where usn='4vV15CS001"”;
ResultSet rs=st.executeQuery(query);
Step 6: process the result
String sname=rs.getString(2);
System.out.printin(sname);
Step 7: close the connection

con.close();

import java.sql.*;
public class Demo {
public static void main(String[] args) {
try
{
String query="select * from students where usn=4vv15CS001"";
Class.forName("oracle/jdbc.driver.OracleDriver");
Connection con = DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xesid","system","ambika");
Statement st=con.createStatement();
ResultSet rs=st.executeQuery(query);
String s=rs.getString(1);
System.out.printin(s);
con.close();
1
catch(Exception e)
{
}

Database Management System [18CS53]

2.5 SQLJ: SQL-JAVA

SQLJ enables applications programmers to embed SQL statements in Java code in a way that is
compatible with the Java design philosophy
Example: SQLJ code fragment that selects records from the Books table that match a given author.

String title; Float price; String author;

#sql iterator Books (String title, Float price);

Books books;

#sql books = {
SELECT title, price INTO title, :price
FROM Books WHERE author = :author

%
while (books.next()) {

System.out.printin(books.title() + ", " + books.price());

}
All SQLJ statements ha e special preR qu . In"SQLJ, retReve ;e results of [QLIqueIrles

with iterator objects, which are basically cursors. An iterator is an instance of an iterator class.
Usage of an iterator in SQLJ goes through five steps:
1. Declare the lterator Class: In the preceding code, this happened through the statement
#sql iterator Books (String title, Float price);
This statement creates a new Java class that we can use to instantiate objects.
2. Instantiate an lterator Object from the New Iterator Class:

We instantiated our iterator in the statement Books books:;.

3. Initialize the lterator Using a SQL Statement:
In our example, this happens through the statement #sql books =....
4. lteratively, Read the Rows From the Iterator Object:
This step is very similar to reading rows through a ResultSet object in JDBC.
5. Close the lterator Object.

Database Management System [18CS53]

There are two types of iterator classes:

* named iterators

* positional iterators
For named iterators, we specify both the variable type and the name of each column of the iterator.
This allows us to retrieve individual columns by name. This method is used in our example.
For positional iterators, we need to specify only the variable type for each column of the iterator. To
access the individual columns of the iterator, we use a FETCH ... INTO construct, similar to
Embedded SQL
We can make the iterator a positional iterator through the following statement:

#sql iterator Books (String, Float);
We then retrieve the individual rows from the iterator as follows:
while (true)
{
#sql { FETCH :books INTO title, :price, };

if (books.endFetch())

VTURulse.com

2.6 STORED PROCEDURES

Stored procedure is a set of logical group of SQL statements which are grouped to perform a

specific task.
Benefits :
« reduces the amount of information transfer between client and database server

+ Compilation step is required only once when the stored procedure is created. Then after it
does not require recompilation before executing unless it is modified and reutilizes the same
execution plan whereas the SQL statements need to be compiled every time whenever it is

sent for execution even if we send the same SQL statement every time

+ It helps in re usability of the SQL code because it can be used by multiple users and by
multiple clients since we need to just call the stored procedure instead of writing the
same SQL statement every time. It helps in reducing the development time

Database Management System [18CS53]

Syntax:
Create or replace procedure <procedure Name> [(arg1 datatype, arg2 datatype)]
Is/As
<declaration>
Begin
<SQL Statement>

Exception

End procedurename;
2.6.1 Creating a Simple Stored Procedure

Consider the following schema:

Student(usn:string,sname:string)
Let us\nowwrite'a stored proced) retrieve the count of students with,sname, Ak "
Tate replace rocedu S é ° C
is

stu_cnt int;

begin
select count(*) into stu_cnt from students where sname="AKSHAY",
dbms_output.put_line('the count of student is :' || stu_cnt);

end ss;

Stored procedures can also have parameters. These parameters have to be valid SQL types, and
have one of three different modes: IN, OUT, or INOUT.

= IN parameters are arguments to the stored procedure

= QUT parameters are returned from the stored procedure; it assigns values to all OUT
parameters that the user can process

= INOUT parameters combine the properties of IN and OUT parameters: They contain values
to be passed to the stored procedures, and the stored procedure can set their values as
return values

Database Management System [18CS53]

Example:
CREATE PROCEDURE Addinventory (
IN book_isbn CHAR(IO),
IN addedQty INTEGER)
UPDATE Books SET qty_in_stock = gtyjn_stock + addedQty
WHERE bookjsbn = isbn

In Embedded SQL, the arguments to a stored procedure are usually variables in the host language.
For example, the stored procedure Addinventory would be called as follows:
EXEC SQL BEGIN DECLARE SECTION
char isbnflO];
long qty;
EXEC SQL END DECLARE SECTION
/ I set isbn and gty to some values
EXEC SQL CALL Addinventory(:isbn,:qty);

Stored procedurgs enforce strict m: formangce: pa ter is | ERgi t be
called\Wwith'an argument of type HAR. é
[)

Procedures without parameters are called static procedures and with parameters are called
dynamic procedures.

Example: stored procedure with parameter

create or replace procedure emp(Essn int)

as
eName varchar(20);
begin
select fname into eName from employee where ssn=Essn and dno=5;
dbms_output.put_line(' the employee name is :'||Essn ||eName);
end emp;

2.6.2 Calling Stored Procedures
Stored procedures can be called in interactive SQL with the CALL statement:

CALL storedProcedureName(argl, arg2, .. ,argN);

Database Management System [18CS53]

Calling Stored Procedures from JDBC

We can call stored procedures from JDBC using the CallableStatment class.A stored procedure
could contain multiple SQL statements or a series of SQL statements-thus, the result could be many

different ResultSet objects.\We illustrate the case when the stored procedure result is a single
ResultSet.

CallableStatement cstmt= con. prepareCall(" {call ShowNumberOfOrders}");
ResultSet rs = cstmt.executeQuery();
while (rs.next())
Calling Stored Procedures from SQLJ

The stored procedure 'ShowNumberOfOrders' is called as follows using SQLJ:
/ | create the cursor class
#sq| Iterator Customerlinfo(int cid, String cname, int count);
/ I create the cursor
Customerinfo customerinfo;

/ I call the stored procedure
#s8q| customefinf Shew Of s};
ile (customeri .nextU Se o COI I l
{
System.out.printin(customerinfo.cid() + "," +
customerinfo.count()) ;

}
2.6.3 SQL/PSM

SQL/Persistent Stored Modules is an ISO standard mainly defining an extension of SQL with
procedural language for use in stored procedures.

In SQL/PSM, we declare a stored procedure as follows:
CREATE PROCEDURE name (parameter1,... , parameterN)
local variable declarations

procedure code;

Database Management System [18CS53]

We can declare a function similarly as follows:

CREATE FUNCTION name (parameterl, ... , parameterN)
RETURNS sqlDataType
local variable declarations

function code;

Example:

CREATE FUNCTION RateCustomer (IN custld INTEGER, IN year INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER,;

DECLARE numOrders INTEGER;

SET numOrders = (SELECT COUNT(*) FROM Orders 0 WHERE O.tid = custld);
IF (numOrders> 10) THEN rating=2;

ELSEIF (numOrders>5) THEN rating=1;

ITUPulse.com

RETURN rating;

rating=

D IF;

We can declare local variables using the DECLARE statement. In our example, we declare two
local variables: 'rating’, and 'numOrders'.

PSM/SQL functions return values via the RETURN statement. In our example, we return the
value of the local variable 'rating'.

We can assign values to variables with the SET statement. In our example, we assigned the
return value of a query to the variable 'numOrders'.

SQL/PSM has branches and loops. Branches have the following form:

IF (condition) THEN statements;
ELSEIF statements;

ELSEIF statements;

ELSE statements;

END IF

Loops are of the form

Database Management System [18CS53]

LOOP
statements:

END LOOP

Queries can be used as part of expressions in branches; queries that return a single value can be
assigned to variables.We can use the same cursor statements as in Embedded SQL (OPEN,

FETCH, CLOSE), but we do not need the EXEC SQL constructs, and variables do not have to be
prefixed by a colon ':".

VTUPulse.com

Database Management System [18CS53]

Chapter 3: Internet Applications

3.1 Introduction

Data-intensive is used to describe applications with a need to process large volumes of data.
The volume of data that is processed can be in the size of terabytes and petabytes and this type
of data is also referred as big data. Data-intensive computing is used in many applications
ranging from social networking to computational science where a large amount of data needs to
be accessed, stored, indexed and analyzed. It is more challenging as the amount of data keeps
on accumulating over time and the rate at which the data is generating also increases

3.2 THE THREE-TIER APPLICATION ARCHITECTURE

Data-intensive Internet applications can be understood in terms of three different functional
components:

1. Data management

2. Application logic

3.
The one

thatthandles mem*t &Iaes ﬁ\ﬂam, but
application logicand pr tation involve h more“than | he!)B itself.

3.2.1Single-Tier

Initially, data-intensive applications were combined into a single tier, including the DBMS,
application logic, and user interface. The application typically ran on a mainframe, and users
accessed it through dumb terminals that could perform only data input and display.

Client

Application Logic

DBMS

Figure 3.2.1 : A Single-Tier Architecture

Database Management System [18CS53]

» Benefit
* easily maintained by a central administrator
» Drawback:
» Users expect graphical interfaces that require much more computational power than
simple dumb terminals.
» Do not scale to thousands of users

3.2.2 Two-tier architectures
Two-tier architectures, often also referred to as client-server architectures, consist of a client
computer and a server computer, which interact through a well-defined protocol. What part of the
functionality the client implements, and what part is left to the server, can vary.

In the traditional client server architecture, the client implements just the graphical user interface-
such clients are often called thin clients the server implements both the business logic and the data
management.

Other divisions are possible, such as more powerful clients that implement both user interface and

business logic, or clients that implement user interface and part of the business logic, with the

rem?7T ilplen]ntﬁhe server Ivel; such clients are often called thick clients.

Application Logic Client \pplication Logic
R e R i e
Client
DBMS Client

Figure3.2.2(a) : A Two-Server Architecture: thin client Figure3.2.2(a) : A Two-Server Architecture: thick client

The thick-client model has several disadvantages when compared to the thin client model

1. There is no central place to update and maintain the business logic, since the application
code runs at many client sites.

2. A large amount of trust is required between the server and the clients. As an example, the
DBMS of a bank has to trust the application executing at an ATM machine to leave the database
in a consistent state.

3. Thick-client architecture does not scale with the number of clients; it typically cannot handle more
than a few hundred clients. The application logic at the client issues SQL queries to the server
and the server returns the query result to the client, where further processing takes place. Large
query results might be transferred between client and server.

Database Management System [18CS53]

Single-tier architecture v/s Two-tier architectures
+ Compared to the single-tier architecture, two-tier architectures physically separate the user
interface from the data management layer
» To implement two tier architectures, we can no longer have dumb terminals on the client
side, we require computers that run sophisticated presentation code and possibly,

application logic

3.2.3 Three-Tier Architectures
The thin-client two-tier architecture essentially separates presentation issues from the rest of the
application. The three-tier architecture goes one step further, and also separates application logic
from data management:

* Presentation Tier

* Middle Tier

+ Data Management Tier
Different technologies have been developed to enable distribution of the three tiers of an application

acrogs multi re pli(or d differentfiphysical sites
VII Diilco ~Om

Client Program JavaScript
(Web Browser) Cookies
HTTP
Application Logic Se;\;;l\
(Application Server) XSLT
JDBC. SQLJ
XML

Data Storage

(Database System) Stored Procedures

Figure 3.2.3: Technologies for the Three Tiers

Database Management System [18CS53]

3.2.3.1 Overview of the Presentation Tier

At the presentation layer, we need to provide forms through which the user can issue requests, and
display responses that the middle tier generates. It is important that this layer of code be easy to
adapt to different display devices and formats; for example, regular desktops versus handheld
devices versus cell phones. This adaptivity can be achieved either at the middle tier through
generation of different pages for different types of client, or directly at the client through style sheets
that specify how the data should be presented. The hypertext markup language (HTML) is the basic
data presentation language.

Technologies for the client side of the three-tier architecture

HTML Forms
HTML forms are a common way of communicating data from the client tier to the middle tier.
The general format of a form :

<FORM ACTION="“page.jsp" METHOD="GET" NAME="LoginForm">

</FORM
ACTION: Specifigs t | oflthefpa tﬁiﬁorm ntent
A en the

N attribute is absent, th of ti% current page is used
* METHOD: The HTTP/1.0 method used to submit the user input from the filled-out form to
the webserver. There are two choices: GET and POST

* NAME: This attribute gives the form a name

A single HTML document can contain more than one form. Inside an HTML form, we can have any
HTML tags except another FORM element

Passing Arguments to Server-Side Scripts

There are two different ways to submit HTML Form data to the webserver. If the method GET is
used, then the contents of the form are assembled into a query URI (as discussed next) and sent to
the server. If the method POST is used, then the contents of the form are encoded as in the GET
method, but the contents are sent in a separate data block instead of appending them directly to the
URI. Thus, in the GET method the form contents are directly visible to the user as the constructed

URI, whereas in the POST method, the form contents are sent inside the HTTP request message

body and are not visible to the user.

Database Management System [18CS53]

JavaScript

JavaScript is a scripting language at the client tier with which we can add programs to webpages
that run directly at the client. JavaScript is often used for the following types of computation at the
client:
» Browser Detection: JavaScript can be used to detect the browser type and load a
browser-specific page.
= Form Validation: JavaScript is used to perform simple consistency checks on form fields
= Browser Control: This includes opening pages in customized windows; examples include
the annoying pop-up advertisements that you see at many websites, which are programmed
using JavaScript.
JavaScript is usually embedded into an HTML document with a special tag, the SCRIPT tag

<SCRIPT LANGUAGE=" JavaScript" SRC="validateForm.js"> </SCRIPT>

The SCRIPT tag has the attribute LANGUAGE, which indicates the language in which the script is
written. For JavaScript, we set the language attribute to JavaScript. Another attribute of the SCRIPT
tag is the SRC attribute, which specifies an external file with JavaScript code that is automatically
embedded into the HTML document. Usually JavaScript source code files use a '.js' extension.

M-TUPulse.com

A style sheet is a method to adapt the same document contents to different presentation formats. A
style sheet contains instructions that tell a web how to translate the data of a document into a
presentation that is suitable for the client's display. The use of style sheets has many advantages:

* we can reuse the same document many times and display it differently depending on the
context

+ we can tailor the display to the reader's preference such as font size, color style, and even
level of detail.

+ we can deal with different output formats, such as different output devices (laptops versus
cell phones), different display sizes (letter versus legal paper), and different display media
(paper versus digital display)

*+ we can standardize the display format within a corporation and thus apply style sheet
conventions to documents at any time.

+ changes and improvements to these display conventions can be managed at a central
place.

There are two style sheet languages:

= XSL
= CSS

Database Management System [18CS53]

Cascading Style Sheets (CSS)

+ (CSS was created for HTML with the goal of separating the display characteristics of different
formatting tags from the tags themselves

» CSS defines how to display HTML elements.

+ Styles are normally stored in style sheets, which are files that contain style definitions.

+ Many different HTML documents, such as all documents in a website, can refer to the same
CSS.

+ Thus, we can change the format of a website by changing a single file.

+ Each line in a CSS sheet consists of three parts; a selector, a property, and a value.They are
syntactically arranged in the following way:

selector {property: value}

* The selector is the element or tag whose format we are defining.

» The property indicates the tag's attribute whose value we want to set in the style sheet

+ Example: BODY {BACKGROUND-COLOR: yellow}

P {MARGIN-LEFT: 50px; COLOR: red}

udge fof e ing style sheets
XSL tyle Sheet s, | fill that d€scri w to diSpidy Lm of a
en type. []

XSL contains the XSL Transformation language, or XSLT, a language that allows us to

XSL
‘W XS
* WA

transform the input XML document into a XML document with another structure

» For example, with XSLT we can change the order of elements that we are displaying (e.g.;
by sorting them), process elements more than once, suppress elements in one place and
present them in another, and add generated text to the presentation

3.2.3.2 Overview of the Middle Tier

The middle layer runs code that implements the business logic of the application. The middle tier
code is responsible for supporting all the different roles involved in the application. For example, in
an Internet shopping site implementation, we would like

+ customers to be able to browse the catalog and make purchases

* administrators to be able to inspect current inventory, and

+ data analysts to ask summary queries about purchase histories

+ Each of these roles can require support for several complex actions
The first generation of middle-tier applications was stand-alone programs written in a general-

purpose programming language such as C, C++, and Perl. Programmers quickly realized that

Database Management System [18CS53]

interaction with a stand-alone application was quite costly. The overheads include starting the
application every time it is invoked and switching processes between the webserver and the
application. Therefore, such interactions do not scale to large numbers of concurrent users. Most of
today's large-scale websites use an application server to run application code at the middle tier.
Application server provides the run-time for several technologies that can be used to program

middle-tier application components.

CGIl: The Common Gateway Interface
The Common Gateway Interface connects HTML forms with application programs.
= |tis a protocol that defines how arguments from forms are passed to programs at the server
side
= CGl is the part of the Web server that can communicate with other programs running on the
server
= With CGI, the Web server can call up a program, while passing user-specific data to the
program (such as what host the user is connecting from, or input the user has supplied using
HTML form syntax)
= The program then processes that data and the server passes the program's response back

o o bmlsef-lDll ca ~nHm

WWW Browser Appiation
o dient]
........... tel
an'n Smmf completed form Cal GGl
User ¥ Chi 06l
" Frogan’s - = Progran’s ™
[BS(NSE TESINEE

Figure: Simple diagram of CGI

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>
<BODY>
<FORM ACTION="find_books.cgi | METHOD=POST>
Type an author name:
<INPUT TYPE="text Il NAME=lauthorName"
SIZE=30 MAXLENGTH=50>
<INPUT TYPE="submitil value="Send it">
<INPUT TYPE=Ireset" VALUE="Clear form Il >

</FORM>
</BODY></HTML>

Database Management System [18CS53]

Program fragment: A Sample 'web Page Where Form Input Is Sent to a CGI Script

Application Servers

HTTP

Web Browser = >

d;

Web Server

~\CGI ‘
“\\ (
CGI

|

Process |

CG\I\

Process 2

Fig: Process Structure with CGI Scripts

HTTP W \

— Web Server
‘ |

Rt 11,,

Apphcatnon Server

Web Browser <

2 [j[j{;‘]
l Ej[: oo o

Pool of servlets _

\

|
|
I
I
|
I

Application logic can be enforced through server-side programs that are invoked using the CGlI
protocol. However, since each page request results in the creation of a new process, this solution
does not scale well to a large number of simultaneous requests. An application server maintains a

pool of threads or processes and uses these to execute requests. Thus, it avoids the startup cost of

creating a new process for each request. They facilitate concurrent access to several

heterogeneous data sources (e.g., by providing JDBC drivers), and provide session management
services.

|
Ca+
Application

JDBC

DBMS

s

(‘++
| f\‘\Q\iC}“()n

JavaBeap
eyt ‘f\:PP\'\Cut\()n

e

DBMS |

—
B

JpBC/ODBC |
: DBMS?2

=

Fig: Process Structure in the Application Server Architecture

Database Management System [18CS53]

Servlets

Java servlets are pieces of Java code that run on the middle tier, in either webservers or application
servers. Servlets can build webpages, access databases, and maintain state.Servlets usually
handle requests from HTML forms and maintain state between the client and the server.

Servlets are compiled Java classes executed and maintained by a servlet container. The servlet
container manages the lifespan of individual servlets by creating and destroying them. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by webservers.

JavaServer Pages

Java Server Pages (JSP) is a server-side programming technology that enables the creation of
dynamic, platform-independent method for building Web-based applications. JSP have access to
the entire family of Java APls, including the JDBC API to access enterprise databases

JavaServer pages (.JSPs) interchange the roles of output aml application logic. JavaServer pages
are written in HTML with servlet-like code embedded in special HT1VIL tags. Thus, in comparison to

servlets, JavaServer pages are better suited to quickly building interfaces that have some logic

IUet ited for cor[lex application logic.
e u S e ® C O I I I

There is a need to maintain a user's state across different pages. As an example, consider a user

who wants to make a purchase at the Barnes and Nobble website. The user must first add items
into her shopping basket, which persists while she navigates through the site Thus, we use the
notion of state mainly to remember information as the user navigates through the site.

The HTTP protocol is stateless. We call an interaction with a webserver stateless if no information
is retained from one request to the next request. We call an interaction with a webserver stateful, or
we say that state is maintained, if some memory is stored between requests to the server, and

different actions are taken depending on the contents stored.

Since we cannot maintain state in the HTTP protocol, where should we maintain state? There are
basically two choices:
= We can maintain state in the middle tier, by storing information in the local main memory of
the application logic, or even in a database system
= Alternatively, we can maintain state on the client side by storing data in the form of a cookie.

Maintaining State at the Middle Tier
At the middle tier, we have several choices as to where we maintain state.

Database Management System [18CS53]

= First, we could store the state at the bottom tier, in the database server. The state survives
crashes of the system, but a database access is required to query or update the state, a
potential performance bottleneck

= An alternative is to store state in main memory at the middle tier. The drawbacks are that
this information is volatile and that it might take up a lot of main memory

= We can also store state in local files at the middle tier, as a compromise between the first
two approaches.

Maintaining State at the Presentation Tier: Cookies

A cookie is a collection of (name, value)pairs that can be manipulated at the presentation and
middle tiers. Cookies are easy to use in Java servlets and Java server Pages. They survive several
client sessions because they persist in the browser cache even after the browser is closed. One
disadvantage of cookies is that they are often perceived as as being invasive, and many users
disable cookies in their Web browser; browsers allow users to prevent cookies from being saved on
their machines. Another disadvantage is that the data in a cookie is currently limited to 4KB, but for

most applications this is not a bad limit.

Advantages of the Thre riArchi e
The thrggrtier arghitecture the following advantage ‘ .‘ OI I I

+ Heterogeneous Systems: Applications can utilize the strengths of different platforms and
different software components at the different tiers. It is easy to modify or replace the code at
any tier without affecting the other tiers.

* Thin Clients: Clients only need enough computation power for the presentation layer.
Typically, clients are Web browsers.

+ Integrated Data Access: In many applications, the data must be accessed from several
sources. This can be handled transparently at the middle tier, where we can centrally
manage connections to all database systems involved.

+ Scalability to Many Clients: Each client is lightweight and all access to the system is
through the middle tier. The middle tier can share database connections across clients, and
if the middle tier becomes the bottle-neck, we can deploy several servers executing the
middle tier code; clients can connect to anyone of these servers, if the logic is designed
appropriately.

+ Software Development Benefits: By dividing the application cleanly into parts that address
presentation, data access, and business logic, we gain many advantages. The business
logic is centralized, and is therefore easy to maintain, debug, and change. Interaction
between tiers occurs through well-defined, standardized APIs. Therefore, each application

Database Management System [18CS53]

tier can be built out of reusable components that can be individually developed, debugged,
and tested.

VTUPulse.com

Database Management System [18CS53]

Question Bank

1. Discuss how NULLs are treated in comparison operators in SQL. How are NULLs treated when
aggregate functions are applied in an SQL query? How are NULLs treated if they exist in
grouping attributes?

2. Describe the six clauses in the syntax of an SQL retrieval query. Show what type of constructs
can be specified in each of the six clauses. Which of the six clauses are required and which are
optional?

3. Describe conceptually how an SQL retrieval query will be executed by specifying the conceptual
order of executing each of the six clauses.

4. Explain how the GROUP BY clause works. What is the difference between the WHERE and
HAVING clause?

5. Explain insert, delete and update statements in SQL and give example for each.

6. Write a note on:
i) Views in SQL
i) Aggregate functions in SQL

10. Consider the following schema for a COMPANY database:
EMPLOYEE (Fname, Lname, Ssn, Address, Super-ssn, Salary, Dno)
DEPARTMENT (Dname, Dnumber, Mgr-ssn, Mgr-start-date)
DEPT-LOCATIONS (Dnumber, Dlocation)
PROJECT (Pname, Pnumber, Plocation, Dnum)
WORKS-ON (Ess!!, Pno, Hours)
DEPENDENT (Essn, Dependent-name, Sex, Bdate, Relationship)
write the SQL query for the following:
i) List the names of managers who have at least one dependent.
ii) Retrieve the list of employees and the projects they are working on, ordered by department and,
within each department, ordered alphabetically by last name, first name.
iii) For each project, retrieve the project number, the project name, and the number of
employees who work on that project.
iv) For each project on which more than two employees work, retrieve the project
number, the project name, and the number of employees who work on the project.
v) For each project, retrieve the project number, the project name, and the number of

employees from department 4 who work on the project.

11.

12.

13.

14.

Database Management System [18CS53]

Consider the following tables:

Works(Pname,Cname,Salary)

Lives(Pname,Street,City)

Located-in(Cname,City)

Manager(Pname, mgrname)
write the SQL query for the following:

i) Find the names of all persons who live in the city ‘Mumbai’;

ii)Retrieve the names of all person of ‘Infosys’ ehose salary is between Rs.30,000 and

Rs.50,000.

iii) Find the names of all persons who live and work in the same city.

iv) List the names of the people who work for ‘Wipro’ along with the cities they live in.
v) Find the average salary of all ‘Infosyians’.

Consider the following schema

Sailors(sid,sname,rating,age)

Boats(bid,bname,color)

Reserves(sid,bid,day)

write the SQL query for the following:

ve the sailors n ave reseryed a en bo
o ieve the sailors n agr y erve blac I I l
iii) Retrieve the nu r of boats which are not reserved. ®

iv) Retrieve the sailors names who have reserved green boat on Monday.

v) Retrieve the sailors names who is oldest sailor with rating 10.

Consider the following schema and write the SQL queries:

STUDENT-ID,SNAME,MAJOR,GPA)

FACULTY(FACULTY_ID,FNAME,DEPT,DESIGNATION,SALARY)

COURSE(COURSE_ID,CNAME,FACULTY_ID)

ENROLL(COURSE_ID,STUDENT_ID,GRADE)

i) Retrieve the student name who is studying under faculties of “Mechanical dept”.

ii) Retrieve the student name who have enrolled under any of the courses in which ‘kumar’
has enrolled.

iii) Retrieve the faculty name who earn salary which is greater than the average salary of all
the faculties.

iv) Retrieve the sname who are not bee taught by faculty ‘kumar’.

v) Retrieve the faculty names who are assistant professors of CSE dept.

How do we use SQL statements within a host langl.lage? How do we check for errors in

statement execution?

Database Management System [18CS53]

15. Define cursor. what properties can cursors have?

16. What is Dynamic SQL and how is it different from Embedded SQL?

17. What is JDBC and what are its advantages?

18. What are the components of the JDBC architecture? Describe four different architectural
alternatives for JDBC drivers.

19. With an example, explain SQLJ?

20. lllustrate with an example stored procedure. Mention its benefits.

21. What is a three-tier architecture? 'What advantages does it offer over single tier and two-tier

architectures? Give a short overview of the functionality at each of the three tiers.

VTUPulse.com

