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4.0 Introduction

Database Normalization is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion Anomalies.
It is a multi-step process that puts data into tabular form by removing duplicated data from
the relation tables. This module discuss the basic and higher normal forms.

4.1 Objectives

To study the process of normalization and refine the database design
To normalize the tables upto 4NF and SNF

To study lossless and lossy join operations

To study inference rules

To study other dependencies and Normal Forms.
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4.2 Introduction to DB design

Each relation schema consists of a number of attributes, and the relational database schema
consists of a number of relation schemas. Sg far, we have assumed that attributes are grouped

tafor relation schema b ) the ¢ n se e data igner ping
a ase §chema design ajconcep aISa | suchlas t nhanced-ER
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and their respective attributes, which leads to a natural and logical grouping of the attributes into

relations.
Database Design deals with coming up with a ‘good’ schema. There are two levels at which we
can discuss the goodness of relation schemas:
1. The logical (or conceptual) level—how users interpret the relation schemas and the
meaning of their attributes.
2. The implementation (or physical storage) level—how the tuples in a base relation are
stored and updated. This level applies only to schemas of base relations
An Example
= STUDENT relation with attributes: studName, rolINo, gender, studDept
= DEPARTMENT relation with attributes: deptName, officePhone, hod
»  Several students belong to a department
= studDept gives the name of the student’s department

Correct schema:

Student Department
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Incorrect schema:
Studdept

StudName rollNo gender deptMName officePhone HOD

Problems with bad schema

* Redundant storage of data:

- Office Phone & HOD info -stored redundantly once with each student that
belongs to the department

- wastage of disk space

* A program that updates Office Phone of a department
- must change it at several places
- more running time

- error -prone

4.3jInfo ign Guidelines for Relation Schemas
r informaljguideline t)j-‘s Se@ to dﬁnum
i gn @

1. Making sure that the semantics of the attributes is clear in the schema

2. Reducing the redundant information in tuples

3. Reducing the NULL values in tuples

4. Disallowing the possibility of generating spurious tuples

» These measures are not always independent of one another
4.3.1 Imparting Clear Semantics to Attributes in Relations

= semantics of a relation refers to its meaning resulting from the interpretation of attribute
values in a tuple

=  Whenever we group attributes to form a relation schema, we assume that attributes
belonging to one relation have certain real-world meaning and a proper interpretation
associated with them

= The easier it is to explain the semantics of the relation, the better the relation schema
design will be

Guideline 1

» Design a relation schema so that it is easy to explain its meaning
» Do not combine attributes from multiple entity types and relationship types into a single

relation
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+ if a relation schema corresponds to one entity type or one relationship type, it is
straightforward to interpret and to explain its meaning

« if the relation corresponds to a mixture of multiple entities and relationships,
semantic ambiguities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1

EMP_DEPT

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

T ¥

EMP_PROJ

SSN | PNUMBER | HOURS | ENAME PNAME PLOCATION

Fig: schema diagram for company database

" tion sch have cleargsemantics

" tuple in the EMP rélati h re nts a Vi udes
additional informatio the u( ggo@jegar@e@muyee
works and the Social Security number (Dmgr_ssn) of the department manager.

= A tuple in the EMP_PROJ relates an employee to a project but also includes the
employee name (Ename), project name (Pname), and project location (Plocation)

= |ogically correct but they violate Guideline 1 by mixing attributes from distinct real-world
entities:
+ EMP_DEPT mixes attributes of employees and departments
+ EMP_PROJ mixes attributes of employees and projects and the WORKS_ON

relationship

» They may be used as views, but they cause problems when used as base relations

4.3.2 Redundant Information in Tuples and Update Anomalies
» One goal of schema design is to minimize the storage space used by the base relations
= Grouping attributes into relation schemas has a significant effect on storage space
» For example, compare the space used by the two base relations EMPLOYEE and
DEPARTMENT with that for an EMP_DEPT base relation
= In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber,
Dname, Dmgr_ssn) are repeated for every employee who works for that department
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= In contrast, each department’s information appears only once in the DEPARTMENT
relation. Only the department number Dnumber is repeated in the EMPLOYEE relation
for each employee who works in that department as a foreign key

EMPLOYEE

Fname | Minit [ Lname Ssn Bdate Address Lende Salary | Super_ssn | Dno
John B | Smith | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 (333445555 | 5
Franklin [ T | Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 [888665555 | 5
Aicia | J Zelaya | 999887777 | 1968-01-19 |3321 Castle, Spring, TX | F (25000 (987654321 | 4
Jennifer | S | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 [888665555 | 4
Ramesh | K | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M  |38000 [333445555 | 5
Joyce A | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX | F  [25000 (333445555 | 5
Ahmad V | Jabbar | 987987987 |1969-03-29 | 980 Dallas, Houston, TX | M |25000 (987654321 | 4
James E |Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M |[55000 (NULL 1

Figure 1: One possible database state for the COMPANY relational database schema

‘ lTI I n a = I -— 3 DEPT_LOCATIONS

EE CEE Dnumber Dlocation
Dname Dnumber Mar_ssn Mgr_start date - 0 1 e
Research 5 333445555 1988-05-22
Administration 4 987654321 1995-01-01 G Stafford
Headquarters 1 888665555 1981-06-19 2 Bellaire
b Sugariand
L] Houston
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WORKS_ON
PROJECT
- Essn Pno | Hours |
Pname Pnumber | Plocation Dnum
ProductX 1 Bellaire 5 A, il ! L
123456789 b 75
ProductY 2 Sugarland 5

Product? 3 VT 5 GE6B84444 3 40.0
Computerization | 10 | Stafford 4 e 1| 0
Reorganization 20 Houston 1 oAb 2 200
Newbenefits 30 | Stafford 4 333445555 | 2 | 100
333445565 3 100
DEPENDENT 333445555 10 10.0
Essn Dependent_name |gended Bdate Relationship 333445555 20 10.0
333445555 Alice F 1886-04-05 | Daughter 090BATTTT a0 30.0
333445555 Theodore M | 1983-10-25 | Son 999887777 i0 100
3334455565 Joy F 1958-05-03 | Spouse 08707987 10 350
987654321 Abner M | 1942-02-28 | Spouse 987097987 30 5.0
123456789 Michael M | 1988-01-04 | Son 987654321 30 200
123456789 Alice F 1088-12-30 | Daughter 987654321 20 15.0

123456789 Elizabeth k 1967-05-05 | Spouse BRBGRASESE o0 NULL

Figure 1 : One possible database state for the COMPANY relational database schema

Redundancy
|
EMP_DEPT | I
Ename Ssn. Bdate Address Dnumber Dname Dmgr_ssn
Smith, John B. 123456789 | 1985-01-09 | 731 Fondren, Houston, TX 5 Research 3334455855
Wang, Frenkin 1. | 3384480555 | 1o 12.08 | 638 Voss, Houston, TX 5 Research 333445555
E!:_ii‘g. Alicia J. 999887777 [ 19680719 |33 C&St[e.__ﬁpﬁﬁl‘lﬂ. TX 4 Administration | 987654321
'u"._fa_!]face, Jen rli’fer_S . 93?554?21 'I 941 -CIE_'»—Q(! 201 Bf_':n}', E!_E:ilﬁi_l'e. T;( = 4 | ﬁd_mir]istratipn 9_1_3?354321
Narayan, Ramesh K. | 666884444 1862-08-15 | 975 FireDak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 9879870987 | 1869-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 8BB665505 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | BBBEB5ELS
Redundancy Redundancy
| |
EMP_PROJ I | |
Bsn Pnumber Hours Ename Pname Plocation
123458789 1 325 Smith, John B. ProductX Bellaire
1234656789 2 75 Smith, John B. ProductY Sugarland
666884444 3 40.0 Narayan, Ramesh K. | ProductZ Houston
453453453 1 200 English, Joyce A ProductX Beilaire
453453453 2 20.0 English, Joyce A ProductY Sugartard
333445555 2 100 Wiong, Franklin T. ProductY Sugarland
333445555 3 10.0 Waong, Franklin T. Product? Houston
333445555 10 100 Wong, Franklin T. Computerization | Stafford
333445555 20 10.0 Wong, Franklin T. Reorganization Houston
9099887777 30 30.0 Zelaya, Alicia J. Newbenefits Stafford
989887777 10 10.0 Zelaya, Alicia J. Computenzation | Stafford
987987087 10 35.0 Jabbar, Ahmad V. Computernzation Stafford
GBTI87987 30 5.0 Jabbar, Ahmad V. MNewbenefits Stafford
987654321 30 20.0 Wallace, Jennifer 5. | Newbenefits Stafford
987654321 20 15.0 Wallace, Jennifer 5. | Reorganization Houston
888685555 20 Null Borg, James E. Reorganization Houston

Fig: Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations in Figure 1
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» Storing natural joins of base relations leads to an additional problem referred to as update

anomalies. These can be classified into:
* insertion anomalies
» deletion anomalies,
* modification anomalies

Insertion Anomalies

= |Insertion anomalies can be differentiated into two types, illustrated by the following
examples based on the EMP_DEPT relation:

1. To insert a new employee tuple into EMP_DEPT, we must include either the attribute
values for the department that the employee works for, or NULLs
- For example, to insert a new tuple for an employee who works in department number
5, we must enter all the attribute values of department 5 correctly so that they are
consistent with the corresponding values for department 5 in other tuples in
EMP_DEPT
- In the design of Employee in fig 1, we do not have to worry about this consistency
roblem because we enter only the department number in the employee tuple; all
other jwvfﬂzn t eéed orCc imthe as a
single tuple inthee DEPARTM ela
r§‘a q SQ t

ifficult to insert a new department t s no employees a he EMP_DEPT

Itis
relation. The only way to do this is to place NULL values in the attributes for employee

- This violates the entity integrity for EMP_DEPT because Ssn is its primary key
- This problem does not occur in the design of Figure 1 because a department is
entered in the DEPARTMENT relation whether or not any employees work for it,
and whenever an employee is assigned to that department, a corresponding tuple
is inserted in EMPLOYEE.
Deletion Anomalies

= The problem of deletion anomalies is related to the second insertion anomaly situation
just discussed
- If we delete from EMP_DEPT an employee tuple that happens to represent the
last employee working for a particular department, the information concerning that
department is lost from the database
- This problem does not occur in the database of Figure 2 because DEPARTMENT
tuples are stored separately.
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Modification Anomalies
= In EMP_DEPT, if we change the value of one of the attributes of a particular
department—say, the manager of department 5—we must update the tuples of all
employees who work in that department; otherwise, the database will become
inconsistent
= |f we fail to update some tuples, the same department will be shown to have two
different values for manager in different employee tuples, which would be wrong

Guideline 2

= Design the base relation schemas so that no insertion, deletion, or modification
anomalies are present in the relations

= |If any anomalies are present, note them clearly and make sure that the programs that
update the database will operate correctly

» The second guideline is consistent with and, in a way, a restatement of the first guideline

» These guidelines may sometimes have to be violated in order to improve the
performance of certain queries.

3 alues
If many of the attrib do upl toSue the ‘Iatiomnany
NULLS in tho&&%uple o

- this can waste space at the storage level
- may lead to problems with understanding the meaning of the attributes
- may also lead to problems with specifying JOIN operations
- how to account for them when aggregate operations such as COUNT or SUM are
applied
= SELECT and JOIN operations involve comparisons; if NULL values are present, the
results may become unpredictable.
=  Moreover, NULLs can have multiple interpretations, such as the following:
* The attribute does not apply to this tuple. For example, Visa_status may not apply
to U.S. students.
* The attribute value for this tuple is unknown. For example, the Date_of_birth may
be unknown for an employee.
* The value is known but absent; that is, it has not been recorded yet. For example,
the Home_Phone_Number for an employee may exist, but may not be available

and recorded yet.

Guideline 3
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» As far as possible, avoid placing attributes in a base relation whose values may
frequently be NULL

= |f NULLs are unavoidable, make sure that they apply in exceptional cases only and do
not apply to a majority of tuples in the relation

» Using space efficiently and avoiding joins with NULL values are the two overriding
criteria that determine whether to include the columns that may have NULLs in a relation
or to have a separate relation for those columns with the appropriate key columns

= For example, if only 15 percent of employees have individual offices,there is little
justification for including an attribute Office_number in the EMPLOYEE relation; rather,
a relation EMP_OFFICES(Essn, Office_number) can be created to include tuples for
only the employees with individual offices.

4.3.4 Generation of Spurious Tuples

= Consider the two relation schemas EMP_LOCS and EMP_PROJ1 which can be used
instead of the single EMP_PROJ

EMP_LOCS

- 2.com

RPK.

EMP_PROM
Ssn | Pnumber Hours| Pname| Plocation |

I
PK.

= Atuple in EMP_LOCS means that the employee whose name is Ename works on some
project whose location is Plocation

= A tuple in EMP_PROJ1 refers to the fact that the employee whose Social Security
number is Ssn works Hours per week on the project whose name, number, and location
are Pname, Pnumber, and Plocation.
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EMP_LOCS EMP_PROH
Ename Plocation Ssn Prnumber | Hours Pname Plocation
Smith, John B. Bellaire 123456789 1 325 ProductX Bellaire
Smith, John B. Sugarland 123456789 2 75 ProductY Sugarland
Marayan, Ramesh K. | Houston 666884444 3 400 ProductZ Houston
English, Joyce A. Bellaire 453453453 1 20.0 ProductX Bellaire
English, Joyce A. Sugarland 453453453 2 200 ProductY Sugarland
Wong, Franklin T. Sugarland 333445055 2 10.0 ProductY Sugariand
Wong, Franklin T. Houston 333445555 ] 10.0 ProductZ Houston
Wong, Frankiin T. Stafford 333445655 10 10.0 Computerization Stafford
I i&z;y;_Al_iEi; 1 | stafford | 333445555 20 10.0 Reorganization Houston
Jabbar, Ahmad V. | Stafford 009887777 | 80 | 300 | Mewbenefits | Stafford |
Wallace, Jennifer . | Stafford 999887777 10 10.0 Computerization | Stafford
Wallace, Jennifer S. | Houston 987987887 10 35.0 Computerization Stafford
Borg, James E. Houston 987987987 30 5.0 Newbenefits Stafford
987654321 30 20.0 Newbenefits Stafford
987654321 20 15.0 Reorganization Houston
BBAEAESESS 20 MULL Reorganization Houston

Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of
EMP_PROJ. This produces a particularly bad schema design because we cannot
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and
EMP_LOCS

If we attempt a NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result
produces many more tuples than the original set of tuples in EMP_PROJ

Additional tuples that were not in EMP_PROJ are called spurious tuples because they

urious i tion that isfhot valid.
he spuriols tuplés arildja er@(*p ‘
a - - |
Pn

Ssn Pnumber Hours ame Plocation Ename
123456789 1 325 | ProductX Bellaire Smith, John B.

*| 123456789 1 325 | ProductX Bellaire English, Joyce A.
123456789 2 75 ProductY Sugarland Smith, John B.

* [ 1234566789 2 75 ProductY Sugarland English, Joyce A.

* [ 123458789 2 75 ProductY Sugarland Wong, Franklin T.
666884444 3 40.0 | ProductZ Houston Marayan, Ramesh K.

* | 666884444 3 40.0 | ProductZ Houston Wong, Franklin T.

* | 4534534563 1 20.0 | ProductX Bellaire Smith, John B.
453453453 1 20.0 | ProductX Bellaire English, Joyce A

* | 4634534563 2 20.0 | ProductY Sugarland Smith, John B.
453453453 2 20.0 ProductY Sugarland English, Joyce A.

* | 453453453 2 20.0 | ProductY Sugarland ‘Wong, Franklin T.

* | 333445566 2 10.0 | ProductY Sugarland Smith, John B.

* | 333445555 2 10.0 | ProductY Sugarland English, Joyce A
333445555 2 10.0 | ProductY Sugarland Wong, Frankiin T.

* | 333445565 a 10.0 | ProductZ Houston Narayan, Ramesh K.
333445555 3 10.0 | ProductZ Houston Wong, Frankiin T.
333445555 10 10.0 | Computerization | Stafford Waong, Franklin T.

* | 333445555 20 10.0 | Reorganization Houston Narayan, Ramesh K

[383445555 | 20 | 100 | Reorganizaion | Housion | Wong, Frankin . __| _

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because
when we JOIN them back using NATURAL JOIN, we do not get the correct original
information



Database Management System [18CS53]

» This is because in this case Plocation is the attribute that relates EMP_LOCS and
EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either
EMP_LOCS or EMP_PROJ1.

Guideline 4

= Design relation schemas so that they can be joined with equality conditions on attributes
that are appropriately related (primary key, foreign key) pairs in a way that guarantees
that no spurious tuples are generated

= Avoid relations that contain matching attributes that are not (foreign key, primary key)
combinations because joining on such attributes may produce spurious tuples.

4.4 Functional Dependencies

= Formal tool for analysis of relational schemas that enables us to detect and describe
some of the problems in precise terms
Definition of Functional Dependency
= A functional dependency is a constraint between two sets of attributes from the
database.

] i elation R, f attributesX in R is said to functionally determine another
ttribute Y also ten X iflan each I SSOCI ith at

W T UISETCOM

= X is the determinant set and Y is the dependent attribute. Thus, given a tuple and the
values of the attributes in X, one can determine the corresponding value of the Y
attribute.

= The abbreviation for functional dependency is FD or f.d. The set of attributes X is called
the left-hand side of the FD, and Y is called the right-hand side.

= A functional dependency is a property of the semantics or meaning of the attributes.

= The database designers will use their understanding of the semantics of the attributes of
R to specify the functional dependencies that should hold on all relation states

(extensions) r of R.
= Consider the relation schema EMP_PROJ;

EMP_PROJ

SSN | PNUMBER | HOURS | ENAME PNAME PLOCATION

» From the semantics of the attributes and the relation, we know that the following

functional dependencies should hold:
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a. Ssn—Ename
b. Pnumber —{Pname, Plocation}
c. {Ssn, Pnumber}—Hours
» These functional dependencies specify that
(a) the value of an employee’s Social Security number (Ssn) uniquely
determines the employee name (Ename)
(b) the value of a project’'s number (Pnumber) uniquely determines
the project name (Pname) and location (Plocation), and
(c) a combination of Ssn and Pnumber values uniquely determines
the number of hours the employee currently works on the
project per week (Hours).
= Alternatively,we say that Ename is functionally determined by (or functionally dependent
on) Ssn, or given a value of Ssn, we know the value of Ename, and so on.
= Relation extensions r(R) that satisfy the functional dependency constraints are called
legal relation states (or legal extensions) of R

» A functional dependency is a property of the relation schema R, not of a particular legal

i r off
= fTherefore, jan F cape fe d|u mati om afgiv : ensionyr but
mustibe de xplicitly byUn V\Swﬁ @n@t butés of R
Diagrammatic notation for displaying FDs

+ Each FD is displayed as a horizontal line
» The left-hand-side attributes of the FD are connected by vertical lines to the line
representing the FD

« The right-hand-side attributes are connected by the lines with arrows pointing toward the
attributes.

EMP_PROJ
| Ssan | Prnumber | Hours | Ename | Pname | Plocation

FD1 } T

FD2|
FD3 ‘

Fig: diagrammatic notation for displaying FDs

Example:
A B ¢ D
al bl cl dl
al b2 c2 d2
a2 b2 c2 d3
al b3 o d3
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» The following FDs may hold because the four tuples in the current extension have no
violation of these constraints:
+B->C
+C—B
+{A, B}—>C
+{A,B}—>D
« {C, D} > B.
= The following do not hold because we already have violations of them in the given
extension:
* A — B (tuples 1 and 2 violate this constraint)
* B — A (tuples 2 and 3 violate this constraint)
* D—C (tuples 3 and 4 violate it)

Normal Forms Based on Primary Keys

We assume that a

i ( cieg is|giv r relatio
ppode com
= This information combined with the tests (con ||ons).for normal forms drives the

normalization process for relational schema design

= First three normal forms for relation takes into account all candidate keys of a
relation rather than the primary key

4.4.1 Normalization of Relations

= The normalization process, as first proposed by Codd (1972a), takes a relation schema
through a series of tests to certify whether it satisfies a certain normal form.

= |nitially, Codd proposed three normal forms, which he called first, second, and third
normal form

= All these normal forms are based on a single analytical tool: the functional dependencies
among the attributes of a relation

= A fourth normal form (4NF) and a fifth normal form (5NF) were proposed, based on the
concepts of multivalued dependencies and join dependencies, respectively

* Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of

(1) minimizing redundancy and

(2) minimizing the insertion, deletion, and update anomalies
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= It can be considered as a “filtering” or “purification” process to make the design have
successively better quality
= Unsatisfactory relation schemas that do not meet certain conditions—the normal form
tests—are decomposed into smaller relation schemas that meet the tests and hence
possess the desirable properties.
= Thus, the normalization procedure provides database designers with the following:
+ A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes
= A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired
degree

» Definition: The normal form of a relation refers to the highest normal form condition that

it meets, and hence indicates the degree to which it has been normalized

4.4.2 Practical Use of Normal Forms

= Normalization is carried out in practice so that the resulting designs are of high quality

nd meet the desira pegtie
Database i s practicediingnd tr&@ pg’ti@!@ tmaion

only up to 3NF, BCNF, or at most 4NF.
= The database designers need not normalize to the highest possible normal form

= Relations may be left in a lower normalization status, such as 2NF, for performance
reasons

= Definition: Denormalization is the process of storing the join of higher normal form
relations as a base relation, which is in a lower normal form.

4.4.3 Definitions of Keys and Attributes Participating in Keys

»  Superkey: specifies a uniqueness constraint that no two distinct tuples in any state r
of R can have the same value
= key K is a superkey with the additional property that removal of any attribute from K will
cause K not to be a superkey any more
=  Example:
* The attribute set {Ssn} is a key because no two employees tuples can have the same
value for Ssn
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*Any set of attributes that includes Ssn—for example, {Ssn, Name, Address}—is a
superkey
= |f a relation schema has more than one key, each is called a candidate key
» One of the candidate keys is arbitrarily designated to be the primary key, and the others
are called secondary keys
= |n a practical relational database, each relation schema must have a primary key
= If no candidate key is known for a relation, the entire relation can be treated as a default
superkey
= For example {Ssn}is the only candidate key for EMPLOYEE, so it is also the primary
key
= Definition. An attribute of relation schema R is called a prime attribute of R if it is a
member of some candidate key of R. An attribute is called nonprime if it is not a prime

attribute—that is, if it is not a member of any candidate key

WORKS_CN
FK FK.

Ssn IPnumber | Hours I

\ﬂr«@w@r >0 -

attributes are nonprime.

4.4.4 First Normal Form

= Defined to disallow multivalued attributes, composite attributes, and their combinations

It states that the domain of an attribute must include only atomic (simple, indivisible)
values and that the value of any attribute in a tuple must be a single value from the

domain of that attribute

1NF disallows relations within relations or relations as attribute values within tuples

The only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure below

(a)
DEPARTMENT
| Dname |Dnumber | Dmgr_ssn |Dlocat'ions |

T | b

= Primary key is Dnumber

=  We assume that each department can have a number of locations
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= The DEPARTMENT schema and a sample relation state are shown in Figure below

DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocations
Rasearch 5 333445555 | |Bellaire, Sugarland, Houston)
Administration 4 087654321 | (Stafford)
Headquarters i BBBE655DE | (Houston)

= As we can see, this is not in 1NF because Dlocations is not an atomic attribute, as
illustrated by the first tuple in Figure
» There are two ways we can look at the Dlocations attribute:

* The domain of Dlocations contains atomic values, but some tuples can have a set of
these values. In this case, Dlocations is not functionally dependent on the primary key
Dnumber

» The domain of Dlocations contains sets of values and hence is nonatomic. In this
case, Dnumber—Dlocations because each set is considered a single member of the
attribute domain

= |n either case, the DEPARTMENT relation is not in 1NF

MU Rulse.com

1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation
DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The
primary key of this relation is the combination {Dnumber, Dlocation}. A distinct tuple
in DEPT_LOCATIONS exists for each location of a department. This decomposes
the non-1NF relation into two 1NF relations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT
relation for each location of a DEPARTMENT. In this case, the primary key
becomes the combination {Dnumber, Dlocation}. This solution has the disadvantage
of introducing redundancy in the relation

DEPARTMENT
Dname Dnumber Dmgr_ssn Diocation
Research b 333445555 | Bellaire
Research b 333445555 | Sugarland
Research b 333445555 | Houston
Administration 4 987654321 | Stafford
Headquarters 1 8BB665555 | Houston
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3. If a maximum number of values is known for the attribute—for example, if it is
known that at most three locations can exist for a department—replace the
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and
Dlocation3. This solution has the disadvantage of introducing NULL values if
most departments have fewer than three locations. Querying on this attribute
becomes more difficult; forexample, consider how you would write the query: List
the departments that have ‘Bellaire’ as one of their locations in this design.

Of the three solutions, the first is generally considered best because it does not suffer
from redundancy and it is completely general, having no limit placed on a maximum
number of values

First normal form also disallows multivalued attributes that are themselves composite.
These are called nested relations because each tuple can have a relation within it.

(a)
EMP_PROJ

Projs

| Ssn | Ename | Pnumber |Hours

i ove shaws e EMP_PROJ relation could appear if nesting is allowed
Each tuple represe ploye tity, relation n ) urs)
within) eac represen emp ’ jects s [per week that

employee works on each project.

The schema of this EMP_PROJ relation can be represented as follows:
EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

Ssn is the primary key of the EMP_PROJ relation and Pnumber is the partial key of the

nested relation; that is, within each tuple, the nested relation must have unique values of

Pnumber

To normalize this into 1NF, we remove the nested relation attributes into a new relation

and propagate the primary key into it; the primary key of the new relation will combine

the partial key with the primary key of the original relation

Decomposition and primary key propagation yield the schemas EMP_PROJ1 and

EMP_PROJ2,

EMP_PROJ2

Ssn Pnumber Hours

EMP_PROJ

Ssn Ename
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EMP_PROJ
Ssn Ename Pnumber Hours
123456789 Smith, John B. i 325
2 7.5
666884444 _ | Narayan RameshK| 8 400 =
453453453 English, Joyce A. 1 200
2 200
3334455656 | Wong, Franklin T. | 2 | 100
3 10.0
10 10.0
20 10.0
000887777 | Zelaya, Alicia). | 30 | s00
______________________________ Li. S ..
Q87987487 Jabbar, Ahmad V. 10 35.0
30 5.0
087654321 | Wallace, Jennifer S. | a0 | 200
______________________________ 2 .. S
888665505 Borg, James E. 20 NULL

4.4.5 Second Normal Form

= Second normal f isfbas t n f full fupeti e
functionalildependency X US :Su |onal.d@® m any
attribute A from X means that the dependency does not hold any more; that is, for any
attribute A € X, (X = {A}) does not functionally determine Y

= A functional dependency X—Y is a partial dependency if some attribute A € X can be
removed from X and the dependency still holds; that is, for some A € X, (X —{A}) > Y

EMP_PROJ
| Ssn | Pnumber | Hours | Ename | Prame | Plocation |

FD1| | A T

FD2|
FD3 |

= In the above figure , {Ssn, Pnumber} — Hours is a full dependency (neither Ssn —
Hours nor Pnumber—Hours holds)

= {Ssn, Pnumber}—Ename is partial because Ssn—Ename holds

» Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R

= The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key
= [f the primary key contains a single attribute, the test need not be applied at all
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» The EMP_PROJ relation is in 1NF but is not in 2NF.

= The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime
attributes Pname and Plocation because of FD3

= The functional dependencies FD2 and FD3 make Ename, Pname, and Plocation
partially dependent on the primary key {Ssn, Pnumber} of EMP_PROJ, thus violating the
2NF test.

= |f a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a
number of 2NF relations in which nonprime attributes are associated only with the
part of the primary key on which they are fully functionally dependent.

Therefore, the functional dependencies FD1, FD2, and FD3 lead to the decomposition of
EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in Figure below,
each of which is in 2NF.

EMP_PROJ
| Ssn |Pnumber |Hours |Ename |Pr|ame |F‘!ocatioﬂ

e

FD2 |
FD3 [ |

2NF Normalization l I I
EP1 EP2 EP3

| Ssn |Pnumber |Hours | | Ssn |Ename | |Pnumber | Pname |Piucaticn |

FD1 [} FD2 A FD3| A )

4.4.6 Third Normal Form

= Transitive functional dependency
A functional dependency X—Y in a relation schema R is a transitive dependency if
there exists a set of attribute Z that are neither a primary nor a subset of any key of
R(candidate key) and both X > Z and Y - Z holds
=  Example:

EMP_DEPT
| Ename | Ssn | Bdate | Address | Dnumber | Dname | Dmgr_ssn |

A 4 A T T T

« SSN - DMGRSSN is a transitive FD since SSN - DNUMBER and DNUMBER
- DMGRSSN hold
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Dnumber is neither a key itself nor a subset of the key of EMP_DEPT
+ SSN > ENAME is non-transitive since there is no set of attributes X where
SSN > X and X > ENAME
Definition: A relation schema R is in third normal form (3NF) if it is in 2NF and no
non-prime attribute A in R is transitively dependent on the primary key
The relation schema EMP_DEPT is in 2NF, since no partial dependencies on a key
exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of

Dmgr_ssn (and also Dname) on Ssn via Dnumber

EMP _DEPT
| Ename | Ssn | Bdate ‘ Address ‘ Dnumber ‘ Dname ‘ Dmgr_ssn ‘

N N N S R

We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas
ED1 and ED2

EMP _DEPT
| Ename | Ssn |Bdate | Address | Dinumber |Dname |Dmgr_ssr‘: |

++l+#TT n

3NF Normalization

EDA ED2
| Ename |Sﬂ |Bdate |ﬁ;ddress |Dnumber | | Dnumber |Dr:ame | Dmgr_ssn |

$ [ 4 A A | } )

ED1 and ED2 represent independent entity facts about employees and departments
A NATURAL JOIN operation on ED1 and ED2 will recover the original relation
EMP_DEPT without generating spurious tuples
Problematic FD
+ Left-hand side is part of primary key
+ Left-hand side is a non-key attribute
2NF and 3NF normalization remove these problem FDs by decomposing the original
relation into new relations
In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies because these types of dependencies cause the update

anomalies



Table 15.1
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Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form

First (INF)

Second (2NF)

Third (3NF)

Test

Relation should have no multivalued
attributes or nested relations.

For relations where primary key con-
tains multiple attributes, no nonkey
attribute should be functionally
dependent on a part of the primary key.

Relation should not have a nonkey
attribute functionally determined by
another nonkey attribute (or by a set of
nonkey attributes). That is, there should
be no transitive dependency of a non-
key attribute on the primary key.

Remedy (Normalization)

Form new relations for each multivalued
attribute or nested relation.

Decompose and set up a new relation for
each partial key with its dependent attrib-
ute(s). Make sure to keep a relation with
the original primary key and any attributes
that are fully functionally dependent on it.

Decompose and set up a relation that
includes the nonkey attribute(s) that func-
tionally determine(s) other nonkey attrib-
ute(s).

VTUPulse.com
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4.5 General Definition of Second and Third Normal Form

» Takes into account all candidate keys of a relation into account

= Definition of 2NF: A relation schema R is in second normal form (2NF) if every
nonprime attribute A in R is not partially dependent on any key of R

= Consider the relation schema LOTS which describes parcels of land for sale in various
counties of a state

= Suppose that there are two candidate keys: Property_id# and {County_name, Lot#}; that
is, lot numbers are unique only within each county, but Property_id# numbers are unique
across counties for the entire state.

Candidate Key

|
LOTS | |

| Property_id# | County_name | Lot# | Area | Price | Tax_rate |

o1 | N S S
o2 | | [+ t

FD3 _ 4

F

D4 T
Based on tUcaldidate u’rzlpeﬁd#e&&mgangt#}l thelunlional

dependencies FD1 and FD2 hold
» FD1: Property_id — { County_name,Lot#,Area,Price, Tax_rate}
* FD2:{County_name,Lot#} —{Property_id, Area,Price, Tax_rate}
+ FD3: County_name — Tax_rate
» FD4: Area — Price
= We choose Property_id# as the primary key, but no special consideration will be given to
this key over the other candidate key
= FD3 says that the tax rate is fixed for a given county (does not vary lot by lot within the
same county)
» FD4 says that the price of a lot is determined by its area regardless of which county it is
in.
= The LOTS relation schema violates the general definition of 2NF because Tax_rate is
partially dependent on the candidate key {County_name, Lo#}, due to FD3
* To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2
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LOTSH LOTS2
| Property_id# | County_name | Lot# | Area | Price | | County name | Tax_rate |

FD1 | i o4 9 FD3
oz | | [+

FD4 ?

We construct LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS
and placing it with County_name (the left-hand side of FD3 that causes the partial
dependency) into another relation LOTS2.

Both LOTS1 and LOTS2 are in 2NF.

Definition of 3NF: A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X—A holds in R, either (a) X is a superkey of R, or (b)
A is a prime attribute of R

According to this definition, LOTS2 is in 3NF

FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime

i in LOTS
o ngrmalize LO S1N,wd 0 eg the r n a and
LOTS1B
[
LOTS1A LOTS1B
| Property_id# |County_name | Lot# | Area |

FD1 | ) A A 4| A
Fo2 | |

We construct LOTS1A by removing the attribute Price that violates 3NF from LOTS1 and
placing it with Area (the lefthand side of FD4 that causes the transitive dependency) into
another relation LOTS1B.

Both LOTS1A and LOTS1B are in 3NF

LOTS 1NF

LOTSH LOTS2 2NF

LOTS1A LOTS1B LOTS2 3NF
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4.6 Boyce-Codd Normal Form

» Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was
found to be stricter than 3NF

= Every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in
BCNF

» Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X—A holds in R, then X is a superkey of R

= The formal definition of BCNF differs from the definition of 3NF in that condition (b) of
3NF, which allows A to be prime, is absent from BCNF. That makes BCNF a stronger
normal form compared to 3NF

= In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of
LOTS1A

= FD5 satisfies 3NF in LOTS1A because County_name is a prime attribute (condition b),
but this condition does not exist in the definition of BCNF

=  We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY. This
decomposition loses the functional dependency FD2 because its attributes no longer

oexist in t sarle rTerrrc pd’ionp ro m

LOTS1A
‘ Property_id# | County_name ‘Lot# ‘Area ‘
1 | i S
FD2 4 | | 4

FD5 A |

BCNF Normalization
LOTS1AX LOTS1AY
Property_id# | Area |Lot# ‘ ‘ Area | County_name ‘

= |n practice, most relation schemas that are in 3NF are also in BCNF
= Only if X—A holds in a relation schema R with X not being a superkey and A being a
prime attribute will R be in 3NF but not in BCNF

= Example: consider the relation TEACH with the following dependencies:



TEACH
Student Course Instructor
Marayan | Database Marik
Smith Database Mavathe
Smith Operating Systems | Ammar
Smith Theory Schulman
Wallace | Database Mark
Wallace | Operating Systems | Ahamad
Wong Database Omiecinski
Zelaya Database MNavathe
Narayan | Operating Systems | Ammar

FD1: {Student, Course} — Instructor

Database Management System [18CS53]

FD2: Instructor — Course -- means that each instructor teaches one course

{Student, Course} is a candidate key for this relation

The dependencies shown follow the pattern in Figure below with Student as A, Course

as B, and Instructoras C

R

A| B

C

TU =d.5e.com

Hence this relation is in 3NF but not BCNF
Decomposition of this relation schema into two schemas is not straightforward because

it may be decomposed into one of the three following possible pairs:

1. R1(Student, Instructor) and R2(Student, Course)

2. R1(Course, Instructor) and R2(Course, Student)

3. R1(Instructor, Course)and R2(Instructor, Student)

It is generally not sufficient to check separately that each relation schema in the

database is, say, in BCNF or 3NF

Rather, the process of normalization through decomposition must also confirm the

existence of additional properties that the relational schemas, taken together, should

possess. These would include two properties:

*The nonadditive join or lossless join property, which guarantees that the spurious

tuple generation problem does not occur with respect to the relation schemas

created after decomposition.

* The dependency preservation property, which ensures that each functional

dependency is represented in some individual relation resulting after decomposition.
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= We are not able to meet the functional dependency preservation ,but we must meet the
non additive join property
* Nonadditive Join Test for Binary Decomposition:
A decomposition D={R1, Rz} of R has the lossless join property with respect to a set
of functional dependencies F on R if and only if either
* The FD ((Ri"R2) —(R+-Ry)is in F* or
* The FD ((R1”"R2) —(Rz2-Ry)is in F*
= The third decomposition meets the test
R1~R: is Instructor
Ri-R2 is Course
= Hence, the proper decomposition of TEACH into BCNF relations is:
TEACH1(Instructor,Course) and TEACH2(Instructor,Student)

= In general, a relation R not in BCNF can be decomposed so as to meet the nonadditive

join prorperty by the following procedure. It decomposes R successively into set of
relations that are in BCNF:
Let R be the relation notin BCNF, let X R, and let X — A be the FD that

‘ rT iolation o F. R may be decomposed into two relations:
@

If either R-A or XA is not in BCNF, repeat the process
4.7 Multivalued Dependency and Fourth Normal Form

= For example, consider the relation EMP shown in Figure below:

EMP
Ename Il Pnams 1 Dname
|  Smith X John
Smith Y Anna
Smith X Anna
Smith Y John

= A tuple in this EMP relation represents the fact that an employee whose name is
Ename works on the project whose name is Pname and has a dependent whose
name is Dname

= An employee may work on several projects and may have several dependents

= The employee’s projects and dependents are independent of one another
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= To keep the relation state consistent, and to avoid any spurious relationship between
the two independent attributes, we must have a separate tuple to represent every
combination of an employee’s dependent and an employee’s project

= In the relation state shown in the EMP, the employee Smith works on two projects
‘X’ and Y’ and has two dependents ‘John’ and ‘Anna’ and therefore there are 4
tuples to represent these facts together

= The relation EMP is an all-key relation (with key made up of all attributes) and
therefore no f.d’s and as such qualifies to be a BCNF relation

= There is a redundancy in the relation EMP-the dependent information is repeated for
every project and project information is repeated for every dependent

= To address this situation, the concept of multivalued dependency(MVD) was
proposed and based on this dependency, the fourth normal form was defined

= Multivalued dependencies are a consequence of 1NF which disallows an attribute
in a tuple to have a set of values, and the accompanying process of converting an
unnormalized relation into 1NF

= Informally, whenever two independent 1:N relationships are mixed in the same

i R(A, B, MVD may arise
.1/ Formal Definitio tival dSpEncy( :Q m
tion. A mult dependen ifi relati h , Where X and Y

are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples
t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the

following properties where we use Z to denote (R — (X U Y))

= 3[X] = t4]X] = t1[X] = t2[X].
= t3[Y] = t1[Y] and t4[Y] = t2[Y].
= t3[Z] = t2[Z] and t4[Z] = t1[Z].

EMP

[ Ename Pname | Dname Let X= Ename, Y=Pname

| Smith X John t1[Ename]=t2[ename]=Smith
Smith Y Anna Z= (EMP-(Ename u Pname))
Smith X Anna = Dname
Smith Y o

= t3(Ename)=t4(Ename)=t1(Ename)=t2(Ename)=Smith
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t3(Pname)=t1(Pname)=X and t4(Pname)=t2(Pname)=Y

t3(Dname)=t2(Dname)=Anna and t4(Dname)=t1(Dname)=John
Whenever X——Y holds, we say that X multidetermines Y. Because of the symmetry in
the definition, whenever X —— Y holds in R, so does X —— Z. Hence, X —— Y implies
X——Z, and therefore it is sometimes written as X——Y|Z.

An MVD X —-— Y in R is called a trivial MVD if EMP PROJECTS

(@) Y is a subset of X, or

(b)XUY =R Ename Pname
Smith X
Smith Y

For example, the relation EMP_PROJECTS has the trivial MVD
Ename —— Pname
An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD
If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in
the tuples

relation lues ‘X' and 'Y’ of Pname are repeated with each value of
name (oryby s s olin’ an " of ae edWwithleach
valueof P )

This redundancy is clearly undeswable.

We now present the definition of fourth normal form (4NF), which is violated when a
relation has undesirable multivalued dependencies, and hence can be used to identify
and decompose such relations

Definition: A relation schema R is in 4NF with respect to a set of dependencies F
(that includes functional dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency X —— Yin F* X is a superkey for R
The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF
consists of decomposing it so that each MVD is represented by a separate relation
where it becomes a trivial MVD

EMP_PROJECTS EMP_DEPENDENTS

Ename Pname Ename Dname
Smith X Smith John
Smith Y Smith Anna
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=  We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS

= Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs
Ename —— Pname in EMP_PROJECTS and Ename —— Dname in
EMP_DEPENDENTS are trivial MVDs

= No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No
FDs hold in these relation schemas either

» We can state the following points:
* An all-key relation is always in BCNF since it has no FDs
» An all-key relation such as the EMP, which has no FDs but has the MVD Ename——
Pname | Dname, is not in 4NF
+ A relation that is not in 4NF due to a nontrivial MVD must be decomposed to convert it
into a set of relations in 4NF

* The decomposition removes the redundancy caused by the MVD

HiPertse.com
A join de ncy (JD), d 1, .., Rn)"spéci rélation schema

R, specifies a constraint on the states r of R. The constraint states that every legal

state r of R should have a nonadditive join decomposition into R1, R2, ..., Rn. Hence,
for every such r we have

* {ﬂ:RI[r'}, rERz[ o P Eanr}} =

=  Ajoin dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if
one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Fifth normal form (project-join normal form)

» A relation schema R is in fifth normal form (56NF) (or project-join normal form
(PJNF)) with respect to a set F of functional, multivalued, and join dependencies if, for
every nontrivial join dependency JD(R1, R2, ..., Rn) in F* every R;is a superkey of R.

= A database is said to be in 5NF, if and only if,

* It'sin 4NF
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+ If we can decompose table further to eliminate redundancy and anomaly, and when
we re-join the decomposed tables by means of candidate keys, we should not be
losing the original data or any new record set should not arise. In simple words,
joining two or more decomposed table should not lose records nor create new

records.

SUPPLY
Sname Part_name Proj_name
Smith Bolt PraojX
Smith MNut ProjY
Adamsky Bolt ProjY
Walton MNut ProjZ
Adamsky Nail PraojX

| Adamsky | Bot | ProjX |
Smith Bolt ProjY

Fig: The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3)

VR Ry Ry
Sname Part_name Sname Pro| name Part_nams Proj_name
Smith Bolt Smith ProjX Bolt ProjX
Smith Mut Smith ProjY Mut ProjY
Adamsky Bolt Adamsky ProjY Bolt ProjY
Walton Mut Walton ProjZ Mut ProjZ
Adamsky Mail Adamsky ProjX Mail Projx

Fig: Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.
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Chapter 2: Normalization Algorithms

4.9 Inference Rules for Functional Dependencies

= LetF be the set of functional dependencies that are specified on relation schema R

» The schema designer specifies the functional dependencies that are semantically
obvious

= Numerous other functional dependencies hold in all legal relation instances among sets
of attributes that can be derived from and satisfy the dependencies in F

= Those other dependencies can be inferred or deduced from the FDs in F.

=  For example:

* If each department has one manager, so that Dept_no uniquely determines
Mgr_ssn (Dept_no — Mgr_ssn), and a manager has a unique phone number
called Mgr_phone (Mgr_ssn—Mgr_phone),

* Then these two dependencies together imply that

ept_ r_phone
I- This is an i d 'D ald leSt encitly (ated tim
th given FDs. o

= Definition. Formally, the set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure of F; it is denoted by F*.

= For example, suppose that we specify the following set F of obvious functional

dependencies on the relation schema EMP_DEPT

EMP_DEPT

| ENAME ‘ SSN ‘ BDATE ‘ ADDRESS ‘ DNUMBER ‘ DNAME ‘ DMGRSSN l
¥ T T T

s F= {
Ssn — {Ename, Bdate, Address, Dnumber},

Dnumber — {Dname, Dmgr_ssn}

}

= Some of the additional functional dependencies that we can infer from F are the
following:
*  Ssn — {Dname, Dmgr_ssn}
*+ Ssn— Ssn
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*  Dnumber — Dname

An FD X — Y is inferred from a set of dependencies F specified on R if X — Y holds in
every legal relation state r of R
The closure F* of F is the set of all functional dependencies that can be inferred from F
Set of inference rules can be used to infer new dependencies from a given set of
dependencies
We use the notation F |=X — Y to denote that the functional dependency X—Y is
inferred from the set of functional dependencies F
we use an abbreviated notation when discussing functional dependencies. We
concatenate attribute variables and drop the commas for convenience
The FD {X,Y}—Z is abbreviated to XY—Z, and the FD {X, Y,Z} — {U, V} is abbreviated
to XYZ — UV.
Three rules IR1 through IR3 are well-known inference rules for functional dependencies.
They are proposed by Armstrong and hence known as Armstrong’s axioms

+ IR1 (reflexive rule): If X 2 Y, then X—Y.

* IR2 (augmentation rule): {X—Y} [ XZ—-YZ.

nsitive n X—=Y, Y4} |FX—Z
{ tes that afseflof at always s lifselfyor any of
ich' is gbvious. )

Because IR1 generates dependencies that are always true, such dependencies are

(
he reflexi

its subsets,

called trivial.
Formally, a functional dependency X—Y is trivial if X 2 Y; otherwise, it is nontrivial.
The augmentation rule (IR2) says that adding the same set of attributes to both the left-
and right-hand sides of a dependency results in another valid dependency
According to IR3, functional dependencies are transitive
There are three other inference rules that follow from IR1,IR2 and IR3. They are:

* IR4 (decomposition, or projective, rule): {X—YZ} |=X—-Y

* IR5 (union, or additive, rule): {X—Y, X—Z} |FX—-YZ

* IR6 (pseudotransitive rule): {X—>YWY—-2Z} [FWX—Z
The decomposition rule (IR4) says that we can remove attributes from the right-hand
side of a dependency; applying this rule repeatedly can decompose the FD X—{A1, A2,
..., An} into the set of dependencies {X—A1, X—A2, ... X—An}.
The union rule (IR5) allows us to do the opposite; we can combine a set of
dependencies {X—A1, X—A2, ..., X—An} into the single FD X—{A1, A2, ..., An}.
The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left hand
side of a dependency with another set X that functionally determines Y, and can be
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derived from IR2 and IR3 if we augment the first functional dependency X—Y with W
(the augmentation rule) and then apply the transitive rule.

In other words, the set of dependencies F+, which we called the closure of F, can be
determined from F by using only inference rules IR1 through IR3.

A systematic way to determine these additional functional dependencies is first to
determine each set of attributes X that appears as a left-hand side of some functional
dependency in F and then to determine the set of all attributes that are dependent on X.
Definition. For each such set of attributes X, we determine the set X* of attributes that
are functionally determined by X based on F; X* is called the closure of X under F.
Algorithm 16.1 can be used to calculate X*.

Algorithm 16.1. Determining X, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is
a subset of R.
A i—K3
repeat

oldX™ = X";

for each functional dependency Y — Zin Fdo

if Xt = ¥ then Xt := X" .Z;

until (X" = oldX™);

Algorithm 16.1 starts by setting X* to all the attributes in X.

By IR1, we know that all these attributes are functionally dependent on X.
Using inference rules IR3 and IR4, we add attributes to X*, using each functional
dependency in F.
We keep going through all the dependencies in F (the repeat loop) until no more
attributes are added to X* during a complete cycle (of the for loop) through the
dependencies in F.
For example, consider the relation schema EMP_PRO. From the semantics of the
attributes, we specify the following set F of functional dependencies that should hold on
EMP_PROJ:
F ={Ssn — Ename,
Pnumber — {Pname, Plocation},
{Ssn, Pnumber} — Hours}
Using Algorithm 16.1, we calculate the following closure sets with respect to F:
+ {Ssn}*={Ssn, Ename}
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* {Pnumber} * = {Pnumber, Pname, Plocation}
* {Ssn, Pnumber} * = {Ssn, Pnumber, Ename, Pname, Plocation, Hours}
4.10Equivalence of Sets of Functional Dependencies

Definition: A set of functional dependencies F is said to cover another set of functional
dependencies E if every FD in E is also in F*; that is, if every dependency in E can be
inferred from F; alternatively, we can say that E is covered by F.

Definition: Two sets of functional dependencies E and F are equivalent if E* = F*.
Therefore, equivalence means that every FD in E can be inferred from F, and every FD
in F can be inferred from E; that is, E is equivalent to F if both the conditions—E covers
F and F covers E—hold.

4.11Sets of Functional Dependencies

A set of functional dependencies F to be minimal if it satisfies the following
conditions:

1.1 Every depend hagja sin orits r posside
2./ We notreplace any{dependency w.ith depe @
—A, where Y Is a proper subset of X, and still have a set of dependencies that

is equivalent to F.

5 We cannot remove any dependency from F and still have a set of
dependencies that is equivalent to F.

Algorithm 16.2. Finding a Minimal Cover F for a Set of Functional
Dependencies E

Input: A set of functional dependencies E.

1. 8t =F

2. Replace each functional dependency X — {A, A,, ..., A} in F by the n func-
tional dependencies X —A |, X —A,, ... X 2 A,

3. For each functional dependency X — Ain F
for each atiribute B that is an element of X
if{{F—{X— A} } v {(X—-{B})— A} } is equivalent to F
then replace X — A with (X —{B} ) - Ain F.
4. For each remaining functional dependency X — A in F
if {F—{X — A} | is equivalent to F,
then remove X — A from F.
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= Step 2 places FDs in a canonical form for subsequent testing
= Step 3 constitutes removal of an extraneous attribute B contained in the left-hand side X
of a functional dependency X->A from F when possible
=  Step 4 constitutes removal of a redundant functional dependency x->A from F when
possible
= Example 1: Let the given set of FDs be E : {B—A, D—A, AB—D}.We have to find the
minimal cover of E.
» All above dependencies are in canonical form (that is, they have only one attribute on
the right-hand side), so we have completed step 1 of Algorithm and can proceed to
step 2
* In step 2 we need to determine if AB—D has any redundant attribute on the left-hand
side; that is, can it be replaced by B—D or A—~D?
+ Since B —A, by augmenting with B on both sides (IR2), we have BB — AB, or B—AB
(i). However, AB—D as given (ii).
* Hence by the transitive rule (IR3), we get from (i) and (ii), B — D. Thus AB—D may

be replaced by B
We now have @ s uivHo riﬁ ﬁE: {BA, %mﬂher
redtiction SSi in ste in Ds e !sin attribtite on the' left-hand

side.

* In step 3 we look for a redundant FD in E. By using the transitive rule on B — D and D
— A, we derive B — A. Hence B — A is redundant in E and can be eliminated.

Algorithm 16.2(a). Finding a Key K for R Given a set F of Functional
Dependencies

Input: A relation R and a set of functional dependencies F on the attributes of
R.

1.8etK=R.
2. For each attribute A in K
{compute (K- A)" with respect to F;
if (K—A)" contains all the attributes in R, thenset K:=K—{A}

* Therefore, the minimal cover of E is {B—D, D—A}.

We start by setting K to all the attributes of R; we then remove one attribute at a time and check

whether the remaining attributes still form a superkey.

= Algorithm 16.2(a) determines only one key out of the possible candidate keys for R; the key
returned depends on the order in which attributes are removed from R in step 2.
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4.12 Properties of Relational Decompositions

Universal relation schema

Universal relation schema R = {A1, A2, ..., An} includes all the attributes of the
database

universal relation assumption: every attribute name is unique

The set F of functional dependencies that should hold on the attributes of R is specified
by the database designers

Using the functional dependencies, the algorithms decompose the universal relation
schema R into a set of relation schemas

D ={R1, R2, ..., Rm} that will become the relational database schema ; D is called a
decomposition of R.

Attribute Preservation condition of a Decomposition

VTblte mi ear in at least one relation schema R; in the decomposition so
or Ta"] hS e C O m
e
=R

=]

Another goal of decomposition is to have each individual relation R; in the decomposition
D be in BCNF or 3NF

Additional properties of decomposition are needed to prevent from generating spurious
tuples

Desirable Properties of Decompositions

Not all decomposition of a schema are useful
We require two properties to be satisfied:

i) Dependency Preservation Property

ii) Nonadditive (Lossless) Join Property

Dependency Preservation Property

Each functional dependency X—Y specified in F either appeared directly in one of the
relation schemas R; in the decomposition D or could be inferred from the dependencies

that appear in some R;
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= We want to preserve the dependencies because each dependency in F represents a
constraint on the database

= If one of the dependencies is not represented in some individual relation Ri of the
decomposition, we cannot enforce this constraint by dealing with an individual relation

= |t is not necessary that the exact dependencies specified in F appear themselves in
individual relations of the decomposition D.

= |t is sufficient that the union of the dependencies that hold on the individual relations in
D be equivalent to F

= Example: Dependency Preserving Decomposition

Candidate Key
|

LOTS [ I
‘ Property_id# | County_name | Lot# | Area ‘ Price | Tax_rate |

ot | ! (L S
o2 | | |+ ¢+ |

FD3 &

-I24I ll'\{}__lj?- _

LOTSH LOTS2
| Property_id# | County_name | Lot# ‘ Area | Price | | County_name ‘ Tax_rate ‘ '
| ! I S B f

F2 | I
FD4 _f

= Example: Decomposition that does not Preserve Dependency

LOTS1A
‘ Property_id# | County_name ‘Lot# ‘Area ‘
1 | : o
FD2 4 | -

FD5 4 |

BCNF Normalization

LOTS1AX LOTS1AY
‘ Property_id# | Area |Lot# | ‘ Area | County_name ‘

Nonadditive (Lossless) Join Property
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The nonadditive join property ensures that no spurious tuples result after the application
of PROJECT and JOIN operations

The term lossy design refer to a design that represents a loss of information

If a decomposition does not have the lossless join property, we may get additional
spurious tuples after the PROJECT (1) and NATURAL JOIN (*) operations are applied:;
these additional tuples represent erroneous or invalid information

Algorithm 16.3. Testing for Nonadditive Join Property

Input: A universal relation R, a decomposition D ={R,R,,...,R_t of R,and a
set F of functional dependencies.

Note: Explanatory comments are given at the end of some of the steps. They fol-
low the format: (* comment *).

1. Create an initial matrix S with one row  for each relation R; in D, and one
column j for each attribute A ;in R,

2. Set 5(1, j):= b:.. for all matrix entries. (* each E:”. is a distinct symbol associated
with indices (J 1,7) ™) :
3. For each row 7 representing relation schema R;
{for each column j representing attribute A.
{if (relation R, includes attribute A.) then set S(i, ):= .er-;};}; (* each a;isa
distinct symbol associated with index ( j) *). ' '



Database Management System [18CS53]

4. Repeat the following loop until a complete loop execution results in no
changes to §
{for each functional dependency X — Yin F
{for all rows in S that have the same symbols in the columns corresponding
to attributes in X
{make the symbols in each column that correspond to an attribute in ¥V
be the same in all these rows as follows: If any of the rows has an a sym-
bol for the column, set the other rows to that same a symbol in the col-
umn. If no a symbol exists for the attribute in any of the rows, choose
one of the b symbols that appears in one of the rows for the attribute
and set the other rows to that same b symbol in the column ;} 5 | i}3

5. If a row is made up entirely of a symbols, then the decompasition has the
nonadditive join property; otherwise, it does not.

Example
(a) R={Ssn, Ename, Prnumber, Pname, Plocation, Hours} D={R,, Ry}
R,=EMP_LOCS = {Ename, Plocation}
R;=EMP_PROJ1 ={Ssn, Pnumber, Hours, Pname, Plocation}
F={Ssn-=Ename; Pnumber -+ {Pname, Plocation}; {Ssn, Pnumber} = Hours)}
Ssn Ename | Pnumber | Pname | Plocation | Hours
Ry | by ay bya by as big
Ry ay bay as ay dg g
(Mo changes to matrix after applying functional dependencies)
(h) EMP PROJECT WORKS_ON
| Ssn | Ename | | Pnumber Pname [ Plocation | | Ssn | Pnumber | Hours |
(c) R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours} D={R,, R, Ry}

R, =EMP = {Ssn, Ename}
R, =PROCIJ = {Pnumber, Pname, Plocation}
R, =WORKS_ON = {Ssn, Pnumber, Hours}

F={Ssn -»Ename; Pnumber -»{Pname, Plocation}; {Ssn, Pnumber} -=Hours}

Ssn Ename |[Phumber | Pname | Plocation | Hours
R, a4 dy byg byy bys byg
R by bay dz ay dp bg
Ry a4 b a3 bga bas g

(Original matrix S at start of algorithm)

Ssn Ename |Pnumber | Pname | Plocation | Hours
Ry 3 ay by byy bys byg
Ry by, boy ay = ds byg
Ry &y By a ds bay a, Bag 85 g
(Matrix S after applying the first two functional dependencies;
last row is all “a" symbols so we stop)
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Testing Binary Decompositions for the Nonadditive Join Property

Property NJB (Nonaddlitlve Join Test for Binary Decomposlitions). A
decomposition D = {R,, R,} of R has the lossless (nonadditive) join property
with respect to a set of functional dependencies F on R if and only if either

® The FD HR1 r’wREJ - [R] ‘Rz}} isin F*,or

® The FD ((R, nR,) = (R,—R )} isin F*

4.13 Algorithms for Relational Database Schema Design

Two algorithms for creating a relational decomposition from universal relation

1. The first algorithm decomposes a universal relation into dependency preserving 3NF
relations that also possess the nonadditive join property

2. The second algorithm decomposes a universal relation schema into BCNF schemas that
possess the nonadditive join property

13. pente reserving and Nonadditive (Lossless) Join
Algorithm 16.4. R nal Synthesi 3NF D eﬂ:y e a nadditive

Join Property

* Input: A universal relation R and a set of functional dependencies F on the attributes of
R.

1. Find a minimal cover G for F (use Algorithm 16.2).

2. For each left-hand-side X of a functional dependency that appears in G, create a relation
schema in D with attributes {X U {A1} U {A2} ... U {AK}}, where X—A1, X—A2, ..., X—Ak are
the only dependencies in G with X as left-hand-side (X is the key of this relation)

5 If none of the relation schemas in D contains a key of R, then create one more relation

schema in D that contains attributes that form a key of R

6 Eliminate redundant relations from the resulting set of relations in the relational database
schema. A relation R is considered redundant if R is a projection of another relation S in
the schema; alternately, R is subsumed by S

= Example: Consider the following universal relation:
U(Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)
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* Emp_ssn, Esal, Ephone refer to the Social Security number, salary, and phone number of
the employee. Pno, Pname, and Plocation refer to the number, name, and location of the

project. Dno is department number.

.

The following dependencies are present:
-FD1: Emp_ssn — {Esal, Ephone, Dno}
-FD2: Pno — { Pname, Plocation}
-FD3: Emp_ssn, Pno — {Esal, Ephone, Dno, Pname, Plocation}
* By virtue of FD3, the attribute set {Emp_ssn, Pno} represents a key of the universal

relation.

.

Hence F, the set of given FDs includes {Emp_ssn — Esal, Ephone, Dno; Pno—Pname,
Plocation; Emp_ssn, Pno—Esal, Ephone, Dno, Pname, Plocation}.

* By applying the minimal cover , in step 3 we see that Pno is a redundant attribute in
Emp_ssn, Pno — Esal, Ephone, Dno. Moreover, Emp_ssn is redundant in Emp_ssn,
Pno—Pname, Plocation.

* Hence the minimal cover consists of FD1 and FD2 only

* Minimal cover G: {Emp_ssn — Esal, Ephone, Dno; Pno — Pname, Plocation}
the abovIMlnlmaI cover G, we get a 3NF design consisting

se.cOom

*In step 3, we generate a relation corresponding to the key(Emp_ssn,Pno) of U. Hence, the

R2 (Pno, Pname, Plocation)

resulting design contains:
R1 (Emp_ssn, Esal, Ephone, Dno)
R2 (Pno, Pname, Plocation)
R3(Emp_ssn, Pno)
This design achieves both the desirablle properties of dependency preservation and non

additive join

4.13.2 Nonadditive Join Decomposition into BCNF Schemas

Algorithm 16.5. Relational Decomposition into BCNF with Nonadditive

Join Property

*Input: A universal relation R and a set of functional dependencies F on the attributes of R.
1. Set D = {R};
2, While there is a relation schema Q in D that is not in BCNF do
{

choose a relation schema Q in D that is not in BCNF;
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find a functional dependency X—Y in Q that violates BCNF;
replace Q in D by two relation schemas (Q - Y) and (X U Y);
b
» Each time through the loop in Algorithm 16.5, we decompose one relation schema Q that
is not in BCNF into two relation schemas.
= According to Property NJB for binary decompositions and Claim 2, the decomposition D
has the nonadditive join property
= At the end of the algorithm, all relation schemas in D will be in BCNF
= Example:TEACH relation schema decomposed into TEACH1(Instructor, Student) and
TEACH2(Instructor, Course) because the dependency FD2 Instructor—Course violates
BCNF.
= In step 2 of Algorithm 16.5, it is necessary to determine whether a relation schema Q is in
BCNF or not.
= whenever a relation schema Q has a BCNF violation, there exists a pair of attributes A and
B in Q such that {Q - {A, B} } — A; by computing the closure {Q — {A, B} }+ for each pair of
attributes {A, B} of Q, and checking whether the closure includes A (or B), we can

de i hether @ isii NF.
Vo dod b 686G
Decomposition into 3NF Schemas

= |tis not possible to have all three of the following:
(1) guaranteed nonlossy design,
(2) guaranteed dependency preservation, and
(3) all relations in BCNF

= The first condition is a must and cannot be compromised.

= The second condition is desirable, but not a must, and may have to be relaxed if we
insist on achieving BCNF.

= Now we give an alternative algorithm where we achieve conditions 1 and 2 and only
guarantee 3NF.

= A simple modification to Algorithm 16.4, shown as Algorithm 16.6, yields a
decomposition D of R that does the following:
m Preserves dependencies
m Has the nonadditive join property
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m Is such that each resulting relation schema in the decomposition is in 3NF

Algorithm 16.6. Relational Synthesis into 3NF with Dependency Preservation
and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.
1. Find a minimal cover G for F (use Algorithm 16.2).

2. For each left-hand-side X of a functional dependency that appears in G, cre-
ate a relation schema in D with attributes {X U {A } U {A,} ... U {A} |,
where X =5 A, X = A,, ..., X — A, are the only dependencies in G with X as
left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one
more relation schema in D that contains attributes that form a key of R.’
(Algorithm 16.2(a) may be used to find a key.)

4. Eliminate redundant relations from the resulting set of relations in the rela-
tional database schema. A relation R is considered redundant if R is a projec-
tion of another relation S in the schema; alternately, R is subsumed by S.

" tep 8 involves identi @ key Kef R Algerith (a) ca us identi K of
R based onithe sef of fuwl pepden
[ ]

Example 1 of Algorithm 16.6. Let us revisit the example given earlier at the end
of Algorithm 16.4. The minimal cover G holds as before. The second step produces
relations R, and R, as before. However, now in step 3, we will generate a relation
corresponding to the key {Emp_ssn, Pno}. Hence, the resulting design contains:

R, (Emp ssn , Esal, Ephone, Dno)
R, (Pno, Pname, Plocation)
R, (Emp ssn, Pno)

This design achieves both the desirable properties of dependency preservation and
nonadditive join.

4.14 About Nulls, Dangling Tuples, and Alternative Relational Designs

4.14.1 Problems with NULL Values and Dangling Tuples

» Whenever a relational database schema is designed in which two or more relations are
interrelated via foreign keys, particular care must be devoted to watching for potential
NULL values in foreign keys.

= This can cause unexpected loss of information in queries that involve joins on that
foreign key.
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= |f NULLs occur in other attributes, such as Salary, their effect on built-in functions such
as SUM and AVERAGE must be carefully evaluated.

Dangling tuples may occur if we carry a decomposition too far. Suppose that we decompose
the EMPLOYEE relation in Figure 16.2(a) further into EMPLOYEE_1 and EMPLOYEE_2, shown in Figure

16.3(a) and 16.3(b)
(a)

EMPLOYEE
Ename | Ssn Bdate Address | Dnum
Smith, John B. 123456789 | 19865-01-08 | 731 Fondren, Houston, TX 5
Wong, Franklin T. 333445555 | 1855-12-08 | 638 Voss, Houston, TX b
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4
Wallace, lennifer 5, | 087Y654321 | 1941-08-20 | 291 Beny, Bellaire, TX 4
MNarayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 5
English, Joyce A 453453453 | 197207-31 | 5631 Rice, Houston, TX 5
Jabbar, Abmad V. 987287087 (1969-03-29 | 980 Dallas, Houston, TX 4
DEPARTMENT
Dname Dnum Dmgr_ssn
Research 5 333445555
Administration 4 987654321
‘ Headquarters 1 888665555
(b)

Ename Ssn. Bdate Address Dnum Dname Dimgr_ssn
Smith, John B, 123456788 | 1965-01-09 | 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 6838 Voss, Houston, TX ] Research 333445555
Zelaya, Alicia 1. 909887777 | 19688-07-19 | 3321 Castle, Spring, TX 4 Administration | 287654321
Wallace, Jennifer 5. | 987654321 | 1841-06-20 | 281 Bermry, Bellaire, TX 4 Administration | 887654321
Marayan, Ramesh K. | 666884444 | 1862-09-15 | 875 Fire Oak, Humble, TX 5 Research 333445555
English, Joyce A 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 887987987 | 1869-03-29 | 980 Dallas, Houston, TX 4 Administration | 287654321
Borg, James E. B88B66H555 | 1037-11-10 | 450 Stone, Houston, TX 1 Headguarters | BBB&65555

()

Enames | Ssn Bdate :l Addrass Dnum Drame Dmgr ssn
Smith, John B. 123456789 | 1965-01-08 | 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX o Research 333445555
Zelaya, Alicia 1. 099887777 | 1968-0719 | 3321 Castle, Spring, TX B Administration | 987654321
Wallace, Jennifer S. | DB7654321 | 1041-06-20 | 291 Berry, Bellaire, TX 4 Administration | 887654321
Marayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 5 Research 333445555
English, Joyce A 453453453 | 1972-07-31 | 5631 Rice, Houston, TX & Research 333445555
Jabbar, Ahmad V. | 887987987 | 1968-03-28 | 98B0 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. BBBEEHEES | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 8BBE665555
Berger, Anders C. 990775505 | 1965-04-26 | 6530 Braes, Bellaire, TX NULL | NULL NULL
Benitez, Carlos M. BB8BEE5S5ES | 1963-01-00 | 7654 Beech, Houston, TX NULL | NULL NULL

Figure 16.2: Issues with NULL-value joins. (a) Some EMPLOYEE tuples have NULL for the join attribute Dnum
(b) Result of applying NATURAL JOIN to the EMPLOYEE and DEPARTMENT relations. (c) Result of applying
LEFT OUTER JOIN to EMPLOYEE and DEPARTMENT.
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(a) EMPLOYEE 1
Ename Ssn Bdate Address
Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX
Wallace, Jennifer S. | 887654321 | 1941-06-20 | 281 Bermry, Bellaire, TX
Marayan, Ramesh K. | 666884444 | 1862-08-15 | 875 Fire Oak, Humble, TX
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX
Jabbar, Ahmad V. 987887987 | 1969-03-29 | 980 Dallas, Houston, TX
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX
Berger, Anders C. 999775555 | 1965-04-26 | 6530 Braes, Bellaire, TX
Benitez, Caros M. 888665555 | 1963-01-09 | 7654 Beech, Houston, TX
{b) EMPLOYEE 2 (c) EMPLOYEE 3
Ssn | Dnum Ssn. Dnum

123456789 5 123456789 ¥

383445555 5 33344565565 b

900887777 4 0Q9887777 4

987654321 4 887654321 4

666884444 5 666884444 5

453453453 5 453453453 b n
S87987987 4 987887987 4

BOAGREEER i BBBEB5550 1

9897755580 NULL

BBB664444 NULL

Figure 16.3: The dangling tuple problem. (a) The relation EMPLOYEE_1 (includes all attributes of EMPLOYEE from
Figure 16.2(a) except Dnum). (b) The relation EMPLOYEE_2 (includes Dnum attribute with NULL values). (c) The
relation EMPLOYEE_3 (includes Dnum attribute but does not include tuples for which Dnum has NULL values).
= |f we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2, we get the
original EMPLOYEE relation.
= we may use the alternative representation, shown in Figure 16.3(c), where we do not include
a tuplein EMPLOYEE_3 if the employee has not been assigned a department (instead of
including a tuple with NULL for Dnum as in EMPLOYEE_2).
= [f we use EMPLOYEE_3 instead of EMPLOYEE_2 and apply a NATURAL JOIN on
EMPLOYEE_1 and EMPLOYEE_3, the tuples for Berger and Benitez will not appear in the
result; these are called dangling tuples in EMPLOYEE_1 because they are represented in
only one of the two relations that represent employees, and hence are lost if we apply an
(INNER) JOIN operation.
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4.150ther Dependencies and Normal Forms
4.15.1 Inclusion Dependencies

Inclusion dependencies were defined in order to formalize two types of interrelational
constraints:
m The foreign key (or referential integrity) constraint cannot be specified as a functional or
multivalued dependency because it relates attributes across relations.
m The constraint between two relations that represent a class/subclass relationship also has
no formal definition in terms of the functional,multivalued, and join dependencies.

Definition. An inclusion dependency R.X < 5.Y between two sets of attrib-
utes—X of relation schema R, and Y of relation schema S—specifies the con-
straint that, at any specific time when r is a relation state of R and s a relation
state of S, we must have

nylr(R)) < my{s(S))
= The subset relationship does not necessarily have to be a proper subset. Obviously, the
tributesgon wich the inclusibn dependency is specified—X of R and Y of S—
ustihave the same riof attribute
ition \the s for euai f§s@vgaﬁ@:@ bmle.
= For example, we can specify the following inclusion dependencies on the
relationalvschema in Figure 15.1:

Figure 15.1 EMPLOYEE FK
nin R g
S [ Ename| S | Buate | Address | Drumber
PE
DEPARTMENT FE.
[ Oname | Dnumber | Dmgr_z=n |
PH

DEPT_LOCATIONS
FIK

ey ey
I—'—I

PK

PROJECT Fi
[ Prama | Prumber | Pocation | Dnum |
218

WORKS_ON
FX FX

BE.
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.

DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn
WORKS_ON.Ssn < EMPLOYEE.Ssn
EMPLOYEE.Dnumber < DEPARTMENT.Dnumber
PROJECT.Dnum < DEPARTMENT.Dnumber
WORKS_ON.Pnumber < PROJECT.Pnumber
DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

.

= All the preceding inclusion dependencies represent referential integrity constraints.

= We can also use inclusion dependencies to represent class/subclass.For example, in the
relational schema of Figure 9.6, we can specify the following inclusion dependencies:
+ EMPLOYEE.Ssn < PERSON.Ssn
+ ALUMNUS.Ssn < PERSON.Ssn
* STUDENT.Ssn < PERSON.Ssn

PERSON
[ Ban | Name | Birlh date| Sex | Address |

4

EMPLOYEE

[ 5= | Salary | Employes type | Posifion | Rank | Percent time | Ra_fag [ Ta_fieg | Project | Courae | ]

ALUMNUS  ALUMNUS DEGREES
San San | Yewr | Deges | Moo

STUDENT
—| S=n | Major dept | Grad fag | Undergrad fag | Degree program| Cizss | Student sssist flag |

Figure 2.6
Wiapping the EER speciaizaticn fatice i Figure 88 osang maltiple options

4.15.2 Template Dependencies
] Template dependencies provide a technique for representing constraints in relations that

typically have no easy and formal definitions.
= There are two types of templates:
- tuple-generating templates and
- constraint generating templates.
= A template consists of a number of hypothesis tuples that are meant to show an example
of the tuples that may appear in one or more relations.
= The other part of the template is the template conclusion.
=  For tuple-generating templates, the conclusion is a set of tuples that must also exist in the

relations if the hypothesis tuples are there.
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For constraint-generating templates, the template conclusion is a condition that must hold on
the hypothesis tuples.

Using constraint generating templates, we are able to define semantic constraints—those
that are beyond the scope of the relational model in terms of its data definition language and
notation.

Figure 16.5 shows how we may define functional, multivalued, and inclusion
dependencies by templates.

Figure 16.5

Templates for some common type of dependencies.
(a) Template for functional dependency X —Y.

(b) Template for the multivalued dependency X —2 Y.
(c) Template for the inclusion dependency R.X < 5.Y,

(a) R={a, B C D}
Hypothesis a; | by | oy | gy X={A, B}
Conclusion | cy=cyandd, =d, |
(b) R=fA, B C D
Hypothesis a; | by cy | d X={A, B}
ay b, Co dz Y= {C}
Conclusion aj | by | ez | d
ay b Cy d}

(c) R=
Hypothesis |

o, B, C, D} s={E, F @] X={C,D}
a, | b, | c1| d, | Y ={E F}

Conclusion | Cy | d, | g |

Figure 16.6 shows how we may specify the constraint that an employee’s salary cannot
be higher than the salary of his or her direct supervisor on the relation schema
EMPLOYEE
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Figure 16.6
Templates for the constraint that an employee's salary must
be less than the supervisor's salany.

EMPLOYEE = {(Name, Ssn, ..., Salary, Supervisor_ssn}

a b c d
Hypothesis 2 d f g
Conclusion c<f

4.15.3 Functional Dependencies Based on Arithmetic Functions and Procedures

= Sometimes some attributes in a relation may be related via some arithmetic function or a
more complicated functional relationship.

= Aslong as a unique value of Y is associated with every X, we can still consider that the
FD X—Y exists.

= For example, in the relation
ORDERELINE emit, uantity, Unitapri rice,
Discaunted pric | | Se C Q ! I I
= each tuple represents an item from an order with a pa%cular quantity, and the price per

unit for that item.
= |n this relation, (Quantity, Unit_price )—Extended_price by the formula
Extended_price = Unit_price * Quantity.
= Hence, there is a unique value for Extended_price for every pair (Quantity, Unit_price ),
and thus it conforms to the definition of functional dependency.
= Moreover, there may be a procedure that takes into account the quantity discounts, the
type of item, and so on and computes a discounted price for the total quantity ordered
for that item.
= Therefore, we can say
(Item#, Quantity, Unit_price ) — Discounted_price, or
(Item#, Quantity, Extended_price) — Discounted_price.

4.15.4 Domain-Key Normal Form
* The idea behind domain-key normal form (DKNF) is to specify the ultimate normal
form that takes into account all possible types of dependencies and constraints.
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= A relation schema is said to be in DKNF if all constraints and dependencies that should
hold on the valid relation states can be enforced simply by enforcing the domain
constraints and key constraints on the relation

» For a relation in DKNF, it becomes very straightforward to enforce all database
constraints by simply checking that each attribute value in a tuple is of the appropriate
domain and that every key constraint is enforced.

= For example, consider a relation CAR(Make, Vin#) (where Vin# is the vehicle
identification number) and another relation MANUFACTURE(Vin#,Country) (where
Country is the country of manufacture).

= A general constraint may be of the following form: If the Make is either ‘Toyota’ or
‘Lexus,’ then the first character of the Vin# is a ‘J’ if the country of manufacture is
‘Japan’; if the Make is ‘Honda’ or ‘Acura,’ the second character of the Vin# is a ‘J’ if the
country of manufacture is ‘Japan.’

» There is no simplified way to represent such constraints short of writing a procedure
(or general assertions) to test them.
The procedure COMPUTE_TOTAL_PRICE above is an example of such procedures

VTUPUTSE.com
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Problem 1

Consider the following relation for published books:
BOOK(BookTitle, AuthorName, BookType, ListPrice, AuthorAffiliation,
Publisher)

Suppose the following dependencies exist:

* BookTitle — BookType, Publisher
* BookType — ListPrice
* AuthorName — AuthorAffiliation
What normal form is the relation in? explain your answer. Apply normalization until you
cannot decompose the relations further. State the reasons behind each decomposition.
Solution:
The relation is in 1NF and not in 2NF as no attributes are fully functionally dependent
on the key (BookTitle and AuthorName). It is also not in 3NF.

BookTitle AuthorMName BookType ListPrice AuthorAffiliation Publisher e T
o2 3 | g Y he
FD3 lati
FD1 n is

not in 2NF because the partial Dependencies exist
{BookTitle,AuthorName} — {Publisher, BookType}
{BookdTitle,AuthorName} — AuthorAffiliation
*Thus, these attributes are not fully functionally dependent on the primary key The 2NF
decomposition will eliminate the partial dependencies.
*2NF decomposition:
* Book1(BookTitle, AuthorName)
» Book2(BookTitle, BookType, ListPrice, Publisher)
» Book3(AuthorName, AuthorAffiliation)

Bookl Book2

BookTitle AuthorName BookTitle BookType ListPrice | Publisher

D S

Book3

AuthorName | AuthorAffiliation

']'.
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= The relations are not in 3NF because:
* BookTitle — BookType — ListPrice
BookType is neither a key itself nor a subset of a key and ListPrice is not a prime
attribute
» The 3NF decomposition will eliminate the transitive dependency of Listprice. 3NF
decomposition:
» Book1(BookTitle, AuthorName)
» Book2A(BookTitle, BookType, Publisher)
» Book2B(BookType, ListPrice)
* Book3(AuthorName, AuthorAffiliation)

Bookl Book2A
BookTitle BookType Publisher
BookTitle AuthorName ; "
Book2B
% Book3
BookType ListPrice <
| S Authorbame | AuthorAffiliation
Problem 2

Consider the following relation:

CAR_SALE(Car#, DateSold, Salesman#, Commission%, DiscountAmount)
Assume that a car may be sold by multiple salesmen, and hence
{Car#, Salesman#} is the primary key.

Additional dependencies are:

Car## — DateSold

Car# — DiscountAmount

DateSold — DiscountAmount

Salesman# — Commission%

Based on the given primary key, is the relation in 1NF, 2NF, 3NF?
Why or why not?

How would you successively normalize it completely?
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Solution:
» The relation is in 1NF because all attribute values are single atomic values.
= The relation is not in 2NF because:
+ Car# — DateSold
+ Car# — DiscountAmount
+ Salesman# — Commission%
Thus, these attributes are not fully functionally dependent on the primary key.

= 2NF decomposition:
* CAR_SALE1(Car#, DateSold, DiscountAmount)
+ CAR_SALE2(Car#, Salesman#)
* CAR_SALE3(Salesman#, Commission%)
= The relations are not in 3NF because:
* Car## — DateSold — DiscountAmount
DateSold is neither a key itself nor a subset of a key and DiscountAmount is not a prime

ribut

= 3NF/decomposition:
AR_SALE ,DateSo ®
*CAR_SALES1 ateSold, DiscountAmoun

*CAR_SALE2(Car#, Salesman#)
*CAR_SALE3(Salesman#, Commission%)

4.16 Assignment Questions
1. Consider the following relation for published books:

BOOK(BookTitle, AuthorName, BookType, ListPrice, AuthorAffiliation, Publisher)
Suppose the following dependencies exist:

BookTitle — BookType, Publisher

BookType — ListPrice

AuthorName — AuthorAffiliation

What normal form is the relation in? Explain your answer.

2. Consider the following relation:

CAR_SALE(Car#, DateSold, Salesman#, Commission%, DiscountAmount)
Assume that a car may be sold by multiple salesmen, and hence

{Car#, Salesman#} is the primary key.

Additional dependencies are:

Car## — DateSold
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Car# — DiscountAmount

DateSold — DiscountAmount

Salesman# — Commission%

Based on the given primary key, is the relation in 1TNF, 2NF, 3NF?
Why or why not?

How would you successively normalize it completely?

Let R ={Ssn, Ename, Pnumber, Pname, Plocation, Hours} and 0 = {RI, R2, R3} where
Rl = EMP = {Ssn, Ename}

R2 = PRO] = {Pnumber, Pname, Plocation}

R3 = WORKS-ON = {Ssn, Pnumber, Hours}

The following functional dependencies hold on relation R.

F = {Ssn ->Ename; Pnumber -> {Pname, Plocation};

{Ssn, Pnumber} -> Hours}

Prove that the above decomposition of relation R has the loss less join property.
Consider R={A B C D E F} FDS {AB-> B->E A->DF}

tion is los

W SS.
HSe-CoMm-
er G for [ ]

eck w er deco

hatlis a [Set offfun

finding a mi co

4.17 Expected Outcome

R R R
R XA X X g

®. *.
LA X4

To design a database which will have minimum redundancy

To apply normalization to the designed database.

To decompose the tables and normalize the design upto 4NF and 5 NFthe tables upto
4ANF and 5NF

To apply lossless and lossy join operations

To apply inference rules and deduce other rules from the given set.

4.18 Further Reading
1. https://www.smartdraw.com/entity-relationship-diagram/

2. https://en.wikipedia.org/wiki/Database normalization

3. www.databasteknik.se/webbkursen/relalg-lecture

4. https://technet.microsoft.com/en-us/library/bb264565(v=sql.90).aspx

5. pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/.../Ch16_Overview Xacts.pdf



