
MODULE-3

NoSQL Big Data Management,
Mongo DB and Cassandra

NoSQL Big Data Management

INTRODUCTION
• NoSQL data stores can store semi-structured

or unstructured data.

• NoSQL stands for No-SQL or Not Only SQL.

• NoSQL databases can coexists with SQL
databases.

• NoSQL data applications do not integrate with
SQL databases applications.

• NoSQL databases store Big Data.

• Examples of NoSQL data stores are key-value
pairs, hash key, JSON files, BigTable, HBase,
MongoDB,Cassandra, and CouchDB.

• Big Data uses distributed systems.

• A distributed system consists of multiple data
nodes at clusters of machines and distributed
software components.

• The tasks execute in parallel with data at
nodes in clusters.

• The computing nodes communicate with the
applications through a network.

Following are the features of
distributed-computing architecture

1. Increased reliability and fault tolerance:

The important advantage of distributed
computing system is reliability. If a segment of
machines in a cluster fails then the rest of the
machines continue work. When the datasets
replicate at number of data nodes, the fault
tolerance increases further.

2. Flexibility : makes it very easy to install,
implement and debug new services in a
distributed environment.

3. Sharding : is storing the different parts of
data onto different sets of data nodes,
clusters or servers. For example, university
students huge database, on sharding divides
in databases, called shards. Each shard may
correspond to a database for an individual
course and year. Each shard stores at
different nodes or servers.

4. Scalability: Consider sharding of a large
database into a number of shards, distributed
for computing in different systems. When the
database expands further, then adding more
machines and increasing the number of shards
provides horizontal scalability. Increased
computing power and running number of
algorithms on the same machines provides
vertical scalability .

5. Speed: Computing power increases in a
distributed computing system as shards run
parallelly on individual data nodes in clusters
independently (no data sharing between
shards).

6. Resources sharing: Shared resources of
memory, machines and network architecture
reduce the cost.

7. Open system : makes the service accessible
to all nodes.

8. Performance: The collection of processors in
the system provides higher performance than
a centralized computer, due to lesser cost of
communication among machines (Cost
means time taken up in communication).

NOSQL DATA STORE
• SQL is a programming language based on

relational algebra. It is a declarative language
and it defines the data schema .

• SQL creates databases and RDBMSs. RDBMS
uses tabular data store with relational algebra,
precisely defined operators with relations as
the operands. Relations are a set of tuples.
Tuples are named attributes. A tuple identifies
uniquely by keys called candidate keys.

• Transactions on SQL databases exhibit ACID
properties. ACID stands for atomicity,
consistency, isolation and durability.

ACID Properties in SQL Transactions
Following are the meanings of these characteristics

during the transactions.

• Atomicity of transaction means all operations in
the transaction must complete, and if
interrupted, then must be undone (rolled back).

• For example, if a customer withdraws an amount
then the bank in first operation enters the
withdrawn amount in the table and in the next
operation modifies the balance with new amount
available. Atomicity means both should be
completed, else undone if interrupted in
between.

• Consistency in transactions means that a
transaction must maintain the integrity
constraint, and follow the consistency
principle. For example, the difference of sum
of deposited amounts and withdrawn
amounts in a bank account must equal the last
balance. All three data need to be consistent.

• Isolation of transactions means two
transactions of the database must be isolated
from each other and done separately.

• Durability means a transaction must persist
once completed.

Triggers, Views and Schedules in SQL
Databases

• Trigger is a special stored procedure. Trigger
executes when a specific action(s) occurs
within a database, such as change in table
data or actions such as UPDATE, INSERT and
DELETE. For example, a Trigger store
procedure inserts new columns in the
columnar family data store.

• View refers to a logical construct, used in
query statements. A View saves a division of
complex query instructions and that reduces
the query complexity.

• Viewing of a division is similar to a view of a
table. View does not save like data at the
table. Query statement when uses references
to a view, the statement executes the View.

• Schedule refers to a chronological sequence of
instructions which execute concurrently.
When a transaction is in the schedule then all
instructions of the transaction are included in
the schedule.

• Scheduled order of instructions is maintained
during the transaction. Scheduling enables
execution of multiple transactions in allotted
time intervals.

Join in SQL Databases

• SQL databases facilitate combining rows from two or
more tables, based on the related columns in them.

• Combining action uses Join function during a database
transaction. Join refers to a clause which combines.
Combining the products (AND operations) follows next
the selection process.

• A Join operation does pairing of two tuples obtained
from different relational expressions. Joins, if and only
if a given Join condition satisfies. Number of Join
operations specify using relational algebraic
expressions.

• SQL provides JOIN clause, which retrieves and joins the
related data stored across multiple tables with a single
command, Join.

For example, consider an SQL statement:

• SELECT column_name(s) FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name
;

• Select KitKatSales From TransactionsTbl INNER
JOIN ACVMSalesTbl ON
TransactionsTb1.KitKatSales=TransactionsTb1.Ki
tKatSales;

• The statement selects those records in a column
named KitKatSales which match the values in two
tables: one TransactionsTbl and other
ACVMSalesTbl.

• Sharding a database means breaking up into
many, much smaller databases that share
nothing, and can distribute across multiple
servers. Handling of the Joins and managing data
in the other related tables are cumbersome
processes, when using the sharding.

• The problem continues when data has no defined
number of fields and formats. For example, the
data associated with the choice of chocolate
flavours of the users of ACVM in Example 1. Some
users provide a single choice, while some users
provide two choices, and a few others want to fill
three best flavours of their choice.

USER ID CHOICE

1 Dairy Milk

2 Dairy Milk, KitKat

3 KitKat , Snicker ,Munch

• Defining a field becomes tough when a field in
the database offers choice between two or
many. This makes RDBMS unsuitable for data
management in Big Data environments as
well as data in their real forms.

• SQL compliant format means that database
tables constructed using SQL and they enable
processing of the queries written using SQL.
'NoSQL' term conveys two different meanings:
(i) does not follow SQL compliant formats,
(ii)"Not only SQL" use SQL compliant formats
with variety of other querying and access
methods.

NoSQL

• A new category of data stores is NoSQL
(means Not Only SQL) data stores.

• NoSQL is an altogether new approach of
thinking about databases, such as schema
flexibility, simple relationships, dynamic
schemas, auto sharding, replication,
integrated caching, horizontal scalability of
shards, distributable tuples, semi-structures
data and flexibility in approach.

Big Data NoSQL or Not-Only SQL

• NoSQL DB does not require specialized RDBMS
like storage and hardware for processing.

• Storage can be a cloud.

• NoSQL records are in non-relational data
store systems. They use flexible data models.

• The records use multiple schemas.

• NoSQL data stores are considered as semi-
structured data

NoSQL data store characteristics are
as follows:

1.NoSQL is a class of non-relational data storage
system with flexible data model. Examples of
NoSQL data-architecture patterns of datasets are
key-value pairs, name/value pairs, Column family.

• Big-data store, Tabular data store, Cassandra
(used in Facebook/ Apache), HBase, hash table
[Dynamo (Amazon S3)], unordered keys using
JSON (CouchDB), JSON (PNUTS), JSON
(MongoDB), Graph Store, Object Store, ordered
keys and semi-structured data storage systems.

2. NoSQL not necessarily has a fixed schema,
such as table; do not use the concept of Joins
(in distributed data storage systems); Data
written at one node can be replicated to
multiple nodes. Data store is thus fault-
tolerant. The store can be partitioned into
unshared shards.

Features in NoSQL Transactions
(i) Relax one or more of the ACID properties.

(ii) Characterize by two out of three properties
(consistency, availability and partitions) of CAP
theorem, two are at least present for the
application/ service/ process.

(iii) Can be characterized by BASE properties

• Big Data NoSQL Solutions: NoSQL DBs are
needed for Big Data solutions. They play an
important role in handling Big Data
challenges.

• Table 3.1 gives the examples of widely used
NoSQL data stores.

NoSQL Data
store

Description

Apache's
HBase

HDFS compatible, open-source and non-relational data store written in
Java; A column-family based NoSQL data store, data store providing
BigTable-like capabilities ; scalability, strong consistency, versioning,
configuring and maintaining data store characteristics

Apache's
MongoDB

HDFS compatible; master-slave distribution ; document-oriented data
store with JSON-like documents and dynamic schemas; open-source,
NoSQL, scalable and non-relational database; used by Websites
Craigslist, eBay, Foursquare at the backend

Apache's
Cassandra

HDFS compatible DBs; decentralized distribution peer-to-peer model ;
open source; NoSQL; scalable, non-relational, column- family based,
fault-tolerant and tunable consistency used by Facebook and
Instagram

NoSQL Data
store

Description

Apache's
CouchDB

A project of Apache which is also widely used database for the web.
CouchDB consists of Document Store. It uses the JSON data exchange
format to store its documents, JavaScript for indexing, combining and
transforming documents, and HTTP APis .

Oracle
NoSQL

Step towards NoSQL data store; distributed key-value data store;
provides transactional semantics for data manipulation, horizontal
scalability, simple administration and monitoring

Riak
An open-source key-value store; high availability (using replication
concept), fault tolerance, operational simplicity, scalability and written
in Erlang

CAP Theorem
• Among C, A and P, two are at least present for the

application/service/process.

• C->Consistency ,A-> Availability ,P-> Partition

• Consistency means all copies have the same
value like in traditional DBs.

• Availability means at least one copy is available
in case a partition becomes inactive or fails. For
example, in web applications, the other copy in
the other partition is available.

• Partition means parts which are active but may
not cooperate (share) as in distributed DBs.

• Consistency in distributed databases means
that all nodes observe the same data at the
same time.

• Therefore, the operations in one partition of
the database should reflect in other related
partitions in case of distributed database.

• Operations, which change the sales data from
a specific showroom in a table should also
reflect in changes in related tables which are
using that sales data.

• Availability means that during the
transactions, the field values must be available
in other partitions of the database so that
each request receives a response on success
as well as failure. (Failure causes the response
to request from the replicate of data).

• Distributed databases require transparency
between one another. Network failure may
lead to data unavailability in a certain
partition in case of no replication.

• Replication ensures availability.

• Partition means division of a large database
into different databases without affecting the
operations on them by adopting specified
procedures.

• Partition tolerance: Refers to continuation of
operations as a whole even in case of message
loss, node failure or node not reachable.

• Brewer's CAP (Consistency, Availability and
Partition Tolerance) theorem demonstrates that
any distributed system cannot guarantee C, A and
P together.

1. Consistency- All nodes observe the same data at
the same time.

2. Availability- Each request receives a response on
success/failure.

3.Partition Tolerance-The system continues to
operate as a whole even in case of message loss,
node failure or node not reachable.

• Partition tolerance cannot be overlooked for
achieving reliability in a distributed database
system. Thus, in case of any network failure, a
choice can be:

• Database must answer, and that answer
would be old or wrong data (AP).

• Database should not answer, unless it
receives the latest copy of the data (CP).

• The CAP theorem implies that for a network
partition system, the choice of consistency
and availability are mutually exclusive.

• CA means consistency and availability,

• AP means availability and partition tolerance
and

• CP means consistency and partition tolerance.

• Figure 3.1 shows the CAP theorem usage in
Big Data Solutions.

Schema-less Models

• Schema of a database system refers to
designing of a structure for datasets and data
structures for storing into the database.
NoSQL data not necessarily have a fixed table
schema.

• The systems do not use the concept of Join
(between distributed datasets).

• A cluster-based highly distributed node
manages a single large data store with a
NoSQL DB.

• NoSQL data model offers relaxation in one or
more of the ACID properties (Atomicity,
consistence, isolation and durability) of the
database.

• Distribution follows CAP theorem. CAP
theorem states that out of the three
properties, two must at least be present for
the application/service/process.

• Figure 3.2 shows characteristics of Schema-
less model for data stores. ER stands for
entity-relation modelling.

• Relations in a database build the connections
between various tables of data.

• For example, a table of subjects offered in an
academic programme can be connected to a
table of programmes offered in the academic
institution.

• NoSQL data stores use non-mathematical
relations but store this information as an
aggregate called metadata.

• Metadata refers to data describing and
specifying an object or objects.

• Metadata is a record with all the information
about a particular dataset and the inter-
linkages.

• Metadata helps in selecting an object,
specifications of the data and, usages that
design where and when.

• Metadata specifies access permissions,
attributes of the objects and enables additions
of an attribute layer to the objects. Files,
tables, documents and images are also the
objects.

Increasing Flexibility for Data
Manipulation

• Consider database 'Contacts'. They follow a fixed
schema. Now consider students' admission
database. That also follow a fixed schema. Later,
additional data is added as the course progresses.

• NoSQL data store characteristics are schema-less.
The additional data may not be structured and
follow fixed schema.

• The data store consists of additional data, such as
documents, blogs, Facebook pages and tweets.

• NoSQL data store possess characteristic of
increasing flexibility for data manipulation.
The new attributes to database can be
increasingly added. Late binding of them is
also permitted.

• BASE is a flexible model for NoSQL data stores.
Provisions of BASE increase flexibility.

• BASE Properties BA stands for basic
availability, S stands for soft state and E
stands for eventual consistency.

• Basic availability ensures by distribution of
shards (many partitions of huge data store)
across many data nodes with a high degree of
replication. Then, a segment failure does not
necessarily mean a complete data store
unavailability.

• Soft state ensures processing even in the
presence of inconsistencies but achieving
consistency eventually. A program suitably takes
into account the inconsistency found during
processing. NoSQL database design does not
consider the need of consistency all along the
processing time.

• Eventual consistency means consistency
requirement in NoSQL databases meeting at
some point of time in future. Data converges
eventually to a consistent state with no time-
frame specification for achieving that.

• ACID rules require consistency all along the
processing on completion of each transaction.
BASE does not have that requirement and has
the flexibility.

• Schema is not a necessity in NoSQL DB,
implying information storage flexibility. Data
can store and retrieve without having
knowledge of how a database stores and
functions internally.

• Following is an example to understand the
increasing flexibility for data manipulation.

• Use examples of database for the students in
various university courses to demonstrate the
concept of increasing flexibility in NoSQL DBs.

• Figure 3.3 shows increasing flexibility concept
using additional data models

NOSQL DATA ARCHITECTURE
PATTERNS

• NoSQL data stores broadly categorize into
architectural patterns described in the
following subsections:

1. Key-Value Store

2. Document Store

3. Tabular Data

4. Object Data Store

5. Graph Database

Key-Value Store
• The simplest way to implement a schema-less

data store is to use key-value pairs.

• The data store characteristics are high
performance, scalability and flexibility.

• Data retrieval is fast in key-value pairs data store.

• A simple string called, key maps to a large data
string or BLOB (Basic Large Object).

• Key-value store accesses use a primary key for
accessing the values. Therefore, the store can be
easily scaled up for very large data.

• The concept is similar to a hash table where a
unique key points to a particular item(s) of data.

• Figure 3.4 shows key-value pairs architectural
pattern and example of students' database as
key-value pairs.

Advantages of a key-value store are as
follows:

1. Data Store can store any data type in a value
field. The key-value system stores the
information as a BLOB of data (such as text,
hypertext, images, video and audio) and
return the same BLOB when the data is
retrieved. Storage is like an English
dictionary. Query for a word retrieves the
meanings, usages, different forms as a single
item in the dictionary.

2. A query just requests the values and returns
the values as a single item. Values can be of
any data type.

3. Key-value store is eventually consistent.

4. Key-value data store may be hierarchical or
may be ordered key-value store.

5. Returned values on queries can be used to
convert into lists, table-columns, data-frame
fields and columns.

6. Have (i) scalability, (ii) reliability, (iii)
portability and (iv) low operational cost.

7. The key can be synthetic or auto-generated.
The key is flexible and can be represented in
many formats: (i) Artificially generated
strings created from a hash of a value, (ii)
Logical path names to images or files, (iii)
REST web-service calls (request response
cycles), and (iv) SQL queries.

• The key-value store provides client to read and
write values using a key as follows:

(i) Get (key), returns the value associated with
the key.

(ii) Put (key, value), associates the value with
the key and updates a value if this key is
already present.

(iii) Multi-get (key1, key2, .. ' keyN), returns the
list of values associated with the list of keys.

(iv) Delete (key), removes a key and its value
from the data store.

Limitations of key-value store architectural
pattern are:

(i) No indexes are maintained on values, thus a
subset of values is not searchable.

(ii) Key-value store does not provide traditional
database capabilities, such as atomicity of
transactions, or consistency when multiple
transactions are executed simultaneously. The
application needs to implement such
capabilities.

(iii) Maintaining unique values as keys may
become more difficult when the volume of
data increases. One cannot retrieve a single
result when a key-value pair is not uniquely
identified.

(iv) Queries cannot be performed on individual
values. No clause like 'where' in a relational
database usable that filters a result set.

• Table gives a comparison between Traditional
Relational data model with the key-value store
model.

Traditional relational model Key-value store model

Result set based on row values Queries return a single item

Values of rows for large datasets are
indexed

No indexes on values

Same data type values in columns Any data type values

Document Store

• Characteristics of Document Data Store are
high performance and flexibility. Scalability
varies, depends on stored contents.

• Complexity is low compared to tabular, object
and graph data stores.

Following are the features in Document
Store:

1. Document stores unstructured data.

2. Storage has similarity with object store.

3. Data stores in nested hierarchies. For
example, in JSON formats data model.
Hierarchical information stores in a single
unit called document tree.

4. Querying is easy. For example, using section
number, sub-section number and figure
caption and table headings to retrieve
document partitions.

5. No object relational mapping enables easy
search by following paths from the root of
document tree.

6. Transactions on the document store exhibit
ACID properties.

Typical uses of a document store are:

(i) office documents,

(ii) inventory store,

(iii) forms data,

(iv) document exchange and

(v) document search.

The demerits in Document Store are
incompatibility with SQL and complexity for
implementation.

Examples of Document Data Stores are CouchDB
and MongoDB.

• Document JSON Format-MongoDB Database MongoDB Document
database provides a rich query language and constructs, such as database
indexes allowing easier handling of Big Data.

Example of Document in Document Store:
{

"id” : “1001"
“Student Name":
{

“First“ : “Ashish",
“Middle” : "Kumar”,
“Last “: “Rai"

}
"Category“ : "Student",
"Class” : B.Tech.”,
“semester “: “VII”,
“Branch” : “computer engineering”,
"Mobile“ : "12345"

}

• The document store allows querying the data
based on the contents as well.

• For example, it is possible to search the
document where student's first name is
"Ashish“.

• Document store can also provide the search
value's exact location.

• The search is by using the document path.

• A type of key accesses the leaf values in the
tree structure. Since the document stores are
schema-less, adding fields to documents (XML
or]SON) becomes a simple task.

• Document Architecture Pattern and
Discovering Hierarchical Structure :Following
is example of an XML document in which a
hierarchical structure discovers later.

• Figure 3.5 shows an XML document
architecture pattern in a document fragment
and document tree structure.

• The document store follows a tree-like
structure (similar to directory structure in file
system).

• Beneath the root element there are multiple
branches.

• Each branch has a related path expression that
provides a way to navigate from the root to
any given branch, sub-branch or value.

• XQuery and XPath are query languages for
finding and extracting elements and attributes
from XML documents.

• The query commands use sub-trees and
attributes of documents.

• The querying is similar as in SQL for databases.
XPath treats XML document as a tree of
nodes.

• XPath queries are expressed in the form of
XPath expressions.

• Give examples of XPath expressions.

• Let outermost element of the XML document is a.

SOLUTION

• An XPath expression /a/b/ c selects c elements
that are children of b elements that are children
of element a that forms the outermost element
of the XML document.

• An XPath expression /a/b[c=5] selects elements b
and c that are children of a and value of c
element is 5.

• An XPath expression /a[b/c]/d selects elements c
and d where c is child of b and b and d are
children of a.

• XML and JSON both are designed to form a
simple and standard way of describing
different kinds of hierarchical data structures.
They are popularly used for storing and
exchanging data.

• The following example explains the concept of
Document Store in JSON and XML for
hierarchical records.

• Document Collection : A collection can be used in
many ways for managing a large document store.
Three uses of a document collection are:

1.Group the documents together, similar to a
directory structure in a file-system. (A directory
consists of grouping of file folders.)

2.Enables navigating through document hierarchies,
logically grouping similar documents and storing
business rules such as permissions, indexes and
triggers (special procedure on some actions in a
database).

3. A collection can contain other collections as well.

TabularData
• Tabular data stores use rows and columns.
• Row-head field may be used as a key which

access and retrieves multiple values from the
successive columns in that row.

• The OLTP is fast on in-memory row-format data.
• Oracle DBs provide both options: columnar and

row format storages.
• Generally, relational DB store is in-memory row-

based data, in which a key in the first column of
the row is at a memory address, and values in
successive columns at successive memory
addresses.

• That makes OLTP easier.

• All fields of a row are accessed at a time
together during OLTP. Different rows are
stored in different addresses in the memory or
disk.

• In-memory row-based DB stores a row as a
consecutive memory or disk entry.

• This strategy makes data searching and
accessing faster during transactions
processing.

• In-memory column-based data has the keys (row-head
keys) in the first column of each row at successive
memory addresses.

• The next column of each row after the key has the
values at successive memory addresses.

• The values in the third column of each row are at the
next memory addresses in succession, and so on up to
N columns.

• The N can be a very large number. The column-based
data makes the OLAP easier.

• All fields of a column access together. All fields of a set
of columns may also be accessed together during OLAP.

• Different rows are stored in different addresses in the
memory or disk, but each row values are now not at
successive addresses.

• In-memory column-based DB store a column
as a consecutive memory or disk entry.

• This strategy makes the analytics processing
fast.

• Following subsections describe NoSQL format
data stores based on tabular formats.

Column Family Store

• Columnar Data Store : A way to implement a
schema is the divisions into columns.

• Storage of each column, successive values is at
the successive memory addresses.

• Analytics processing (AP) In-memory uses
columnar storage in memory.

• A pair of row-head and column-head is a key-
pair.

• The pair accesses a field in the table.

• All values in successive fields in a column
consisting of multiple rows save at
consecutive memory addresses.

• This enables fast accesses during in-memory
analytics, which includes CPU accesses and
analyses using memory addresses in which
values are cached from the disk before
processing.

• The OLAP (on-line AP) is also fast on in-
memory column-format data.

• An application uses a combination of row
head and a column head as a key for access to
the value saved at the field.

• Column-Family Data Store : Column-family data-
store has a group of columns as a column family.

• A combination of row-head, column-family head
and table-column head can also be a key to
access a field in a column of the table during
querying.

• Combination of row head, column families head,
column-family head and column head for values
in column fields can also be a key to access fields
of a column.

• A column-family head is also called a super-
column head.

• Sparse Column Fields : A row may associate a
large number of columns but contains values
in few column fields. Similarly, many column
fields may not have data. Columns are
logically grouped into column families.
Column-family data stores are then similar to
sparse matrix data.

• Grouping of Column Families Two or more
column-families in data store form a super
group, called super column. Table 3.3 consists
of one such group (super column), 'Nestle
Chocolate Flavours Group'.

• Grouping into Rows : When number of rows
are very large then horizontal partitioning of
the table is a necessity. Each partition forms
one row-group. For example, a group of 1
million rows per partition.

Characteristics of Columnar Family Data Store

1.Scalability: The database uses row IDs and
column names to locate a column and values
at the column fields. The interface for the
fields is simple. The back-end system can
distribute queries over a large number of
processing nodes without performing any Join
operations. The retrieval of data from the
distributed node can be least complicated by
an intelligent plan of row IDs and columns,
thereby increasing performance.

2.Partitionability: For example, large data of
ACVMs can be partitioned into datasets of size,
say 1 MB in the number of row-groups. Values in
columns of each row-group, process in-memory
at a partition. Values in columns of each row-
group independently parallelly process in-
memory at the partitioned nodes.

3. Availability: The cost of replication is lower since
the system scales on distributed nodes efficiently.
The lack of Join operations enables storing a part
of a column- family matrix on remote computers.
Thus, the data is always available in case of failure
of any node .

4.Tree-like columnar structure :consisting of
column-family groups, column families and
columns. The columns group into families. The
column families group into column groups (super
columns). A key for the column fields consists of
three secondary keys: column-families group ID,
column- family ID and column-head name.

5. Adding new data at ease: Permits new column
Insert operations. Trigger operation creates new
columns on an Insert. The column-field values
can add after the last address in memory if the
column structure is known in advance. New row-
head field, row-group ID field, column-family
group, column family and column names can be
created at any time to add new data.

6.Querying all the field values in a column in a
family, all columns in the family or a group of
column-families, is fast in in-memory column-
family data store.

7.Replication of columns: HDFS-compatible
column-family data stores replicate each data
store with default replication factor= 3.

8. No optimization for Join: Column-family data
stores are similar to sparse matrix data. The
data do not optimize for Join operations.

BigTable Data Store
• Examples of widely used column-family data

store are Google's BigTable, HBase and
Cassandra. Keys for row key, column key,
timestamp and attribute uniquely identify the
values in the fields .

• Following are features of a BigTable:

1. Massively scalable NoSQL. BigTable scales up to
100s of petabytes.

2. Integrates easily with Hadoop and Hadoop
compatible systems.

3. Compatibility with MapReduce, HBase APis which
are open-source Big Data platforms.

4. Key for a field uses not only row_ID and
Column_ID (for example, ACVM_ID and KitKat in
Example 3.6) but also timestamp and attributes.
Values are ordered bytes. Therefore, multiple
versions of values may be present in the BigTable.

5. Handles million of operations per second.

6. Handle large workloads with low latency and high
throughput

7. Consistent low latency and high throughput

8. APIs include security and permissions

9. BigTable, being Google's cloud service, has global
availability and its service is seamless.

RC File Format
• Hive uses Record Columnar (RC) file-format

records for querying.

• RC is the best choice for intermediate tables
for fast column-family store in HDFS with Hive.
Serializability of RC table column data is the
advantage.

• RC file is DeSerializable into column data. A
table such as that shown in Example 3.6 can
be partitioned into row groups. Values at each
column of a row group store as the RC record.

• The RC file records store data of a column in
the row group (Serializability means query or
transaction executable by series of instructions
such that execution ensures correct results).

• The following example explains the use of row
groups in the RC file format for column of a
row group:

• Consider Example 3.6. Practically, row groups
have millions of rows and in-memory between
10 MB and 1 GB. Assume two row groups of
just two rows each.

• Consider the following values given in Table
3.3.

ORC File Format
• An ORC (Optimized Row Columnar) file consists of

row-group data called stripes. ORC enables
concurrent reads of the same file using separate
RecordReaders.

• Metadata store uses Protocol Buffers for addition
and removal of fields.

• ORC is an intelligent Big Data file format for HDFS
and Hive.

• An ORC file stores a collections of rows as a row-
group. Each row-group data store in columnar
format. This enables parallel processing of
multiple row-groups in an HDFS cluster.

• An ORC file consists of a stripe the size of the file
is by default 256 MB.

• Stripe consists of indexing (mapping) data in 8
columns, row-group columns data (contents) and
stripe footer (metadata).

• An ORC has two sets of columns data instead of
one column data in RC. One column is for each
map or list size and other values which enable a
query to decide skipping or reading of the
mapped columns.

• A mapped column has contents required by the
query. The columnar layout in each ORC file thus,
optimizes for compression and enables skipping
of data in columns. This reduces read and
decompression load.

• Lightweight indexing is an ORC feature. Those
blocks of rows which do not match a query
skip as they do not map on using indices data
at metadata.

• Each index includes the aggregated values of
minimum, maximum, sum and count using
aggregation functions on the content
columns.

• Therefore, contents-column key for accessing
the contents from a column consists of
combination of row-group key, column
mapping key, min, max, count (number) of
column fields of the contents column.

• Table 3.5 gives the keys used to access or skip
a contents column during querying.

• The keys are Stripe_ID, Index-column key, and
contents-column name, min, max and count.

Parquet File Formats.

• Parquet is nested hierarchical columnar-storage
concept. Nesting sequence is the table, row
group, column chunk and chunk page.

• Apache Parquet file is columnar-family store file.
Apache Spark SQL executes user defined
functions (UDFs) which query the Parquet file
columns A programmer writes the codes for an
UDF and creates the processing function for big
long queries.

• A Parquet file uses an HDFS block. The block
stores the file for processing queries on Big Data.
The file compulsorily consists of metadata,
though the file need not consist of data.

• The Parquet file consists of row groups. A row-
group columns data process in- memory after
data cache and buffer at the memory from the
disk. Each row group has a number of
columns.

• A row group has Ncol columns, and row group
consists of Ncol column chunks. This means
each column chunk consists of values saved in
each column of each row group.

• Table 3.6 gives the keys used to access or skip
the contents page. Three keys are: (i) row-
group _ID, (ii) column-chunk key and (iii) page
key.

Object Data Store
An object store refers to a repository which stores

the:

1. Objects (such as files, images, documents,
folders, and business reports)

2. System metadata which provides information
such as filename, creation_date, last_modified,
language_used (such as Java, C, C#, C++,
Smalltalk, Python), access permissions, supported
query languages)

3. Custom metadata which provides information,
such as subject, category, sharing permissions.

• Metadata enables the gathering of metrics of
objects, searches, finds the contents and specifies
the objects in an object data-store tree.

• Metadata finds the relationships among the
objects, maps the object relations and trends.
Object Store metadata interfaces with the Big
Data. API first mines the metadata to enable
mining of the trends and analytics.

• The metadata defines classes and properties of
the objects. Each Object Store may consist of a
database.

• Document content can be stored in either the
object store database storage area or in a file
storage area. A single file domain may contain
multiple Object Stores.

Graph Database
• One way to implement a data store is to use

graph database.

• A characteristic of graph is high flexibility. Any
number of nodes and any number of edges
can be added to expand a graph.

• The complexity is high and the performance is
variable with scalability. Data store as series of
interconnected nodes.

• Graph with data nodes interconnected
provides one of the best database system
when relationships and relationship types
have critical values.

• Data Store focuses on modeling interconnected
structure of data. Data stores based on graph
theory relation G = (E, V), where E is set of edges
e1, e2, … and V is set of vertices, v1, v2, …., vn.

• Nodes represent entities or objects. Edges
encode relationships between nodes. Some
operations become simpler to perform using
graph models.

• Examples of graph model usages are social
networks of connected people. The connections
to related persons become easier to model when
using the graph model.

Characteristics of graph databases are:
1. Use specialized query languages, such as RDF uses
SPARQL
2. Create a database system which models the data in a
completely different way than the key-values, document,
columnar and object data store models.
3. Can have hyper-edges. A hyper-edge is a set of vertices

of a hypergraph. A hypergraph is a generalization of a
graph in which an edge can join any number of vertices
(not only the neighbouring vertices).
4. Consists of a collection of small data size records,
which have complex interactions between graph-nodes
and hypergraph nodes. Nodes represent the entities or
objects. Nodes use Joins. Node identification can use URI
or other tree-based structure. The edge encodes a
relationship between the nodes

Typical uses of graph databases are:

(i) link analysis,

(ii) friend of friend queries,

(iii) Rules and inference,

(iv) rule induction and (v) Pattern matching.

NOSQL TO MANAGE BIG DATA
• NoSQL (i) limits the support for Join queries,

supports sparse matrix like columnar-family,

(ii) characteristics of easy creation and high
processing speed, scalability and storability of
much higher magnitude of data (terabytes and
petabytes).

• NoSQL sacrifices the support of ACID
properties, and instead supports CAP and
BASE properties

• NoSQL data processing scales horizontally as
well vertically

NoSQL Solutions for Big Data

• Big Data solution needs scalable storage of
terabytes and petabytes, dropping of support
for database Joins, and storing data differently
on several distributed servers (data nodes)
together as a cluster.

• A solution, such as CouchDB, DynamoDB,
MongoDB or Cassandra follow CAP theorem
(with compromising the consistency factor) to
make transactions faster and easier to scale. A
solution must also be partitioning tolerant.

Characteristics of Big Data NoSQL
solution are:

1.High and easy scalability: NoSQL data stores are
designed to expand horizontally. Horizontal
scaling means that scaling out by adding more
machines as data nodes (servers) into the pool of
resources (processing, memory, network
connections). The design scales out using multi-
utility cloud services.

2. Support to replication: Multiple copies of data
store across multiple nodes of a cluster. This
ensures high availability, partition, reliability and
fault tolerance.

3.Distributable: Big Data solutions permit sharding and
distributing of shards on multiple clusters which
enhances performance and throughput.

4. Usages of NoSQL servers which are less expensive.
NoSQL data stores require less management efforts. It
supports many features like automatic repair, easier
data distribution and simpler data models that makes
database administrator (DBA) and tuning requirements
less stringent.

5. Usages of open-source tools: NoSQL data stores are
cheap and open source. Database implementation is
easy and typically uses cheap servers to manage the
exploding data and transaction while RDBMS databases
are expensive and use big servers and storage systems.
So, cost per gigabyte data store and processing of that
data can be many times less than the cost of RDBMS.

6. Support to schema-less data model: NoSQL data store
is schema less, so data can be inserted in a NoSQL data
store without any predefined schema. So, the format
or data model can be changed any time, without
disruption of application. Managing the changes is a
difficult problem in SQL.

7.Support to integrated caching: NoSQL data store
support the caching in system memory. That increases
output performance. SQL database needs a separate
infrastructure for that.

8. No inflexibility unlike the SQL/RDBMS , NoSQL DBs
are flexible (not rigid) and have no structured way of
storing and manipulating data. SQL stores in the form
of tables consisting of rows and columns. NoSQL data
stores have flexibility in following ACID rules.

Types of Big Data Problems
• Big Data problems arise due to limitations of NoSQL and

other DBs. The following types of problems are faced using
Big Data solutions.

1. Big Data need the scalable storage and use of distributed
servers together as a cluster. Therefore, the solutions must
drop support for the database Joins

2. NoSQL database is open source and that is its greatest
strength but at the same time its greatest weakness also
because there are not many defined standards for NoSQL
data stores. Hence, no two NoSQL data stores are equal.
For example:

(i) No stored procedures in MongoDB(NoSQL data store)
(ii) GUI mode tools to access the data store are not available

in the market
(iii) Lack of standardization
(iv) NoSQL data stores sacrifice ACID compliancy for flexibility

and processing speed.

SHARED-NOTHING ARCHITECTURE FOR
BIG DATA TASKS

• The columns of two tables relate by a
relationship. A relational algebraic equation
specifies the relation. Keys share between two
or more SQL tables in RDBMS.

• Shared nothing (SN) is a cluster architecture.

• A node does not share data with any other
node.

• Big Data store consists of SN architecture. Big
Data store, therefore, easily partitions into
shards.

• A partition processes the different queries on
data of the different users at each node
independently. Thus, data processes run in
parallel at the nodes.

• A node maintains a copy of running-process data.

• A coordination protocol controls the processing
at all SN nodes.

• An SN architecture optimizes massive parallel
data processing.

• Data of different data stores partition among
the number of nodes (assigning different
computers to deal with different users or
queries).

• Processing may require every node to
maintain its own copy of the application's
data, using a coordination protocol.

• Examples are using the partitioning and
processing are Hadoop, Flink and Spark.

The features of SN architecture are as follows:

1. Independence: Each node with no memory
sharing; thus possesses computational self-
sufficiency

2. Self-Healing: A link failure causes creation of
another link

3. Each node functioning as a shard: Each node
stores a shard (a partition of large DBs)

4. No network contention.

Choosing the Distribution Models

• Big Data requires distribution on multiple data
nodes at clusters.

• Distributed software components give advantage
of parallel processing; thus providing horizontal
scalability.

• Distribution gives (i) ability to handle large-sized
data, and (ii) processing of many read and write
operations simultaneously in an application.

• A resource manager manages, allocates, and
schedules the resources of each processor,
memory and network connection.

• Distribution increases the availability when a
network slows or link fails.

• Four models for distribution of the data store
are given below:

1. Single Server Model

2. Sharding Very Large Databases

3. Master-Slave Distribution Model

4. Peer-to-Peer Distribution Model

Single Server Model
• Simplest distribution option for NoSQL data store

and access is Single Server Distribution (SSD) of
an application.

• A graph database processes the relationships
between nodes at a server. The SSD model suits
well for graph DBs.

• Aggregates of datasets may be key-value,
column-family or BigTable data stores which
require sequential processing. These data stores
also use the SSD model.

• An application executes the data sequentially on
a single server. Figure 3.9(a) shows the SSD
model. Process and datasets distribute to a single
server which runs the application.

Sharding Very Large Databases

• Figure 3.9(b) shows sharding of very large
datasets into four divisions, each running the
application on four i, j, k and l different servers
at the cluster. DBi, DBj, DBk and DBl are four
shards.

• The application programming model in SN
architecture is such that an application
process runs on multiple shards in parallel.

• Sharding provides horizontal scalability.

• A data store may add an auto-sharding
feature.

• The performance improves in the SN.
However, in case of a link failure with the
application, the application can migrate the
shard DB to another node.

Master-Slave Distribution Model
• A node serves as a master or primary node and

the other nodes are slave nodes.
• Master directs the slaves. Slave nodes data

replicate on multiple slave servers in Master Slave
Distribution (MSD) model.

• When a process updates the master, it updates
the slaves also.

• A process uses the slaves for read operations.
Processing performance improves when process
runs large datasets distributed onto the slave
nodes.

• Figure 3.10 shows an example of MongoDB.
MongoDB database server is mongod and the
client is mongo.

• Master-Slave Replication: Processing
performance decreases due to replication in
MSD distribution model. Resilience for read
operations is high, which means if in case data
is not available from a slave node, then it
becomes available from the replicated nodes.
Master uses the distinct write and read paths.

• Complexity: Cluster-based processing has
greater complexity than the other
architectures. Consistency can also be affected
in case of problem of significant time taken for
updating.

Peer-to-Peer Distribution Model
• Peer-to-Peer distribution (PPD) model and

replication show the following characteristics:

(1) All replication nodes accept read request
and send the responses.

(2) All replicas function equally.

(3) Node failures do not cause loss of write
capability, as other replicated node responds.

• Cassandra adopts the PPD model. The data
distributes among all the nodes in a cluster.

• Performance can further be enhanced by
adding the nodes. Since nodes read and write
both, a replicated node also has updated data.
Therefore, the biggest advantage in the model
is consistency. When a write is on different
nodes, then write inconsistency occurs.

• Figure 3.11 shows the PPD model.

Ways of Handling Big Data Problems

• Figure 3.12 shows four ways for handling Big
Data problems.

Following are the ways:

1. Evenly distribute the data on a cluster using the
hash rings: Consistent hashing refers to a
process where the datasets in a collection
distribute using a hashing algorithm which
generates the pointer for a collection.
Using only the hash of Collection_ID, a Big Data
solution client node determines the data
location in the cluster. Hash Ring refers to a map
of hashes with locations.
The client, resource manager or scripts use the
hash ring for data searches and Big Data
solutions. The ring enables the consistent
assignment and usages of the dataset to a
specific processor.

2.Use replication to horizontally distribute the
client read-requests: Replication means creating
backup copies of data in real time. Many Big Data
clusters use replication to make the failure-proof
retrieval of data in a distributed environment.
Using replication enables horizontal scaling out of
the client requests.

3. Moving queries to the data, not the data to the
queries: Most NoSQL data stores use cloud utility
services (Large graph databases may use
enterprise servers). Moving client node queries to
the data is efficient as well as a requirement in
Big Data solutions.

4.Queries distribution to multiple nodes: Client
queries for the DBs analyze at the analyzers,
which evenly distribute the queries to data
nodes/ replica nodes.

High performance query processing requires
usages of multiple nodes. The query execution
takes place separately from the query
evaluation (The evaluation means interpreting
the query and generating a plan for its
execution sequence).

• Mongo Databases –refer TEXT
BOOK pdf uploaded in Microsoft
teams, page from 217 to 226.

• Cassandra Databases- refer TEXT
BOOK pdf uploaded in Microsoft
teams, page from 227 to 237.

