MODULE-4

MapReduce , Hive and Pig

MapReduce Architecture

Input Splits Mapping
Weicome ,1
Weicome to Hadoop 10,1
Hadoop , 1
Input
Class , 1
Class Hadoop is Hadoop , 1
Welcome to Hadoop s, 1
Class Hadoop Is
good Hadoop is bad
good , 1
good Hadoop is Hadoop , 1
5.1
bad , 1
bad

i

Weicome 1

Shuffling Reducer
bad , 1 || bad 1
Class,1 ~»1 Class.1
Final
Output
good, 1 || 900d,1 \’
Hadoop , 1 bad 1
Hadoop , 1 { Hadoop ,3 |—»{ Class 1
Hadoop , 1 good 1
Hadoop 3
is 2
to1
:': ! i5 . 2 —»t Welcome 1
G [o, 1 /

INTRODUCTION

* The data processing layer is the application
support layer, while the application layer is the
data consumption layer in Big-Data
architecture design (Figure 1.2).

* When using HDFS, the Big Data processing
layer includes the APIs of Programs such as
MapReduce and Spark.

* The application support layer includes HBase
which creates column-family data store using
other formats such as key-value pairs or JSON
file

e HBase stores and processes the columnar

data after translating into MapReduce tasks to
run in HDFS.

The support layer also includes Hive which
creates SQL-like tables.

Hive stores and processes table data after

translating it into MapReduce tasks to run in
HDFS.

Hive creates SQL-like tables in Hive shell.

Hive uses HiveQL processes queries, ad hoc
(unstructured) queries, aggregation functions
and summarizing functions, such as functions
to compute maximum, minimum, average of
selected or grouped datasets. HiveQL is a
restricted form of SQL.

* The support layer also includes Pig. Pig is a

data-flow language and an execution
framework .

* Pig enables the usage of relational algebra in
HDFS.

 MapReduce is the processing framework and
YARN is the resource managing framework .

* Figure 4.1 shows Big Data architecture design
layers: (i) data storage, (ii) data processing and
data consumption, (iii) support layer APis for
MapReduce, Hive and Pig running on top of
the HDFS Data Store, and (v) application tasks.

* Pig is a dataflow language, which means that
it defines a data stream and a series of
transformations.

Hive and Pig are also part of the ecosystem
(Figure 4.1).
Big Data storage and application-support APlIs

can use Hive and Pig for processing data at
HDFS.

Processing needs mapping and finding the
source file for data. File is in the distributed
data store. Requirement is to identify the
needed data-block in the cluster.

Applications and AP Is run at the data nodes
stored at the blocks.

The smallest unit of data that can be stored or
retrieved from the disk is a block. HDFS deals
with the data stored in blocks.

The Hadoop application is responsible for
distributing the data blocks across multiple
nodes.

The tasks, therefore, first convert into map and
reduce tasks. This requirement arises because
the mapping of stored values is very important.

The number of map tasks in an application is
handled by the number of blocks of input files.

MAPREDUCE MAP TASKS, REDUCE
TASKS AND MAPREDUCE EXECUTION

* Big data processing employs the MapReduce
programming model.

* A Job means a MapReduce program. Each job
consists of several smaller units, called
MapReduce tasks.

* A software execution framework in MapReduce
programming defines the parallel tasks. The tasks
give the required result. The Hadoop MapReduce
implementation uses Java framework.

The model defines two important tasks, namely
Map and Reduce.

Map takes input data set as pieces of data and
maps them on various nodes for parallel
processing.

The reduce task, which takes the output from the
maps as an input and combines those data pieces
into a smaller set of data. A reduce task always
run after the map task (s).

Many real-world situations are expressible using
this model. Such Model describes the essence of
MapReduce programming where the programs
written are automatically parallelize and execute
on a large cluster.

The input data is in the form of an HDFS file.

The output of the task also gets stored in the
HDFS.

The compute nodes and the storage nodes are
the same at a cluster, that is, the MapReduce
program and the HDFS are running on the
same set of nodes.

This configuration results in effectively
scheduling of the sub-tasks on the nodes
where the data is already present.

This results in high efficiency due to reduction
in network traffic across the cluster.

* A user application specifies locations of the
input/ output data and translates into map and
reduces functions.

* A job does implementations of appropriate
interfaces and/ or abstract-classes. These, and
other job parameters, together comprise the job
configuration.

* The Hadoop job client then submits the job (jar/
executable etc.) and configuration to the
JobTracker, which then assumes the responsibility
of distributing the software/configuration to the
slaves by scheduling tasks, monitoring them, and
provides status and diagnostic information to the
job-client.

* Figure 4.3 shows MapReduce process when a

client submits a job, and the succeeding actions
by the JobTracker and TaskTracker.

JobTracker and Task Tracker

* MapReduce consists of a single master
JobTracker and one slave TaskTracker per
cluster node.

* The master is responsible for scheduling the
component tasks in a job onto the slaves,
monitoring them and re-executing the failed
tasks.

* The slaves execute the tasks as directed by the
master.

* The data for a MapReduce task is initially at

input files. The input files typically reside in
the HDFS.

* The files may be line-based log files, binary
format file, multi-line input records, or
something else entirely different.

* These input files are practically very large,
hundreds of terabytes or even more than it.

* Most importantly, the MapReduce framework
operates entirely on key, value-pairs.
* The framework views the input to the task as

a set of (key, value) pairs and produces a set of
(key, value) pairs as the output of the task.

Map-Tasks

Map task means a task that implements a map(),
which runs user application codes for each key-
value pair (k1, v1).

Key k1 is a set of keys. Key k1 maps to a group of
data values.

Values v1 are a large string which is read from
the input file(s).

The output of map() would be zero (when no
values are found) or intermediate key-value pairs
(k2, v2).

The value v2 is the information for the
transformation operation at the reduce task using
aggregation or other reducing functions.

* Reduce task refers to a task which takes the
output v2 from the map as an input and
combines those data pieces into a smaller set
of data using a combiner. The reduce task is
always performed after the map task.

* The Mapper performs a function on individual
values in a dataset irrespective of the data size
of the input. That means that the Mapper
works on a single data set.

* Figure 4.4 shows logical view of functioning of
map().

Key-Value Pair

* Each phase (Map phase and Reduce phase) of
MapReduce has key-value pairs as input and
output.

e Data should be first converted into key-value
pairs before it is passed to the Mapper, as the
Mapper only understands key-value pairs of
data.

Key-value pairs in Hadoop MapReduce are
generated as follows:

* InputSplit - Defines a logical representation of
data and presents a Split data for processing at
individual map().

* RecordReader - Communicates with the
InputSplit and converts the Split into records
which are in the form of key-value pairs in a
format suitable for reading by the Mapper.

 RecordReader uses TextlnputFormat by default
for converting data into key-value pairs.

e RecordReader communicates with the InputSplit
until the file is read.

* Figure 4.5 shows the steps in MapReduce key-
value pairing.

* Generation of a key-value pair in MapReduce
depends on the dataset and the required
output.

* Also, the functions use the key-value pairs at
four places: map() input, map() output,
reduce() input and reduce() output.

Grouping by Key

* When a map task completes, Shuffle process
aggregates (combines) all the Mapper outputs
by grouping the key-values of the Mapper

output, and the value v2 append in a list of
values.

* A "Group By" operation on intermediate keys
creates v2.

Shuffle and Sorting Phase

 Here, all pairs with the same group key (k2)
collect and group together, creating one group for
each key. So, the Shuffle output format will be a
List of <k2, List (v2)>, Thus, a different subset of
the intermediate key space assigns to each
reduce node. These subsets of the intermediate
keys (known as "partitions") are inputs to the
reduce tasks.

* Each reduce task is responsible for reducing the
values associated with partitions. HDFS sorts the
partitions on a single node automatically before
they input to the Reducer.

Partitioning

* The Partitioner does the partitioning .The
partitions are the semi-mappers in
MapReduce. Partitioner is an optional class.

* MapReduce driver class can specify the
Partitioner. A partition processes the output of
map tasks before submitting it to Reducer
tasks.

e Partitioner function executes on each machine
that performs a map task. Partitioner is an
optimization in MapReduce that allows local
partitioning before reduce-task phase.

* Functions for Partitioner and sorting functions
are at the mapping node.

* The main function of a Partitioner is to split
the map output records with the same key.

Combiners

* Combiners are semi-reducers in MapReduce.
Combiner is an optional class.

* MapReduce driver class can specify the
combiner.

* The combiner() executes on each machine
that performs a map task.

* Combiners optimize MapReduce task that
locally aggregates before the shuffle and sort
phase. Typically, the same codes implement
both the combiner and the reduce functions,
combiner() on map node and reducer() on
reducer node. .

e The main function of a Combiner is to consolidate
the map output records with the same key.

* The output (key-value collection) of the combiner
transfers over the network to the Reducer task as
iInput.

e Combiners use grouping by key for carrying out
this function. The combiner works as follows:

(i) It does not have its own interface and it must
implement the interface at reduce().

(ii) It operates on each map output key. It must have
the same input and output key-value types as the
Reducer class.

(iii) It can produce summary information from a large
dataset because it replaces the original Map
output with fewer records or smaller records.

Reduce Tasks

Java API at Hadoop includes Reducer class. An abstract
function, reduce() is in the Reducer. Any specific
Reducer implementation should be subclass of this
class and override the abstract reduce().

Reduce task implements reduce() that takes the
Mapper output (which shuffles and sorts), which is
grouped by key-values (k2, v2) and applies it in parallel
to each group.

Intermediate pairs are at input of each Reducer in
order after sorting using the key.

Reduce function iterates over the list of values
associated with a key and produces outputs such as
aggregations and statistics.

The reduce function sends output zero or another set
of key-value pairs (k3, v3) to the final the output file.
Reduce: {(k2, list (v2) -> list (k3, v3)}

 Sample Code for Reducer Class

public class ExampleReducer extends Reducer<k?,
v2, k3, v3>

void reduce (k2 key, Iterable<v2> values, Context
context) throws I0Bxception,InterruptedException

{...}

Details of MapReduce Processing Steps

* Figure 4.6 shows the execution steps, data flow,
splitting, partitioning and sorting on a map node
and reducer on reducer node.

* ACVMs (Automatic Chocolate Vending
Machines).

* Automotive Components and Predictive
Automotive Maintenance Services (ACPAMS).
ACPAMS is an application of (Internet) connected
cars which renders services to customers for
maintenance and servicing of (Internet)
connected cars.

* The application submits the inputs. The
execution framework handles all other aspects
of distributed processing transparently, on
clusters ranging from a single node to a few
thousand nodes.

* The aspects include scheduling, code
distribution, synchronization, and error and
fault handling.

COMPOSING MapReduce FOR CALCULATIONS
AND ALGORITHMS

* The following subsections describe the use of
MapReduce program composition in counting
and summing, algorithms for relational
algebraic operations, projections, unions,
intersections, natural joins, grouping and
aggregation, matrix multiplication and other
computations.

Composing Map-Reduce for Calculations

The calculations for various operations compose
are:

* Counting and Summing : Assume that the
number of alerts or messages generated during
a specific maintenance activity of vehicles need
counting for a month.

* Counting is wused in the data querying
application. For example, count of messages
generated, word count in a file, number of cars
sold, and analysis of the logs, such as number
of tweets per month. Application is also in
business analytics field.

Sorting Figure 4.6 illustrated MapReduce
execution steps, i.e., dataflow, splitting,
partitioning and sorting on a map node and
reduce on a reducer node.

Example 4.3 illustrated the sorting method.
Many applications need sorted values in a
certain order by some rule or process.

Mappers just emit all items as values
associated with the sorting keys which
assemble as a function of items.

Reducers combine all emitted parts into a
final list.

* Finding Distinct Values (Counting unique values)
Applications such as web log analysis need
counting of unique users. Evaluation is performed
for the total number of unique values in each
field for each set of records that belongs to the
same group. Two solutions are possible:

(i) The Mapper emits the dummy counters for each
pair of field and groupld, and the Reducer
calculates the total number of occurrences for
each such pair.

(ii)) The Mapper emits the values and groupld, and
the Reducer excludes the duplicates from the list
of groups for each value and increments the
counter for each group. The final step is to sum
all the counters emitted at the Reducer.

Collating : is a way to collect all items which have the
same value of function in one document or file, or a
way to process items with the same value of the
function together.

Examples of applications are producing inverted
indexes and extract, transform and load operations.

Mapper computes a given function for each item,
produces value of the function as a key, and the item
itself as a value.

Reducer then obtains all item values using group-by
function, processes or saves them into a list and
outputs to the application task or saves them.

Filtering or Parsing

* Filtering or parsing collects only those items
which satisfy some condition or transform
each item into some other representation.

* Filtering/ parsing include tasks such as text
parsing, value extraction and conversion from
one format to another.

* Examples of applications of filtering are found
in data validation, log analysis and querying of
datasets.

* Mapper takes items one by one and accepts
only those items which satisfy the conditions
and emit the accepted items or their
transformed versions.

 Reducer obtains all the emitted items, saves
them into a list and outputs to the application.

Distributed Tasks Execution

 Large computations divide into multiple
partitions and combine the results from all
partitions for the final result. Examples of
distributed running of tasks are physical and
engineering simulations, numerical analysis
and performance testing.

* Mapper takes a specification as input data,
performs corresponding computations and
emits results.

 Reducer combines all emitted parts into the
final result.

Graph Processing using Iterative Message
Passing

Graph is a network of entities and relationships
between them.

A node corresponds to an entity. An edge joining
two nodes corresponds to a relationship. Path
traversal method processes a graph.

Traversal from one node to the next generates a
result which passes as a message to the next
traversal between the two nodes.

Cyclic path traversal uses iterative message
passing.

* Web indexing also uses iterative message
passing.

Graph processing or web indexing requires
calculation of the state of each entity.
Calculated state is based on characteristics of
the other entities in its neighborhood in a given
network.

(State means present value. For example,
assume an entity is a course of study. The
course may be Java or Python. Java is a state of
the entity and Python is another state.)

A set of nodes stores the data and codes at a
network.

Each node contains a list of neighbouring
node IDs. MapReduce jobs execute iteratively.

Each node in an iteration sends messages to
its neighbors. Each neighbor updates its state
based on the received messages.

lterations terminate on some conditions, such
as completion of fixed maximal number of
iterations or specified time to live or negligible
changes in states between two consecutive
iterations.

* Mapper emits the messages for each node
using the ID of the adjacent node as a key. All
messages thus group by the incoming node.

e Reducer computes the state again and
rewrites a node new state.

Cross Correlation

Cross-correlation involves calculation using number
of tuples where the items co-occur in a set of tuples
of items. If the total number of items is N, then the
total number of values= N x N.

Cross correlation is used in text analytics. (Assume
that items are words and tuples are sentences).

Another application is in market-analysis (for
example, to enumerate, the customers who buy item
x tend to also buy vy).

If N x N is a small number, such that the matrix can
fit in the memory of a single machine, then
implementation is straightforward.

Two solutions for finding cross correlations
are:

(i) The Mapper emits all pairs and dummy counters,
and the Reducer sums these counters. The
benefit from using combiners is little, as it is likely
that all pairs are distinct. The accumulation does
not use in-memory computations as N is very
large.

(ii)) The Mapper groups the data by the first item in
each pair and maintains an associative array
("stripe") where counters for all adjacent items
accumulate. The Reducer receives all stripes for
the leading item, merges them and emits the
same result as in the pairs approach.

The grouping:

 Generates fewer intermediate keys. Hence,
the framework has less sorting to do.

* Greatly benefits from the use of combiners.

* |[n-memory accumulation possible.

* Enables complex implementations.

* Results in general, faster computations using
stripes than "pairs".

Matrix-Vector Multiplication by MapReduce

* Numbers of applications need multiplication
of n x n matrix A with vector B of dimension n.
Each element of the product is the element of
vector C of dimension n. The elements of C
calculate by relation,

Matrix-Vector Multiplication by MapReduce

— T e s S ASNERATANSER EE . Bl LI

n
' Z‘ b, An example of calculations is given below.

Je
1 5 4 4]
1 b
Assume A = (2] 3 and B = 'lJ
| R
4 2 1‘ 3

1

| IxX4+5%x1+4x3]
MultiplicalionCzAsz[2x4+1x1+3x3

4x4+2x1+1x3

-

Hence, C

"N

Q —
0 -(_.)
L.‘. —“n-‘“‘

Relational-Algebra Operations
* Selection

 Example of Selection in relational algebra is as
follows: Consider the attribute names
(ACVM _ID, Date, chocolate flavouir,
daily_sales). Consider relation

= {(524, 1’122)17 KitKat, 82), (;’4 12122017, Oreo. 72
l’l”017 Orteo, 72), (526, 12122017 KiKat, 82), (526, 12120017 Oreo 1))

Selection 1D <= 525 (R) selects the subset R= |
2 (024, 12122017, KitKa 82
12), (525, 12122017, l\lll\dt 82), (525, 12122017, Oreo, 7). 1, 82), (524, 12022017, O,

SeRCUON it fvour = 0o SELECIS the subset {(324, 12122017,
(926, 12122017, Oreo, 72)).

I). (525, 12120017, KitKat, 82), (5%,

Oreo, 72), (325, 12122017, Oreo, 72)

1332 Projection

Example of Projection In relational algebra s as follows;
Consider attril?ute names (ACVM_ID, Date, chocolate_flavour, daily_sales).
Consider relation R = {(524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72)}

Prjection Ty p (R) selects the subset {(524)).
Projection, I gocolte favour 0.5* daiy_sles selects the subset { (KitKGat, 0.5 x 82), (Oreo, 037)).

The test) tests the presence of attibute () used for projection and the factor by an attribute needs
projection.
The Mapper calls test(for each tuple in a row. When the test satisfes, the predicate then emits the

ple (same s in selection) The Rediicer transfers the received input tuples fte eliminating the possible

duplicats. Such operations are used in analytics.

1333 Union

cyampe of Union i relaions s as follows: Consider,
RI = {(524, 12122017, Kitkar, 82), (524,
R2 = {(525, 12122017, KitKat, 82), (525,
i R3 = {(526, 12122017, Kitkat, 82), (526,

22017, Oreo, 72)
27017, Oreo, 72)
1017, Oreo, 72)

Resultof Union operation between R1 and R3 s
RIURS = ((524, 12122017, KitKal, 82), (524, 12122017, Oreo, 72), (526, 12122017,
KitKat, 82), (526, 12122017, Oreo, 72))

The Mapper cxccutes alltuples of (wo SCi for union and emits allthe resultant tuples. The Redfucer class

chicttransfers the received input tuples after climinating the possible duplicates

|

I
v

43.3.4 Intersection and Difference

Intersection Example of Interaction in relations is as follows: Consider,
R1 = {(524, 12122017, Oreo, 72)}
R2 = {(525, 12122017, KitKat, 82)}

snd R3 = ((526, 12122017, KitKat, 82), (526, 12122017, Oreo. 721)

Result of Intersection operation between R] and R3 are

R1 A R3 = ((12122017, Oreo))
f two sets for intersection and emits all the resultant fuples. The Reducer

The Mapper executes all tuples 0
only when tuple includes primary key and can ocour

ensfers only tples that occurred twice. This is possible
oce in 3 set, Thus, both the sets contain this wple.
Difference Consider;
RI = (12122017, KitKat, 82), (12122017, Oreo, 72))

ang “R3 = {(12122017, KitKat, §2), (12122017, Oreo, 23}

ents are not present in the second relation. Therefore, difference set_l is
R] - R3 = (12122017, Oreo, 72) and set 2 isR3 - Rl = (12122017, Oreo, 23).

beThe Mapper emits all the tples and tag. A 1g is the name of the set (say, set_1 or set_2 to which a tuple

longs to). The Reducer transfers only tuples that belong 1o set_1.

Difference means the tuple elem

Natural Join

Consider two relations R1 and R2 for tuples a, b and c.
Natural Join computes for R1 (a, b) with R2 (b, c). Natural
Joinis R (a, b, c). Tuples b joins as one in a Natural Join.

The Mapper emits the key-value pair (b, (R1, a)) for each
tuple (a, b) of R1, similarly emits (b, (R2, c)) for each tuple
(b, c) of R2.

The Mapper is mapping both with Key for b. The Reducer
transfers all pairs consisting of one with first component R1
and the other with first component R2, say (R1, a) and (R2,
c).

The output from the key and value list is a sequence of key-
value pairs. The key is of no use and is irrelevant. Each
value is one of the triples (a, b, c) such that (R1, a) and (R2,
c) are present in the input list of values.

The following example explains the concept of join, how the data stores use the INNER Join and

NATURAL Join of two tables, and how the Join compute quickly-

- EXAMPLE 4.6 W

ON Transactions.ACVM_ID

An SQL statement “Transactions INNER JOIN KitKatStock :
= KitKatStock.ACVM ID”; selects the records that have matching values in two tables for.transacugns
of KitKat sales at a particu_lar ACVM. One table is KitKatStock with columns (KitKat_Quantity, ACVM_
ID) and second table is Transactions with columns (ACVM_ID, Sales_Date and KitKat_SalesData).

I. What will be INNER Join of two tables KitKatStock and Transactions?

2. What will be the NATURAL Join?

SOLUTION

I. The INNER JOIN gives all the columns from the two tables (thus the common columns appear
twice). The INNER JOIN of two tables will return a table with five column: (i) KitKatStock.
Quantity, (ii) KitKatStock. KitKat ACVM_ID, (iii) Transactions. ACVM_ID, (iv)Transactions.
KitKat SalesDate, and (v) Transactions.KitKat_SalesData.

2 The NATURAL JOIN gives all the unique columns from the two tables. The NATURAL JOIN
of 1wo tables will return a table with four columns: (i) KitKatStock.Quantity, (ii) KitKatStock.
ACVM 1D, (iii) Transactions.KitKat_SalesDate, and (iv) Transactions.KitKat_SalesData.

Values accessible by key in the first table KitKatStock merges with T ransactions table accessible by

the common key ACVM_ID.

NATURAL JOIN gives the common column once in the output of a query, while INNER JOIN gives

common columns of both tables.
Join enables fast computations of the aggregate of the number of chocolates of specific flavour sold.

—_— —

Grouping and Aggregation by MapReduce

(rotuping means opeation on the tupls by th value of some of the atributes after applymg the aggregae
function independentlyto each atrbute. A Grouping operaion denotes by <grouping atributes> § <funetor
list> (R). Aggrega te functions are coun(), sum(), ave(), min() and max(),

Assume R= (524, 12122017, KitKat, 82), (524, 12122017, Oreo, 72), (525, 12122017, KitKat, 82), (525,
1122017, Oreo. 72). (526, 12122017, KitKat, 82), (526, 12122017, Oreo, 72)}. Chocolate_ flavour 3 count

ACVM_ID, sum (daily_sales (chocolate_ flavour)) will give the output (524, KitKat, sale_month), (525,
KitKat, sale_month), and (524, Oreo, sale month), (525, Oreo, sale_month), ... for all ACVM_IDs.

The Mapper finds the values from each tuple for grouping and aggregates them. The Reducer receives the
dready erouped values in input for aggregation.

HIVE

 Hive was created by Facebook. Hive is a data
warehousing tool and is also a data store on the
top of Hadoop.

C
t

An enterprise uses a data warehouse as large

ata repositories that are designed to enable
ne tracking, managing, and analyzing the data.

Hive processes structured data and integrates

data from multiple heterogeneous sources.
Additionally, also manages the constantly
growing volumes of data.

e 4.9 shows the main features of Hive.

e

Figy

Easy to Code
and
Scalable

Uses Data Stores
to create tables
Similar to SQL

),
Provides supports SQL
' Join, Group By
rich data types, Hive b cooup
Structs, Map A
and Array y Clauses
Translates
queries into ~ Supports Custom
MapReduce Types and
Custom Functions

jobs

Figure 4.9 Main features of Hive

Hive Characteristics

1.Has the capability to translate queries into
MapReduce jobs. This makes Hive scalable,
able to handle data warehouse applications,
and therefore, suitable for the analysis of
static data of an extremely large size, where
the fast response-time is not a criterion.

2.Supports web interfaces as well. Application
APls as well as web-browser clients, can
access the Hive DB server.

3.Provides an SQL dialect (Hive Query Language,
abbreviated HiveQL or HQL).

Limitations of Hive
Hive is:
1. Not a full database. Main disadvantage is that

Hive does not provide update, alter and
deletion of records in the database.

2. Not developed for unstructured data.
3. Not designhed for real-time queries.

4. Performs the partition always from the last
column.

Hive Architecture
4.4.1 Hive Architecture

Figure 4.10 shows the Hive architecture.

Web Browser User Application ' JDBC/ODBC Application |

j Command J

Hive CLI J Hive SERVER |
Hive Driver J'—’ Metastore l—»E DB I

Figure 4.10 Hive architecture

Web Interface

Components of Hive architecture are:

* Hive Server (Thrift) - An optional service that
allows a remote client to submit requests to
Hive and retrieve results. Requests can use a
variety of programming languages. Thrift
Server exposes a very simple client API to
execute HiveQL statements.

* Hive CLI (Command Line Interface)- Popular
interface to interact with Hive. Hive runs in
local mode that uses local storage when

running the CLI on a Hadoop cluster instead of
HDFS.

 Web Interface - Hive can be accessed using a web
browser as well. This requires a HWI Server
running on some designated code. The URL
http:// hadoop:<port no> / hwi command can be
used to access Hive through the web.

* Metastore- It is the system catalog. All other
components of Hive interact with the Metastore.
It stores the schema or metadata of tables,
databases, columns in a table, their data types
and HDFS mapping.

* Hive Driver - It manages the life cycle of a HiveQL
statement during compilation, optimization and
execution.

4.4.2 Hive Installation

Hive can be installed on Windows 10, Ubuntu 16.04 and MySQL. It requires three software packages:

Java Development kit for Java compiler (Javac) and interpreter
Hadoop

Compatible version of Hive with Java— Hive 1.2 onward supports Java 1.7 or newer.

Steps for installation of Hive in a Linux based OS are as follows:

1.

s

Install Javac and Java from Oracle Java download site. Download jdk 7 or a later version from
http://www.oracle.com/technclwork/java/javase/downloads/jdk7-downloads-1880260.html, and
extract the compressed file.

All users can access Java by Make java available to all users. The user has to move it to the location
“/usr/local/” using the required commands

Set the path by the commands for jdk1.7.0_71, export JAVA_HOME-=/usr/local/jdk 1 .7:0_71, export
PATH=$PATH: $JAVA_HOME/bin

(Can use alternative install /usr/bin/java usr/local/java/bin/java 2)

Install Hadoop http://apache.claz.org/hadoop/common/hadoop-2.4.1/

Make shared HADOOP, MAPRED, COMMON, HDFS and all related files, configure HADOOP
and set property such as replication parameter.

Name the yarn.nodemanager.aux-services. Assign value to mapreduce_shuffle. Set namenode and
datanode paths.

Download http://apache.petsads.us/hive/hive-0.14.0/. Use 1s command to verify the files $ tar zxvf
apache-hive-0.14.0-bin.tar.gz, $ Is

OR

Hive archive also extracts by the command apache-hive-0.14.0-bin apache-hive-0.14.0-bin.tar.gz. ,

$ cd SHIVE_HOME/conf, $ cp hive-env.sh.template hive-env.sh, export HADOOP_HOME-=/usr/
local/hadoop

Use an external database server. Configure metastore for the server. ,

Comparison with RDBMS (Traditional Database)

* Hive is a DB system which defines databases
and tables. Hive analyzes structured data in
DB. Hive has certain differences with RDBMS.

* Table 4.3 gives a comparison of Hive database
characteristics with RDBMS.

Table 4.3 - Comparison of Hive database characteristics with RDBMS

|

Record level queres NoUpdate and Delete ~ Insert, Update and Delete.

Transaction support No Yes
Latency Minutes or more Infractions of asecond

e i Teubytes /)

Data per query Petabytes Gigabytes

Query language HiveQL ; SQL
SupotDBCODBC ~ Limied Rl

Ly 4 b R
7 — R Ay
Ve . ..(’\.A(—u.w‘}' .Wmﬁim&u wzz A.%(.r N

S L

Hive Data Types and File Formats

* Hive defines various primitive, complex, string,
date/time, collection data types and file
formats for handling and storing different data
formats.

* Table 4.4 gives primitive, string, date/time and
complex Hive data types and their
descriptions.

Table 4.4 Hive data types and their descriptions

'TINYINT
SMALLINT
INT
BIGINT
FLOAT
DOUBLE
BOOLEAN
TIMESTAMP
'DATE
'VARCHAR
'CHAR
'DECIMAL
UNION

Missing values representauon

1 byte signed integer. Postfix letter is Y. ':;_‘]
2 byte signed integer. Postfix letter is S. _ -."{J,
4 byte signed integer _ “;__l
8 byte signed integer. Postfix letter is L. 4 ,,4_1

4 byte single-precision floating-point number

34

B)t

8 byte double-precision ﬂoating-point number

i

True or False *:{
UNIX timestamp with optional nanosecond precision. It supports java.sgl Tlmestamp - Mj
format “YYYY-MM-DD HH:MM:SS ffftfif” - e
YYYY-MM-DD format _ 7 St ::;
I to 65355 bytes. Use single quotes (* *) or double quotes (“7) | : :;:_3
255 bytes sl g SR

Used for representing immutable arbitrary precision. DECIMAL (pteCISl T

%O
......

Table 4.5 gives Hive three Collection daty types and their descriptions.

Table 4.5 Collection data-types and their descriptions

STRUCT Similar to ‘C” struc, a collection of fields of different data types An
| access to field uses dot notation. ..

For example, struct (2’ ‘b’)

MAP A colleotion of key-value pair. Fields access usmg [] notanon
Fﬂrexample map (‘keyl’ 'y ¢key2’ cba) g hi

ARRAY

Table 4.6 gives the file formats and their descriptions.

Table 4.6 File formats and their descriptions

Textfile The default file format, and a line represents a record. The delimiting characters separate the
lines. Text file examples are CSV, TSV, JSON and XML (Section 3.3. 2)

chuennal ﬁle Flat file which stores binary key-value pairs, and supports compressw.n. slte
‘RCﬁie“ - Reeord Counnafl (Secnon3333)

| 0RC

ﬂaef"" ;e_: formas (Section 3.3.3 4)

Record columpar file means one that can be partitioned in rows and then partitioned with columns.
oning in this way enables serialization.

145 Hive Data Model

Table 4.7 below gives three components of Hive data model and their descriptions.

Table 4.7 Components (also called data units) of Hive Data Model

Name Description

Database Namespace for tables

Tables Similar to tables in RDBMS
Support filter, projection, join and union operations
The table data stores in a directory in HDFS

Paions Table can have one or more partition keys that tell how the data stores

Buckets Data in each partition further divides into buckets based on hash of a column m the table i ,
Stored as a file in the partition dlrectory Gl :

4.4.6 Hive Integration and Workflow Steps

Hive integrates with the MapReduce and HDFS. Figure 4.11 shows the dataflow sequences and workfloy
steps between Hive and Hadoop.

N
User Client Interface
1 MapReduce Job
i 11
b , 7 d
” ™ Execution > MapReduce
river : ¥ Process
*—10 Engine g
2 l TS 18
3
Compiler 4 Metastore
Figure 4.11 Dataflow sequences and workflow steps

o ey .emé '

Steps 110

1

to

‘)

'JI J‘

N

10
11

1] are as [ollows:

Execute Query: Hive interface (CLI or Web Interface) sends a query to Database Driver to execute the

query. '
Get Plan: Drive
query plan or the requirement of the query.

r sends the query to query compiler that parses the query t0 check the syntax and

Get Metadata: Compiler sends metadata request to Metastore (of any database, such as MySQL).

ponse to compiler.

Send Metadata: Metastore sends metadata as ares
sends the plan to driver. The parsing and compil-

Send Plan: Compiler checks the requirement and re
ing of the query is complete at this place.

Execute Plan: Driver sends the execute plan to execution engine.

ution engine sends

Execute Job: Internally, the process of execution job is a MapReduce job. The exec
which is in Data

the job to JobTracker, which is in Name node and it assigns this job to TaskTracker,
node. Then, the query executes the job.

Metadata Operations: Meanwhile the execution engine can execute the metadata ope
Metastore.

rations with

Fetch Result: Execution engine receives the results from Data nodes.
Send Results: Execution engine sends the result to Driver.

Send Results: Driver sends the results to Hive Interfaces.

Hive Built-in Functions

* Hive supports a number of built-in functions.
Table 4.8 gives the return types, syntax and
descriptions of the examples of these
functions.

* Table 4.8 shows the Return types, syntax, and
descriptions of the functions

Table 4.8 Return types, syntax, and descriptions of the functions

BIGINT round(double a) Returns the rounded BIGINT (8 Bytc integer) value of the 8 Byte
double-precision floating point number a
BIGINT floor(double a) Returns the maximum BIGINT value that is equal to or less than the
double.
BIGINT ceil(double a) Returns the minimum BIGINT value that is equal to or greater than
the double.
double rand(), rand(int seed) Returns a random number (double) that distributes uniformly from O
to 1 and that changes in each row. Integer seed ensured that random
number sequence is deterministic.
string concate(string strl, string Returns the string resulting from concatenating strl with str2,
str2, ...)
string substr(string str, int start) Returns the substring of str starting from a start position till the end of
string str.
string substr(string str, int start, Returns the substring of str starting from the start position with the
int length) given length.
string upper(string str), ucase Returns the string resulting from converting all characters of str to
(string str) upper case.
string ’ lower(string str), Returns the string resulting from converting all characters of str to
lcase(string str) lower casec.
string trim(string str) Returns the string resulting from trimming spaces from both ends
trim (*12A34 56°) returns ‘12A3456’
string Itrim(string str); Returns the string resulting from trimming spaces (only one end, left
rtrim(string str) or right hand side or right-handside spaces trimmed).
Itrim(*12A34 56°) returns ‘12A3456" and rtrim(’ 12A34 56 %) relurns
‘12A3456°.
string rtrim(string str) Retwurns the string resulting from trimming spaces from the end (right
hand side) of str. ! :
int year(string date) Returns the year part of a date or a timestamp string.
int month(string date) " Returns the month part of a date or a timestamp stringﬁ.

int : day(string date) Returns the day part of a date or a timestamp string. |

HiveQL

* Hive Query Language (abbreviated HiveQl) is
for querying the large datasets which reside in
the HDFS environment.

* HiveQL script commands enable data
definition, data manipulation and query
processing.

* HiveQL supports a large base of SQL users who
are acquainted with SQL to extract
information from data warehouses.

HiveQL Process | HiveQL is similar to SQL for querying on schema information at the Metastote. It is one of the

LEngne .~ replacements of traditional approach for MapReduce program. Instead of writing MapReduce
- progam in Java, we can write a query for MapReduce job and process it | |
| Excoution Thebridge between HiveQL process Engine and MapReduce is HiveExcattio EngmeExccutlon

Bngine engine processes the Query and generate results same as MapReduce sesults, It uses the favorof
o MapReduce, | S

The subsections ahead sive the detail of dtg definition, data manipulation and querying data example,

4.5.1 HiveQL Data Definition Language (DDL)

HiveQL database commands for data definiion for DBs and Tables are CREATE DATABASE, SHOW

DATABASE (st of all DBs), CREATE SCHEMA, CREATE TABLE, Following are HiveQL commands
which create a table:

CREATE [TEMPORARY] (EXTERNAL] TABLE [IFNOT EXISTS] [<database name>.) <table name>
(<column name> <data type> [COMMENT <column comment>), ...
(COMMENT <table comment>]

ROW FORMAT <row format]
STORED AS <file format>]

Table 4.9 Hive Table Row Formats
SELIMITED Specifies a delimiter at the table level for structured fields. This is default, Syntax: FIELDS
g ' TERMINATED BY, LINES TERMINATED BY
SiERDI:‘Z o Stands for Serializer/Deserializer. SYNTAX: SERDE ‘serde.class.name’

HiveQL database commands for data definition for the DBs and Tables are CREATE DATABASE,
SHOW DATABASE (list of all DBs), CREATE SCHEMA, CREATE TABLE.

The following example uses HiveQL commands to create a database toys companyDB.

F EXAMPLE 4.7

How do you create a database named toys_companyDB and table named toys_tb1?
SOLUTION

SHIVE_HOME/binhive — service cli

hive>set hive.cli.print.current.db=true;

hive> CREATE DATABASE toys_companyDB
hive>USE toys_companyDB

hive (toys_companyDB)> CREATE TABLE toys_tbl (
>puzzle_code STRING,

>pieces SMALLINT

>cost FLOAT);

hive (toys_company)> quit;
L &ls/home/binadmin/Hive/warehouse/toys_companyDB.db

N

The following cxample uses the command CREATE TABLE to create a table toy_products.

- EXAMPLE 4.8 1)

How do you create a table toy_products with the following fields?

e et

ProductCategory string
Productld int
ProductName string
ProductPrice float

SOLUTION

CREATE TABLE IF NOT EXISTS toy_products (ProductCategory String, Productld int, ProductName
String, ProductPrice float)

COMMENT ‘Toy details’

ROW FORMAT DELIMITED

FIELDS TERMINATED BY “\

LINES TERMINATED BY ‘\n’

STORED AS TEXTFILE;
@c option IF NOT EXISTS, Hive ignores the statement in case the table already exists.

Consider the following command:
A command i

CREATE DATABASE|SCHEMA [IF NOT EXISTS] c<database names;

[F NOT EXISTS 15 an optional clause. The clause notifies the user that a database with the same name
already exists. SCHEMA can be also created in place of DATABASE using this command
A command s written to get the lst of all existing databases.

SHOW DATABASES;

A command is written to delete an existing database.

DROP (DATABASE|SCHEMA) [IF EXISTS] cdatabase name> [RESTRICT|CASCADE];

| exameLEsg

Give examples of usages of database commands for CREATE, SHOW and DROP.
SOLUTION

CREATE DATABASE IF NOT EXISTS toys companyDB;
SHOW DATABASES;
default toys companyDB

*Default database 1s test.

Delete dtabase using the command:

\Drop Database toys ccmpanyDB.

4.5.2 HiveQL Data Manipulation Language (DML)

HiveQL commands for data manipulation are USE <databas
ename>, DROP
ALTER TABLE, DROP TABLE, and LOAD DATA. S —
The following is a command for inserting (loading) data into the Hive DBs

LOAD DATA [LOCAL] INPATH ‘<file ' :
' path>’ [OVERWRITE

LOCAL is an identifier to specify the local is onti
_ ' path. It is optional. OVERWRITE s opti ,
data in thf: table. PAR.'I.'ITION s optional. val1 i value assigned to partion co| 1S optional to overwrte th.c
value assigned to partition column 2 (partcol2), umn | (partcoll) and val2 1§

" amat_| sy
LD e |
e OVERWRNEINTO

. s St bl I e
[sl

“The following is an ¢ xample for usages of data manipulation commands, INSERT, ALTER, and DROP

_ EXAMPLE 4.10 > ~

o : -3 le of P any selli ds ~ :

Consider un/o.,\ulnll.lt t‘l a l(.?' company scelling Jigsaws, Consider a text file named jigsaw_puzzle_info
2.3 a ~1¢y . -~ 2 - R 2 b L o 4 o X,

ixtin /(tclorlf' user dircectory. 1w file is text file with four ficlds: Toy-category, toy-id, toy-name, and Price

in USS$ as follows: '

puzzle _Garden 10725 Fantasy 1.35
putﬂc_.lunglc 31047 Animals 2. .85
pu/lh'_Schuul B1049 Nurscry 1,45

How will you usc (i) LOAD (inscrt), (ii) ALTER and (iii) DROP commuands?

SOLUTION X
(i) Insert the data of this file into a table using the following commands:
LOAD DATA LOCAL INPATIH ‘homc/user/ jigsaw_puzzle_info.xt’
OVERWRITLE INTO TABLLIE jigsaw_puzzlce:
(i) Alter the table using the following commands:
ALTER TABLIE =name> RENANMLE TO <new name>
ALTER TABLIE <sname> ADD COLUMNS (<=col spec> |, <col spee> ...])
ALTER TABLE <name> DROP [C(YLUMN] <column name>
ALTER TABLE <name> CHANGE =column name> <new name>> <=necw type>
ALTER TABLE <name> REPLACE COLUMNS (<col spec> |. =col spec> aes)
The following qucory renames the table from jigsaw_puzzle to toy_tbl:
ALTER TABLE jigsaw_puzzle RENA MIE TO toy_tbl:
The following query renames the column name ProductCategory to ProductCat:
ALTER TABLE toy_tbl CHANGE ProductCategory ProductCat String:
The following query renames data type of ProductPrice from float to double:
ALTER TABLE toy_tbhl CHANGE ProductPrice ProductPrice Doubles:
The following query adds a column named ProductDesc to the toy_tbl table:
ALTERTABLEtoy_ _thlADD COL.UMNS (ProductDescString COMMENT 'Product Description’);
The following query deletes all the columns from the toy_tbl table and replaces it with ProdCat and

ProdName columns:
ALTER TABLE toy_1tbl REP

STRING ProdName String): .
(iii) The following query deletes a column named ProductDesc from the toy_tbl table:

ALTER TABLE toy_tbl DROP COLUMN ProductDesc;
A table DROP using the following command: DROP TABLE [IF EXISTS] table_namec;

The following query drops a table named jigsaw_puzzle:
. DROP TABLE IF EXISTS jigsaw_puzzle;

LACECOLUMNS (ProductCategory INT ProdCat Int, ProductName

HiveQL For Querying the Data

e Partitioning and storing are the requirements.
A data warehouse should have a large number
of partitions where the tables, files and
databases store. Querying then requires
sorting, aggregating and joining functions.

* Querying the data is to SELECT a specific entity
satisfying a condition, having presence of an
entity or selecting specific entity using
GroupBy .

Querying the data s to SELECT a specifc entity sarisfying condition having presence of an entity or
selecting specific entity using GroupBy

expressions, ...

FROM <table names

[WHERE <where conditions)
[GROUP BY <column Lists]
[HAVING <having conditions]

[CLUSTER By <column Lists
Listy)]

[LINIT number] .

| [DISTRIBUTE BY <columy List>]

[SORT BY <colum

Partitioning

* Hive organizes tables into partitions. Table
partitioning refers to dividing the table data
into some parts based on the values of
particular set of columns.

* Partition makes querying easy and fast. This is
because SELECT is then from the smaller
number of column fields.

e Section 3.3.3.3 described RC columnar format
and serialized records.

* The following example explains the concept of
partitioning, columnar and file records formats.

I T k

Consider a table T with eight-column and four-row table. Partition the table, convert in RC columnar
format and serialize.

SOLUTION

Firsly, divide the table in four pars, t, t,t, andt, horizontally row-wise. Each sub-table hz?s one row
and eight columns, Now, convert each sub-table Ly, Lo, L3 and tinto columnar format, or RC F'lle. records
[Recall Example 3.7 on how RC fle saves each row-group data in a format using SERDE (serialzer/des-
serializer)).

Each sub-table has eight rows and one column, Each column can serially send data one value at an
@tancc. A column has eight key-value pairs with the same key for all the eight,

Table Partitioning
Create a table with Partition using command:

CREATE [EXTERNAL] TABLE <table name> (<column name 1> <data type 1>,
i)

PARTITIONED BY (<column name n> <data type n> [COMMENT <column comment>],
-
Rename a Partition in the existing Table using the following command:

partltlon spec;

Add a Partition in the existing Table using the following command:

[LOCATION. *locationl’] partition spec [rocaTron ‘location2’]

partition_SPEC=(P_C0lumn = P_col value, P_colum = p col value o)

Drop a Parttion In the existing Table using the following commang:

partltlon spec;

BT ~

How will you add, rename and drop a partition to 3 table, toys_tb]?
SOLUTION

(1) Adda partition to the existing toy table using the command:

ALTER TABLE toy tbl ADD PARTITION (category='Toy Airplane’) location
‘/Toy_Airplane/partAirplane';
(ti) - The following query renames a partition:

ALTER TABLE toy tbl PARTITION (category='Toy Airplane’) RENAME TO
PARTITION (name='Fighter');

(i) - Drop a Partition in the existing Table using the command:

ALTER TABLE toy _tbl DROP [IF EXISTS] PARTITION (

Ccategory='Toy
Airplane’);

* The following example 4.13 explains how
querying is facilitated by using partitioning of a
table.

* A query processes faster when using partition.
Selection of a product of a specific category
from a table during query processing takes
lesser time when the table has a partition
based on a category.

Assume that following file contains toys_thl.

/[table/toy tbl/filel

Category, id, name, price

Toy Airplane, 10725, Lost Temple, 1.25

Toy Rirplane, 31047, Propeller Plane, 2.10

Toy Rirplane, 31043, Twin Spin Helicopter, 3.45
Toy Train, 31054, Blue Express, 4.25

Toy_Train, 10254, Winter Holiday Toy Train, 2.75

A table toy_tbl contains many values for categories of toys, Query is required to identify all toy_
airplane fields. Give reasons why partitioning reduces query processing time.

SOLUTION

Here, a table named toy_tbl contains several toy details (category, id, name and price). Suppose it is
required to identify all the airplanes. A query searches the whole table for the required informatiox?.
However, if a partition is created on the toy_tbl, based on category and stores it in a separate file, then it
will reduce the query processing time.

Let the data partitions info two files, file 2 and file 3, using category.

[table/toys/toy airplane/file?

toy airplane, 10725, Lost Temple, TP, 1.25

toy airplane, 31047, Propeller Plane, 2.10

toy airplane, 31049, Lost Temple, 3.45
[table/toys/toy train/file3

Toy Train, 31054, Blue Express, 4.25

\\ Toy Train, 10254, Winter Holiday Toy Train, 2.75

hive queries examples

* https://www.edureka.co/blog/hive-commands-
with-examples

Advantages of Partition
1. Distributes execution load horizontally.

2.Query response time becomes faster when
processing a small part of the data instead of
searching the entire dataset.

Limitations of Partition

1. Creating a large number of partitions in a table
leads to a large number of files and directories in
HDFS, which is an overhead to NameNode, since it
must keep all metadata for the file system in
memory only.

2. Partitions may optimize some queries based on
Where clauses, but they may be less responsive for
other important queries on grouping clauses.

Limitations of Partition

3. A large number of partitions will lead to a
large number of tasks (which will run in
separate JVM) in each MapReduce job, thus
creating a lot of overhead in maintaining JVM
start up and tear down (A separate task will be
used for each file). The overhead of JVM start
up and tear down can exceed the actual
processing time in the worst case.

Bucketing

A ertton tself may have large number of
sub-divided into buckets Division is based o the hash of a column in the table

Consider bucketed columy Chuer - Firt, define a hash, funtion H() accoring o type of the bucketg
colum. Letth total number of uckess - M L Chugey 00t * ucketedcolumn, The valte
b, = hashing function H(Cyy) mod (N,

Buckets provide an extra strcture to the dat that g lead to more efi

compared to undivided tablesor artition. Buckes store s a e i the partiton diectory. Records with the

same bucketed column will lways e stored n te same bucket Records keptieac bucket povide srtg
ease and enable Map task Joins. A Bucket can also be used as 2 sample dataset.

CLUSTERED BY clause divides a table into buckets, A coding example on Buckets s oven below:

columns when tables aze very Lage. Tables or partitons can

ent query processing wher

1

)
3
4

How wi
Jow wi

How wl

| b

A tabe foy bl conains many values for caegores of loys. Assume (e number of buckels fo be
created = 5. Assume atable for Toy Adrplane of product code 10723,
How will the bucketing enforce?

| the bucketed table artiton toy airplane_ 10725 create five buckels?
[the bucket column load into toy b1
| the bucke data display”

SOLUTION
#Enforce bucketing

set hive.enforce.bucketing:true;

#Create bucketed Table for toy_airplane of product code 10725 and create cluster of 5 buckets

CREATE TABLE IF NOT EXISTS toy airplane 10725 (ProductCategory
STRING, ProductId INT, ProductName STRING, PrdocutMfgDate YYYY-MM-
DD, ProductPrice_US$ FLOAT) CLUSTERED BY (Price) into 5 buckets;

Load data to bucketed table.

FROM toy_airplane 10725 INSERT OVERWRITE TABLE toy tbl SELECT

ProductCategory, ProductId, ProductName, PrdocutMfgDate,
ProductPrice;

* To display the contents for Price_US$ selected for the Productld from the second bucket.

SELECT DISTINCT ProductId FROM toy_tbl buckets TABLE FOR
\;7 10725 (BUCKET 2 OUT OF 5 ON Price US$);

Views

A program uses functions or objects.
Constructing an object instance enables
layered design and encapsulating the
complexity due to methods and fields.

* Similarly, Views provide ease of programming.
Complex queries simplify using reusable Views.
A HiveQL View is a logical construct.

A View provisions the following:
e Saves the query and reduces the query complexity

e Use a View like a table but a View does not store
data like a table

* Hive query statement when uses references to a
view, the Hive executes the View and then the
planner combines the information in View definition
with the remaining actions on the query (Hive has a
guery planner, which plans how a query breaks into
sub-queries for obtaining the right answer.)

* Hides the complexity by dividing the query into
smaller, more manageable pieces.

Sub-Queries (Using Views)

Consider the following query with a nested sub-query.

| ExweLesss R

Atable toy_b contains many values for categories of toys. Assume a table for Toy_Airplane of product
(ode 10725. Consider a nested query:
FROM |
SELECT * toy_tb]_Join people JOIN Toy_Airplane
ON (Toy_Airplane.Productld= productld.id) WHERE productld=10723
) toys_ catalog SELECT prdocutMfgDate WHERE prdocutMigDate = 2017-10-23'

Create View, for using that in a nested query.

SOLUTION

2 create 2 view named toy tbl Minidoin

Mol
|
b -

2237 I toy bl Miniloi AS

SELECT #toy_thI_Join people JOIN Toy_Airplanc
ON (To e P o WHERE o5

JHoys_catd

o SELECT prdoculMgDat WHERE prdocu(MgDate = 2017-10-23"

Aggregation

* Hive supports the following built-in aggregation
functions. The usage of these functions is same

as the SQL aggregate functions.

* Table 4.10 lists the functions, their syntax and
descriptions.

Table 4.10 Aggregate functions, their return type, syntax and descriptions

e | o e e

BIGINT - count(*), count(expr) Returns the total number of retrieved rows.
DOUBLE -~ sum(col), sum(DISTINCT Returns the sum of the elements in the group or the sum of the
' ' col) distinct values of the colum in the group. 3
])OUBLE - avg(col), Returns the average of the elements in the group or the average of the
R avg (DISTINCT col) dlStht xalues of the column in the group.
DOUBLE 53R (col) ;. Returms .‘he m_lmmum value of the column in the gtoiip. a6
| ISOUBLE e 'max(col) . ~ Retums the maximum value of the column if the group. -
Usage examples are:

bl GROUP BY ProductCategory:

ductCategory, count (*) FROM toy_t

| Exampie 2%5(21“ IlzigdtllctCateoory, sum(ProductPrice) FROM toy_tbl GROUP BY ProductCateoor\
xample:

Join

A JOIN clause combines columns of two or more
tables, based on a relation between them.
HiveQLJoin is more or less similar to SQL JOINS.
Following uses of two tables show the Join
operations.

 Table 4.11 gives an example of a table named
toy tbl of Product categories, Productid and
Product name.

45.5 Join

A JOIN clause combines columns of two or more tables, based on a relation between them. HiveQL Join i
more or less similar to SQL JOINS. Following uses of two tables show the Join operations.

Table 4.1 gives an example of a table named toy_tbl of Product categories, Productld and Product nam.

Table 4.11 Table of Product categories, Product Id and Product name

Toy_Airplane 075 Losttemple
Toy_Airplane 3147 Propeller plane
Toy_Airplane 31049 Twin spin heliédpfer
Toy_Train 304 Blieexpress
Toy. Tren 10254

Wmter_ho‘liday' Toy_Train

Table 4.12 Table of ID and Product Cost

PEPNOPT AN T

b

PO AR . - o~ A .
‘h LAY £ Yt “y
{0t ' .
BRSO B AL SEMh RIS 2 _ Sy &L

(

T —

TN

S

N

T" }'\"‘",";7\;' |}w ¢

S

Different types of joins are follows:

* JOIN

* LEFT OUTER JOIN

* RIGHT OUTER JOIN
* FULL OUTER JOIN

JOIN

e Join clause combines and retrieves the records
from multiple tables.

e Join is the same as OUTER JOIN in SQL. A JOIN

condition uses primary keys and foreign keys
of the tables.

SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy _tbl t JOIN price p ON (t.Productid = p.ld);

LEFT OUTER JOIN

A LEFT JOIN returns all the values from the left
table, plus the matched values from the right
table, or NULL in case of no matching JOIN
predicate.

e SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy tbl t LEFT OUTER JOIN price p ON
(t.Productid = p.Id);

* RIGHT OUTER JOIN

* A RIGHT JOIN returns all the values from the
right table, plus the matched values from the
left table, or NULL in case of no matching join
predicate.

e SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy tbl t RIGHT OUTER JOIN price p ON
(t.Productid = p.id);

FULL OUTER JOIN

* HiveQL FULL OUTER JOIN combines the
records of both the left and the right outer
tables that fulfill the JOIN condition. The
joined table contains either all the records
from both the tables, or fills in NULL values for
missing matches on either side.

e SELECT t.Productid, t.ProductName, p.ProductPrice

FROM toy tbl t FULL OUTER JOIN price p ON
(t.Productid = p.ld);

Group by Clause

 GROUP BY, HAVING,ORDER BY DISTRIBUTERBY,
CLUSTER BY are HiveQL clauses. An example of
using the clauses is given below:

- EXAMPLE 4.16 |

How do SELECT statement uses GROUP BY, HAVING, DISTRIBUTE BY, CLUSTER BY? How does
clause GROUP BY used in queries on toy_tbl?

SOLUTION
(1) Use of SELECT statement with WHERE clause is as follows:

n
tr)
(v

-
-

CT [ALL | DISTINCT] <select expression>, <select expression>,
=)

=

o
ot

OM <table names>

-
X

Gl
0
8 £
L e
m
N O
4\

h onditio

s
m

.
<

»
~

e

0

. \,
—

olumn List>]
n

.

.

“
<
4
v
-4

G

l\

ving condition>]
column List>| [DISTRIBUTE BY <column List>] [SORT BY

]

h

s | Lo }
1
|

0N o
o8 5

£

%

e o)

_—
=

E

W o w
A

= C
T

>

[

.
-

mn

Sad S

B

-
L
;;J&Ml. n‘J er

(ii) Use of the clauses in queries to toy_tbl is as follows:

CT * FROM toy WHERE ProductPrice > 1.5;
T ProductCategory, count (*) FROM toy tbl GROUP BY
uctlategory;

dqchategory, sum(ProductPrice) FROM toy_ tbl GROUP
egory;

in
S

>
s

v w

n

w (
LA S 05 |

y ™
.

U3
‘e

r

i
0 v
\"? Q

N

0ot

-r

Q

v »
(®)

J

HiveQL - Select-Joins

* https://www.tutorialspoint.com/hive/hiveql joins.htm

PIG

Apache developed Pig, which:

s an abstraction over MapReduce
s an execution framework for parallel processing

Reduces the complexities of writing a MapReduce
program

Is a high-level dataflow language. Dataflow
language means that a Pig operation node takes
the inputs and generates the output for the next
node

Is mostly used in HDFS environment

Performs data manipulation operations at files at
data nodes in Hadoop.

Applications of Apache Pig
Applications of Pig are:

Analyzing large datasets
Executing tasks involving adhoc processing

Processing large data sources such as web logs
and streaming online data

Data processing for search platforms. Pig
processes different types of data

Processing time sensitive data loads; data extracts
and analyzes quickly .

For example, analysis of data from twitter to find
patterns for user behavior and recommendations.

Features of PIG

Apache PIG helps programmers write complex data transformations
using scripts (without using Java). Pig Latin language is very similar to SQL
and possess a rich set of built-in operators, such as group.join, filter, limit,
order by, parallel, sort and split.

Creates user defined functions (UDFs) to write custom functions which
are not available in Pig. A UDF can be in other programming languages,
such as Java, Python, Ruby, Jython, JRuby. They easily embed into Pig
scripts written in Pig Latin. UDFs provide extensibility to the Pig.

Process any kind of data, structured, semi-structured or unstructured
data, coming from various sources.

(Reduces the length of codes using multi-query approach. Pig code of 10
lines is equal to MapReduce code of 200 lines. Thus, the processing is
very fast.

Handles inconsistent schema in case of unstructured data as well.

(vi) Extracts the data, performs operations on that data and dumps the
data in the required format in HDFS. The operation is called ETL (Extract
Transform Load).

Performs automatic optimization of tasks before execution.

Programmers and developers can concentrate on the whole operation
without a need to create mapper and reducer tasks separately.

Features of PIG (contd..)

9. Reads the input data files from HDFS or the data
files from other sources such as local file system,
stores the intermediate data and writes back the

output in HDFS.

10.Pig characteristics are data reading, processing,
programming the UDFs in multiple languages
and programming multiple queries by fewer
codes. This causes fast processing.

11. Pig derives guidance from four philosophies,
live anywhere, take anything, domestic and run
as if flying. This justifies the name Pig, as the
animal pig also has these characteristics.

Table 4.13 Differences between Pig and MapReduce

A dataflow language
High level language and flexible

Performing Join, filter, sorting or ordering operations Relatively difficult to perform Join, filter, sorting or order-
are quite simple ing operations between datasets

A data processing paradigm
Low level language and rigid

Programmer with a basic knowledge of SQL can work ~ Complex Java implementations require exposure to Java
conveniently language
Uses multi-query approach, thereby reducing the length

Require almost 20 times more the number of lines to
of the codes significantly perform the same task

‘No need for compilation for execution; operators con-
vert internally into MapReduce jobs

Provides nested data types like tuples, bags and maps

Long compilation process for Jobs

No such data types
Table 4.14 gives differences between Pig and SQL.

Table 4.14 Differences between Pig and SQL

Plg Latin is a procedural language A declm-ative-1'anguage
B ~Schema is optional, stores data without assigning a schema Schema is mandatory
Nested relational data model Flat relational data model

Provides limited opportunity for Query optimization ‘More oppo ““W rfor Query,-cépﬁmi'zaﬁon

Table 415 Diffrences between Pigand Hive

Ongrnally createda Yahuo Ongtnally created l Facebook
Explurts Prg L]anvuage Explorts HrveQL 5
PrgLatrn tsadataﬂow languaoe g

| . HrveQL rsaquery processmg]anvuage .
PrgLatrnrs aproeedural language and I ﬁts n prpehne paradrgtn HrveQL s adeclaratrve language |
tHandles structured unstruetured and semr structured data “

Mosdy usedfor structured data 4 o

Pig Architecture

* Firstly, Pig Latin scripts submit to the Apache
Pig Execution Engine.

* Figure 4.12 shows Pig architecture for scripts
dataflow and processing in the HDFS
environment.

Pig Architecture

. -)
PIG Latin Script MapReduce Process "
1l k MapReduce Job Ia
Gunt | | PG - Execution
Shell Server Engine
Zl 14 | 17
5 — 16
Parser —> Optimizer — Compiler

Figure 4.12 Pig architecture for scripts dataflow and processing

The three ways to execute scripts are:

1.Grunt Shell: An interactive shell of Pig that
executes the scripts.

2. Script File: Pig commands written in a script file
that execute at Pig Server.

3.Embedded Script: Create UDFs for the functions
unavailable in Pig built-in operators. UDF can be
in other programming languages. The UDFs can
embed in Pig Latin Script file.

Pig Architecture(contd..)

Parser

A parser handles Pig scripts after passing through
Grunt or Pig Server.

The Parser performs type checking and checks
the script syntax. The output is a Directed Acyclic
Graph (DAG). Acylic means only one set of inputs
are simultaneously at a node, and only one set of
output generates after node operations. DAG
represents the Pig Latin statements and logical
operators.

Nodes represent the logical operators. Edges
between sequentially traversed nodes represent
the dataflows.

Pig Architecture(contd..)
Optimizer

The DAG is submitted to the logical optimizer.
The optimization activities, such as split,
merge, transform and reorder operators
execute in this phase.

The optimization is an automatic feature. The
optimizer reduces the amount of data in the
pipeline at any instant of time, while
processing the extracted data.

It executes certain functions for carrying out
this task, as explained as follows:

Pig Latin and Developing Pig Latin Scripts

* Pig Latin enables developing the scripts for data
analysis. A number of operators in Pig Latin help
to develop their own functions for reading,
writing and processing data.

* Pig Latin programs execute in the Pig run-time
environment.

Pig Latin
Statements in Pig Latin:

. Basic constructs to process the data.
. Include schemas and expressions.
. End with a semicolon.

. LOAD statement reads the data from file system, DUMP
displays the result and STORE stores the result.

5. Single line comments begin with - - and multiline begin
with/* and end with*/

6. Keywords (for example, LOAD, STORE, DUMP) are not
case-sensitive.

7. Function names, relations and paths are case-sensitive.

B~ W N -

Statement 1
Statement 2

%
N

a7
If"! "
AN i
P4 : Statement n
7
;
Reads \ { chisch
!
dt opsfor
& transformations

DUMP

STORE

Displays
output

tores output

in HDFS }

W
"""""""""

Flgure 4.15 Order of processing Pig statements—Load, dump, and store

Operators in Pig Latin

