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MapReduce , Hive and Pig



MapReduce Architecture



INTRODUCTION 

• The data processing layer is the application
support layer, while the application layer is the
data consumption layer in Big-Data
architecture design (Figure 1.2).

• When using HDFS, the Big Data processing
layer includes the APIs of Programs such as
MapReduce and Spark.



• The application support layer includes HBase
which creates column-family data store using
other formats such as key-value pairs or JSON
file

• HBase stores and processes the columnar
data after translating into MapReduce tasks to
run in HDFS.



• The support layer also includes Hive which
creates SQL-like tables.

• Hive stores and processes table data after
translating it into MapReduce tasks to run in
HDFS.

• Hive creates SQL-like tables in Hive shell.

• Hive uses HiveQL processes queries, ad hoc
(unstructured) queries, aggregation functions
and summarizing functions, such as functions
to compute maximum, minimum, average of
selected or grouped datasets. HiveQL is a
restricted form of SQL.



• The support layer also includes Pig. Pig is a
data-flow language and an execution
framework .

• Pig enables the usage of relational algebra in
HDFS.

• MapReduce is the processing framework and
YARN is the resource managing framework .



• Figure 4.1 shows Big Data architecture design
layers: (i) data storage, (ii) data processing and
data consumption, (iii) support layer APis for
MapReduce, Hive and Pig running on top of
the HDFS Data Store, and (v) application tasks.

• Pig is a dataflow language, which means that
it defines a data stream and a series of
transformations.





• Hive and Pig are also part of the ecosystem
(Figure 4.1).

• Big Data storage and application-support APIs
can use Hive and Pig for processing data at
HDFS.

• Processing needs mapping and finding the
source file for data. File is in the distributed
data store. Requirement is to identify the
needed data-block in the cluster.

• Applications and AP Is run at the data nodes
stored at the blocks.



• The smallest unit of data that can be stored or
retrieved from the disk is a block. HDFS deals
with the data stored in blocks.

• The Hadoop application is responsible for
distributing the data blocks across multiple
nodes.

• The tasks, therefore, first convert into map and
reduce tasks. This requirement arises because
the mapping of stored values is very important.

• The number of map tasks in an application is
handled by the number of blocks of input files.



MAPREDUCE MAP TASKS, REDUCE 
TASKS AND MAPREDUCE EXECUTION 

• Big data processing employs the MapReduce
programming model.

• A Job means a MapReduce program. Each job
consists of several smaller units, called
MapReduce tasks.

• A software execution framework in MapReduce
programming defines the parallel tasks. The tasks
give the required result. The Hadoop MapReduce
implementation uses Java framework.





• The model defines two important tasks, namely
Map and Reduce.

• Map takes input data set as pieces of data and
maps them on various nodes for parallel
processing.

• The reduce task, which takes the output from the
maps as an input and combines those data pieces
into a smaller set of data. A reduce task always
run after the map task (s).

• Many real-world situations are expressible using
this model. Such Model describes the essence of
MapReduce programming where the programs
written are automatically parallelize and execute
on a large cluster.



• The input data is in the form of an HDFS file.
The output of the task also gets stored in the
HDFS.

• The compute nodes and the storage nodes are
the same at a cluster, that is, the MapReduce
program and the HDFS are running on the
same set of nodes.

• This configuration results in effectively
scheduling of the sub-tasks on the nodes
where the data is already present.

• This results in high efficiency due to reduction
in network traffic across the cluster.



• A user application specifies locations of the
input/ output data and translates into map and
reduces functions.

• A job does implementations of appropriate
interfaces and/ or abstract-classes. These, and
other job parameters, together comprise the job
configuration.

• The Hadoop job client then submits the job (jar/
executable etc.) and configuration to the
JobTracker, which then assumes the responsibility
of distributing the software/configuration to the
slaves by scheduling tasks, monitoring them, and
provides status and diagnostic information to the
job-client.



• Figure 4.3 shows MapReduce process when a

client submits a job, and the succeeding actions
by the JobTracker and TaskTracker.





JobTracker and Task Tracker
• MapReduce consists of a single master

JobTracker and one slave TaskTracker per
cluster node.

• The master is responsible for scheduling the
component tasks in a job onto the slaves,
monitoring them and re-executing the failed
tasks.

• The slaves execute the tasks as directed by the
master.



• The data for a MapReduce task is initially at
input files. The input files typically reside in
the HDFS.

• The files may be line-based log files, binary
format file, multi-line input records, or
something else entirely different.

• These input files are practically very large,
hundreds of terabytes or even more than it.



• Most importantly, the MapReduce framework
operates entirely on key, value-pairs.

• The framework views the input to the task as
a set of (key, value) pairs and produces a set of
(key, value) pairs as the output of the task.



Map-Tasks
• Map task means a task that implements a map(),

which runs user application codes for each key-
value pair (k1, v1).

• Key k1 is a set of keys. Key k1 maps to a group of
data values .

• Values v1 are a large string which is read from
the input file(s).

• The output of map() would be zero (when no
values are found) or intermediate key-value pairs
(k2, v2).

• The value v2 is the information for the
transformation operation at the reduce task using
aggregation or other reducing functions.



• Reduce task refers to a task which takes the
output v2 from the map as an input and
combines those data pieces into a smaller set
of data using a combiner. The reduce task is
always performed after the map task.

• The Mapper performs a function on individual
values in a dataset irrespective of the data size
of the input. That means that the Mapper
works on a single data set.

• Figure 4.4 shows logical view of functioning of
map().





Key-Value Pair

• Each phase (Map phase and Reduce phase) of
MapReduce has key-value pairs as input and
output.

• Data should be first converted into key-value
pairs before it is passed to the Mapper, as the
Mapper only understands key-value pairs of
data.



Key-value pairs in Hadoop MapReduce are
generated as follows:

• InputSplit - Defines a logical representation of
data and presents a Split data for processing at
individual map().

• RecordReader - Communicates with the
InputSplit and converts the Split into records
which are in the form of key-value pairs in a
format suitable for reading by the Mapper.

• RecordReader uses TextlnputFormat by default
for converting data into key-value pairs.

• RecordReader communicates with the InputSplit
until the file is read.



• Figure 4.5 shows the steps in MapReduce key-
value pairing.

• Generation of a key-value pair in MapReduce
depends on the dataset and the required
output.

• Also, the functions use the key-value pairs at
four places: map() input, map() output,
reduce() input and reduce() output.





Grouping by Key 
• When a map task completes, Shuffle process

aggregates (combines) all the Mapper outputs
by grouping the key-values of the Mapper
output, and the value v2 append in a list of
values.

• A "Group By" operation on intermediate keys
creates v2.



Shuffle and Sorting Phase 

• Here, all pairs with the same group key (k2)
collect and group together, creating one group for
each key. So, the Shuffle output format will be a
List of <k2, List (v2)>, Thus, a different subset of
the intermediate key space assigns to each
reduce node. These subsets of the intermediate
keys (known as "partitions") are inputs to the
reduce tasks.

• Each reduce task is responsible for reducing the
values associated with partitions. HDFS sorts the
partitions on a single node automatically before
they input to the Reducer.



Partitioning
• The Partitioner does the partitioning .The

partitions are the semi-mappers in
MapReduce. Partitioner is an optional class.

• MapReduce driver class can specify the
Partitioner. A partition processes the output of
map tasks before submitting it to Reducer
tasks.

• Partitioner function executes on each machine
that performs a map task. Partitioner is an
optimization in MapReduce that allows local
partitioning before reduce-task phase.



• Functions for Partitioner and sorting functions
are at the mapping node.

• The main function of a Partitioner is to split
the map output records with the same key.



Combiners
• Combiners are semi-reducers in MapReduce.

Combiner is an optional class.

• MapReduce driver class can specify the
combiner.

• The combiner() executes on each machine
that performs a map task.

• Combiners optimize MapReduce task that
locally aggregates before the shuffle and sort
phase. Typically, the same codes implement
both the combiner and the reduce functions,
combiner() on map node and reducer() on
reducer node. .



• The main function of a Combiner is to consolidate
the map output records with the same key.

• The output (key-value collection) of the combiner
transfers over the network to the Reducer task as
input.

• Combiners use grouping by key for carrying out
this function. The combiner works as follows:

(i) It does not have its own interface and it must
implement the interface at reduce().

(ii) It operates on each map output key. It must have
the same input and output key-value types as the
Reducer class.

(iii) It can produce summary information from a large
dataset because it replaces the original Map
output with fewer records or smaller records.



Reduce Tasks 
• Java API at Hadoop includes Reducer class. An abstract

function, reduce() is in the Reducer. Any specific
Reducer implementation should be subclass of this
class and override the abstract reduce().

• Reduce task implements reduce() that takes the
Mapper output (which shuffles and sorts), which is
grouped by key-values (k2, v2) and applies it in parallel
to each group.

• Intermediate pairs are at input of each Reducer in
order after sorting using the key.

• Reduce function iterates over the list of values
associated with a key and produces outputs such as
aggregations and statistics.

• The reduce function sends output zero or another set
of key-value pairs (k3, v3) to the final the output file.
Reduce: {(k2, list (v2) -> list (k3, v3)}



• Sample Code for Reducer Class 

public class ExampleReducer extends Reducer<k2, 
v2, k3, v3> 

{

void reduce (k2 key, Iterable<v2> values, Context           
context) throws IOBxception,InterruptedException

{ ... } 

}



Details of MapReduce Processing Steps 
• Figure 4.6 shows the execution steps, data flow,

splitting, partitioning and sorting on a map node
and reducer on reducer node.

• ACVMs (Automatic Chocolate Vending
Machines).

• Automotive Components and Predictive
Automotive Maintenance Services (ACPAMS).
ACPAMS is an application of (Internet) connected
cars which renders services to customers for
maintenance and servicing of (Internet)
connected cars.







• The application submits the inputs. The
execution framework handles all other aspects
of distributed processing transparently, on
clusters ranging from a single node to a few
thousand nodes.

• The aspects include scheduling, code
distribution, synchronization, and error and
fault handling.



COMPOSING MapReduce FOR CALCULATIONS 
AND ALGORITHMS 

• The following subsections describe the use of
MapReduce program composition in counting
and summing, algorithms for relational
algebraic operations, projections, unions,
intersections, natural joins, grouping and
aggregation, matrix multiplication and other
computations.



Composing Map-Reduce for Calculations 

The calculations for various operations compose 
are: 

• Counting and Summing : Assume that the
number of alerts or messages generated during
a specific maintenance activity of vehicles need
counting for a month.

• Counting is used in the data querying
application. For example, count of messages
generated, word count in a file, number of cars
sold, and analysis of the logs, such as number
of tweets per month. Application is also in
business analytics field.



• Sorting Figure 4.6 illustrated MapReduce
execution steps, i.e., dataflow, splitting,
partitioning and sorting on a map node and
reduce on a reducer node.

• Example 4.3 illustrated the sorting method.
Many applications need sorted values in a
certain order by some rule or process.

• Mappers just emit all items as values
associated with the sorting keys which
assemble as a function of items.

• Reducers combine all emitted parts into a
final list.



• Finding Distinct Values (Counting unique values)
Applications such as web log analysis need
counting of unique users. Evaluation is performed
for the total number of unique values in each
field for each set of records that belongs to the
same group. Two solutions are possible:

(i) The Mapper emits the dummy counters for each
pair of field and groupId, and the Reducer
calculates the total number of occurrences for
each such pair.

(ii) The Mapper emits the values and groupld, and
the Reducer excludes the duplicates from the list
of groups for each value and increments the
counter for each group. The final step is to sum
all the counters emitted at the Reducer.



• Collating : is a way to collect all items which have the
same value of function in one document or file, or a
way to process items with the same value of the
function together.

• Examples of applications are producing inverted
indexes and extract, transform and load operations.

• Mapper computes a given function for each item,
produces value of the function as a key, and the item
itself as a value.

• Reducer then obtains all item values using group-by
function, processes or saves them into a list and
outputs to the application task or saves them.



Filtering or Parsing

• Filtering or parsing collects only those items
which satisfy some condition or transform
each item into some other representation.

• Filtering/ parsing include tasks such as text
parsing, value extraction and conversion from
one format to another.

• Examples of applications of filtering are found
in data validation, log analysis and querying of
datasets.



• Mapper takes items one by one and accepts
only those items which satisfy the conditions
and emit the accepted items or their
transformed versions.

• Reducer obtains all the emitted items, saves
them into a list and outputs to the application.



Distributed Tasks Execution
• Large computations divide into multiple

partitions and combine the results from all
partitions for the final result. Examples of
distributed running of tasks are physical and
engineering simulations, numerical analysis
and performance testing.

• Mapper takes a specification as input data,
performs corresponding computations and
emits results.

• Reducer combines all emitted parts into the
final result.



Graph Processing using Iterative Message 
Passing 

• Graph is a network of entities and relationships
between them.

• A node corresponds to an entity. An edge joining
two nodes corresponds to a relationship. Path
traversal method processes a graph.

• Traversal from one node to the next generates a
result which passes as a message to the next
traversal between the two nodes.

• Cyclic path traversal uses iterative message
passing.



• Web indexing also uses iterative message
passing.

• Graph processing or web indexing requires
calculation of the state of each entity.
Calculated state is based on characteristics of
the other entities in its neighborhood in a given
network.

• (State means present value. For example,
assume an entity is a course of study. The
course may be Java or Python. Java is a state of
the entity and Python is another state.)



• A set of nodes stores the data and codes at a
network.

• Each node contains a list of neighbouring
node IDs. MapReduce jobs execute iteratively.

• Each node in an iteration sends messages to
its neighbors. Each neighbor updates its state
based on the received messages.

• Iterations terminate on some conditions, such
as completion of fixed maximal number of
iterations or specified time to live or negligible
changes in states between two consecutive
iterations.



• Mapper emits the messages for each node
using the ID of the adjacent node as a key. All
messages thus group by the incoming node.

• Reducer computes the state again and
rewrites a node new state.



Cross Correlation 
• Cross-correlation involves calculation using number

of tuples where the items co-occur in a set of tuples
of items. If the total number of items is N, then the
total number of values= N x N.

• Cross correlation is used in text analytics. (Assume
that items are words and tuples are sentences).

• Another application is in market-analysis (for
example, to enumerate, the customers who buy item
x tend to also buy y).

• If N x N is a small number, such that the matrix can
fit in the memory of a single machine, then
implementation is straightforward.



Two solutions for finding cross correlations 
are: 

(i) The Mapper emits all pairs and dummy counters,
and the Reducer sums these counters. The
benefit from using combiners is little, as it is likely
that all pairs are distinct. The accumulation does
not use in-memory computations as N is very
large.

(ii) The Mapper groups the data by the first item in
each pair and maintains an associative array
("stripe") where counters for all adjacent items
accumulate. The Reducer receives all stripes for
the leading item, merges them and emits the
same result as in the pairs approach.



The grouping: 

• Generates fewer intermediate keys. Hence,
the framework has less sorting to do.

• Greatly benefits from the use of combiners.

• In-memory accumulation possible.

• Enables complex implementations.

• Results in general, faster computations using
stripes than "pairs".



Matrix-Vector Multiplication by MapReduce

• Numbers of applications need multiplication
of n x n matrix A with vector B of dimension n.
Each element of the product is the element of
vector C of dimension n. The elements of C
calculate by relation,



Matrix-Vector Multiplication by MapReduce



Relational-Algebra Operations
• Selection

• Example of Selection in relational algebra is as
follows: Consider the attribute names
(ACVM_ID, Date, chocolate_flavour,
daily_sales). Consider relation









Natural Join 
• Consider two relations R1 and R2 for tuples a, b and c.

Natural Join computes for R1 (a, b) with R2 (b, c). Natural
Join is R (a, b, c). Tuples b joins as one in a Natural Join.

• The Mapper emits the key-value pair (b, (R1, a)) for each
tuple (a, b) of R1, similarly emits (b, (R2, c)) for each tuple
(b, c) of R2.

• The Mapper is mapping both with Key for b. The Reducer
transfers all pairs consisting of one with first component R1
and the other with first component R2, say (R1, a) and (R2,
c).

• The output from the key and value list is a sequence of key-
value pairs. The key is of no use and is irrelevant. Each
value is one of the triples (a, b, c) such that (R1, a) and (R2,
c) are present in the input list of values.





Grouping and Aggregation by MapReduce



HIVE 
• Hive was created by Facebook. Hive is a data

warehousing tool and is also a data store on the
top of Hadoop.

• An enterprise uses a data warehouse as large
data repositories that are designed to enable
the tracking, managing, and analyzing the data.

• Hive processes structured data and integrates
data from multiple heterogeneous sources.
Additionally, also manages the constantly
growing volumes of data.





Hive Characteristics 
1.Has the capability to translate queries into

MapReduce jobs. This makes Hive scalable,
able to handle data warehouse applications,
and therefore, suitable for the analysis of
static data of an extremely large size, where
the fast response-time is not a criterion.

2.Supports web interfaces as well. Application
APIs as well as web-browser clients, can
access the Hive DB server.

3.Provides an SQL dialect (Hive Query Language,
abbreviated HiveQL or HQL).



Limitations of Hive
Hive is:

1. Not a full database. Main disadvantage is that
Hive does not provide update, alter and
deletion of records in the database.

2. Not developed for unstructured data.

3. Not designed for real-time queries.

4. Performs the partition always from the last
column.



Hive Architecture 



Components of Hive architecture are: 
• Hive Server (Thrift) - An optional service that

allows a remote client to submit requests to
Hive and retrieve results. Requests can use a
variety of programming languages. Thrift
Server exposes a very simple client API to
execute HiveQL statements.

• Hive CLI (Command Line Interface)- Popular
interface to interact with Hive. Hive runs in
local mode that uses local storage when
running the CLI on a Hadoop cluster instead of
HDFS.



• Web Interface - Hive can be accessed using a web
browser as well. This requires a HWI Server
running on some designated code. The URL
http:// hadoop:<port no> / hwi command can be
used to access Hive through the web.

• Metastore- It is the system catalog. All other
components of Hive interact with the Metastore.
It stores the schema or metadata of tables,
databases, columns in a table, their data types
and HDFS mapping.

• Hive Driver - It manages the life cycle of a HiveQL
statement during compilation, optimization and
execution.





Comparison with RDBMS (Traditional Database) 

• Hive is a DB system which defines databases
and tables. Hive analyzes structured data in
DB. Hive has certain differences with RDBMS.

• Table 4.3 gives a comparison of Hive database
characteristics with RDBMS.





Hive Data Types and File Formats 

• Hive defines various primitive, complex, string,
date/time, collection data types and file
formats for handling and storing different data
formats.

• Table 4.4 gives primitive, string, date/time and
complex Hive data types and their
descriptions.















Hive Built-in Functions 

• Hive supports a number of built-in functions.
Table 4.8 gives the return types, syntax and
descriptions of the examples of these
functions.

• Table 4.8 shows the Return types, syntax, and
descriptions of the functions





HiveQL
• Hive Query Language (abbreviated HiveQL) is

for querying the large datasets which reside in
the HDFS environment.

• HiveQL script commands enable data
definition, data manipulation and query
processing.

• HiveQL supports a large base of SQL users who
are acquainted with SQL to extract
information from data warehouses.



















HiveQL For Querying the Data 

• Partitioning and storing are the requirements.
A data warehouse should have a large number
of partitions where the tables, files and
databases store. Querying then requires
sorting, aggregating and joining functions.

• Querying the data is to SELECT a specific entity
satisfying a condition, having presence of an
entity or selecting specific entity using
GroupBy .





Partitioning 

• Hive organizes tables into partitions. Table
partitioning refers to dividing the table data
into some parts based on the values of
particular set of columns.

• Partition makes querying easy and fast. This is
because SELECT is then from the smaller
number of column fields.

• Section 3.3.3.3 described RC columnar format
and serialized records.

• The following example explains the concept of
partitioning, columnar and file records formats.









• The following example 4.13 explains how
querying is facilitated by using partitioning of a
table.

• A query processes faster when using partition.
Selection of a product of a specific category
from a table during query processing takes
lesser time when the table has a partition
based on a category.







hive queries examples

• https://www.edureka.co/blog/hive-commands-
with-examples



Advantages of Partition
1. Distributes execution load horizontally.
2.Query response time becomes faster when

processing a small part of the data instead of
searching the entire dataset.

Limitations of Partition
1. Creating a large number of partitions in a table

leads to a large number of files and directories in
HDFS, which is an overhead to NameNode, since it
must keep all metadata for the file system in
memory only.

2. Partitions may optimize some queries based on
Where clauses, but they may be less responsive for
other important queries on grouping clauses.



Limitations of Partition 

3. A large number of partitions will lead to a
large number of tasks (which will run in
separate JVM) in each MapReduce job, thus
creating a lot of overhead in maintaining JVM
start up and tear down (A separate task will be
used for each file). The overhead of JVM start
up and tear down can exceed the actual
processing time in the worst case.



Bucketing







Views
• A program uses functions or objects.

Constructing an object instance enables
layered design and encapsulating the
complexity due to methods and fields.

• Similarly, Views provide ease of programming.
Complex queries simplify using reusable Views.
A HiveQL View is a logical construct.



A View provisions the following:

• Saves the query and reduces the query complexity

• Use a View like a table but a View does not store
data like a table

• Hive query statement when uses references to a
view, the Hive executes the View and then the
planner combines the information in View definition
with the remaining actions on the query (Hive has a
query planner, which plans how a query breaks into
sub-queries for obtaining the right answer.)

• Hides the complexity by dividing the query into
smaller, more manageable pieces.



Sub-Queries (Using Views) 

Consider the following query with a nested sub-query.





Aggregation

• Hive supports the following built-in aggregation 
functions. The usage of these functions is same 
as the SQL aggregate functions. 

• Table 4.10 lists the functions, their syntax and 
descriptions.





Join

• A JOIN clause combines columns of two or more
tables, based on a relation between them.
HiveQLJoin is more or less similar to SQL JOINS.
Following uses of two tables show the Join
operations.

• Table 4.11 gives an example of a table named
toy_tbl of Product categories, Productid and
Product name.







Different types of joins are follows:

• JOIN 

• LEFT OUTER JOIN 

• RIGHT OUTER JOIN 

• FULL OUTER JOIN



JOIN

• Join clause combines and retrieves the records
from multiple tables.

• Join is the same as OUTER JOIN in SQL. A JOIN
condition uses primary keys and foreign keys
of the tables.

SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy_tbl t JOIN price p ON (t.Productid = p.Id);



LEFT OUTER JOIN 

• A LEFT JOIN returns all the values from the left
table, plus the matched values from the right
table, or NULL in case of no matching JOIN
predicate.

• SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy_tbl t LEFT OUTER JOIN price p ON
(t.Productid = p.Id);



• RIGHT OUTER JOIN

• A RIGHT JOIN returns all the values from the
right table, plus the matched values from the
left table, or NULL in case of no matching join
predicate.

• SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy_tbl t RIGHT OUTER JOIN price p ON
(t.Productid = p.Id);



FULL OUTER JOIN

• HiveQL FULL OUTER JOIN combines the
records of both the left and the right outer
tables that fulfill the JOIN condition. The
joined table contains either all the records
from both the tables, or fills in NULL values for
missing matches on either side.

• SELECT t.Productid, t.ProductName, p.ProductPrice
FROM toy_tbl t FULL OUTER JOIN price p ON
(t.Productid = p.Id);



Group by Clause 

• GROUP BY, HAVING,ORDER BY DISTRIBUTEBY, 
CLUSTER BY are HiveQL clauses. An example of 
using the clauses is given below:





HiveQL - Select-Joins

• https://www.tutorialspoint.com/hive/hiveql_joins.htm



PIG
Apache developed Pig, which: 

• Is an abstraction over MapReduce

• Is an execution framework for parallel processing

• Reduces the complexities of writing a MapReduce
program

• Is a high-level dataflow language. Dataflow
language means that a Pig operation node takes
the inputs and generates the output for the next
node

• Is mostly used in HDFS environment

• Performs data manipulation operations at files at
data nodes in Hadoop.



Applications of Apache Pig 
Applications of Pig are:

• Analyzing large datasets

• Executing tasks involving adhoc processing

• Processing large data sources such as web logs
and streaming online data

• Data processing for search platforms. Pig
processes different types of data

• Processing time sensitive data loads; data extracts
and analyzes quickly .

For example, analysis of data from twitter to find
patterns for user behavior and recommendations.



Features of PIG
1. Apache PIG helps programmers write complex data transformations

using scripts (without using Java). Pig Latin language is very similar to SQL
and possess a rich set of built-in operators, such as group.join, filter, limit,
order by, parallel, sort and split.

2. Creates user defined functions (UDFs) to write custom functions which
are not available in Pig. A UDF can be in other programming languages,
such as Java, Python, Ruby, Jython, ]Ruby. They easily embed into Pig
scripts written in Pig Latin. UDFs provide extensibility to the Pig.

3. Process any kind of data, structured, semi-structured or unstructured
data, coming from various sources.

4. (Reduces the length of codes using multi-query approach. Pig code of 10
lines is equal to MapReduce code of 200 lines. Thus, the processing is
very fast.

5. Handles inconsistent schema in case of unstructured data as well.

6. (vi) Extracts the data, performs operations on that data and dumps the
data in the required format in HDFS. The operation is called ETL (Extract
Transform Load).

7. Performs automatic optimization of tasks before execution.

8. Programmers and developers can concentrate on the whole operation
without a need to create mapper and reducer tasks separately.



Features of PIG (contd..)
9. Reads the input data files from HDFS or the data 

files from other sources such as local file system, 
stores the intermediate data and writes back the 
output in HDFS. 

10.Pig characteristics are data reading, processing, 
programming the UDFs in multiple languages 
and programming multiple queries by fewer 
codes. This causes fast processing. 

11. Pig derives guidance from four philosophies, 
live anywhere, take anything, domestic and run 
as if flying. This justifies the name Pig, as the 
animal pig also has these characteristics. 







Pig Architecture 

• Firstly, Pig Latin scripts submit to the Apache
Pig Execution Engine.

• Figure 4.12 shows Pig architecture for scripts
dataflow and processing in the HDFS
environment.



Pig Architecture



The three ways to execute scripts are: 

1.Grunt Shell: An interactive shell of Pig that
executes the scripts.

2. Script File: Pig commands written in a script file
that execute at Pig Server.

3.Embedded Script: Create UDFs for the functions
unavailable in Pig built-in operators. UDF can be
in other programming languages. The UDFs can
embed in Pig Latin Script file.



Pig Architecture(contd..)
Parser

• A parser handles Pig scripts after passing through
Grunt or Pig Server.

• The Parser performs type checking and checks
the script syntax. The output is a Directed Acyclic
Graph (DAG). Acylic means only one set of inputs
are simultaneously at a node, and only one set of
output generates after node operations. DAG
represents the Pig Latin statements and logical
operators.

• Nodes represent the logical operators. Edges
between sequentially traversed nodes represent
the dataflows.



Pig Architecture(contd..)

Optimizer

• The DAG is submitted to the logical optimizer.
The optimization activities, such as split,
merge, transform and reorder operators
execute in this phase.

• The optimization is an automatic feature. The
optimizer reduces the amount of data in the
pipeline at any instant of time, while
processing the extracted data.

• It executes certain functions for carrying out
this task, as explained as follows:



Pig Latin and Developing Pig Latin Scripts 

• Pig Latin enables developing the scripts for data
analysis. A number of operators in Pig Latin help
to develop their own functions for reading,
writing and processing data.

• Pig Latin programs execute in the Pig run-time
environment.



Pig Latin 

Statements in Pig Latin:

1. Basic constructs to process the data. 

2. Include schemas and expressions. 

3. End with a semicolon. 

4. LOAD statement reads the data from file system, DUMP 
displays the result and STORE stores the result. 

5. Single line comments begin with - - and multiline begin 
with/* and end with*/ 

6. Keywords (for example, LOAD, STORE, DUMP) are not 
case-sensitive. 

7. Function names, relations and paths are case-sensitive. 






