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14.1 Design of a Sequence Detector

To illustrate the design of a clocked Mealy sequential circuit, we will design a
sequence detector. The circuit has the form shown in Figure 14-1.

FIGURE 14-1
Sequence Detector
to be Designed T

Clock

The circuit will examine a string of 0’s and 1’s applied to the X input and generate an
output Z = 1 only when a prescribed input sequence occurs. It will be assumed that the
input X can only change between clock pulses. Specifically, we will design the circuit
so that any input sequence ending in 101 will produce an output Z = 1 coincident with
the last 1. The circuit does not reset when a 1 output occurs. A typical input sequence
and the corresponding output sequence are

X=001101100101 0 1 0 O
Z= 000001000001 0 1 0 O (14-1)
(time: 0 1234567891011 12 13 14 15)

Initially, we do not know how many flip-flops will be required, so we will designate the
circuit states as S, Sy, etc., and later assign flip-flop states to correspond to the circuit
states. We will construct a state graph to show the sequence of states and outputs which
occur in response to different inputs. Initially, we will start the circuit in a reset state des-
ignated S, If a 0 input is received, the circuit can stay in S, because the input sequence
we are looking for does not start with 0. However, if a 1 is received, the circuit must go
to a new state (5;) to “remember” that the first input in the desired sequence has been
received (Figure 14-2). The labels on the graph are of the form X/Z, where the symbol
before the slash is the input and the symbol after the slash is the corresponding output.

When in state S, if we receive a 0, the circuit must change to a new state (S,) to
remember that the first two inputs of the desired sequence (10) have been received.
If a 1 is received in state S, the desired input sequence (101) is complete and the out-
put should be 1. The question arises whether the circuit should then go to a new state
or back to §, or §;. Because the circuit is not supposed to reset when an output
occurs, we cannot go back to S,. However, because the last 1 in a sequence can also
be the first 1 in a new sequence, we can return to Sy, as indicated in Figure 14-3.

FIGURE 14-2 0
~
oN
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FIGURE 14-3

The graph of Figure 14-3 is still incomplete. If a 1 input occurs when in state S, we
can stay in §; because the sequence is simply restarted. If a 0 input occurs in state S,, we
have received two 0’s in a row and must reset the circuit to state S, because 00 is not
part of the desired input sequence, and going to one of the other states could lead to an
incorrect output. The final state graph is given in Figure 14-4. Note that for a single input
variable each state must have two exit lines (one for each value of the input variable)
but may have any number of entry lines, depending on the circuit specifications.

FIGURE 14-4
Mealy State Graph
for Sequence
Detector

State S, is the starting state, state S indicates that a sequence ending in 1 has
been received, and state S, indicates that a sequence ending in 10 has been
received. An alternative way to start the solution would be to first define states
in this manner and then construct the state graph. Converting the state graph to
a state table yields Table 14-1. For example, the arc from S, to §; is labeled 1/1.
This means that when the present state is S, and X = 1, the present output is 1.
This 1 output is present as soon as X becomes 1, that is, before the state change
occurs. Therefore, the 1 is placed in the S, row of the table.

TABLE 14-1 Present
Present Next State Output
State X=0 X=1 X=0 X=1
So So S 0 0
S S, S 0 0
S, So S 0 1

At this point, we are ready to design a circuit which has the behavior described by
the state table. Because one flip-flop can have only two states, two flip-flops are needed
to represent the three states. Designate the two flip-flops as A and B. Let flip-flop states
A =0and B = 0 correspond to circuit state Sy;; A = 0 and B = 1 correspond to S;; and
A =1and B = 0 correspond to circuit state S,. Each circuit state is then represented by
a unique combination of flip-flop states. Substituting the flip-flop states for S, S; and S,
in the state table yields the transition table (Table 14-2).
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TABLE 14-2 A*B* z
AB X=0 X=1 X=0 X=1
00 00 01 0 0
01 10 01 0 0
10 00 01 0 1
From this table, we can plot the next-state maps for the flip-flops and the map for
the output function Z:
X X X
AB 0 1 AB 0 1 AB 0 1
0| o 0 | o |(1) 00| 0 0
01 m 0 01 0 1 01 0 0
1 @ X 1| X || X 1l x |[x
10 10 1 10 1
0 0 0 . 0
A*=X'B B*=X Z=XA
The flip-flop inputs are then derived from the next-state maps using the
same method that was used for counters (Section 12.4). If D flip-flops are used,
D,=A"=X'Band Dy = B" = X, which leads to the circuit shown in Figure 14-5.
Initially, we will reset both flip-flops to the O state. By tracing signals through the
circuit, you can verify that an output Z = 1 will occur when an input sequence
ending in 101 occurs. To avoid reading false outputs, always read the value of
Z after the input has changed and before the active clock edge.
FIGURE 14-5 | |
A’ A B’ B
Ck b Ck H

Clock T T

) O

X

The procedure for finding the state graph for a Moore machine is similar to that
used for a Mealy machine, except that the output is written with the state instead of
with the transition between states. We will rework the previous example as a Moore
machine to illustrate this procedure. The circuit should produce an output of 1 only
if an input sequence ending in 101 has occurred. The design is similar to that for the
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Mealy machine up until the input sequence 10 has occurred, except that 0 output is
associated with states S, S}, and S,:
1
CO——®
0
Now, when a 1 input occurs to complete the 101 sequence, the output must become 1;
therefore, we cannot go back to state S; and must create a new state S; with a 1 output:
1
OO
0
O—O
We now complete the graph, as shown in Figure 14-6. Note the sequence 100 resets
the circuit to S,. A sequence 1010 takes the circuit back to S, because another 1
input should cause Z to become 1 again.
FIGURE 14-6

Moore State Graph
for Sequence

Detector
The state table corresponding to the circuit is given by Table 14-3. Note that there
is a single column for the output because the output is determined by the present state
and does not depend on X. Note that in this example the Moore machine requires one
more state than the Mealy machine which detects the same input sequence.
TABLE 14-3 Present Next State Present
State X=0 X=1 Output(2)
So So S, 0
S S, S 0
S, So Ss 0
S, s, S, 1
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Because there are four states, two flip-flops are required to realize the circuit. Using
the state assignment AB = 00 for Sy, AB = 01 for S|, AB = 11 for §,,and AB = 10 for
S, the following transition table for the flip-flops results (Table 14-4):

TABLE 14-4 A*B*
AB | X=0 X=1 z
00 00 01 0
01 11 01 0
11 00 10 0
10 11 01 1

The output function is Z = AB’. Note that Z depends only on the flip-flop states
and is independent of X, while for the corresponding Mealy machine, Z was a func-
tion of X. The derivation of the flip-flop input equations is straightforward and will
not be given here.

14.2 More Complex Design Problems

In this section we will derive a state graph for a sequential circuit of somewhat greater
complexity than the previous examples. The circuit to be designed again has the form
shown in Figure 14-1. The output Z should be 1 if the input sequence ends in either
010 or 1001, and Z should be 0 otherwise. Before attempting to draw the state graph,
we will work out some typical input-output sequences to make sure that we have a
clear understanding of the problem statement. We will determine the desired output
sequence for the following input sequence:

X=00101001000100110
T T T T
a b cd e f
Z=00010101100010100

At point a, the input sequence ends in 010, one of the sequences for which we are look-
ing, so the output is Z = 1. At point b, the input again ends in 010,so Z = 1. Note that
overlapping sequences are allowed because the problem statement does not say any-
thing about resetting the circuit when a 1 output occurs. At point ¢, the input sequence
ends in 1001, so Z is again 1. Why do we have a 1 output at points d, e, and f ? This is
just one of many input sequences. A state machine that gives the correct output for this
sequence will not necessarily give the correct output for all other sequences.

We will start construction of the state graph by working with the two sequences
which lead to a 1 output. Then, we will later add arrows and states as required to make
sure that the output is correct for other cases. We start off with a reset state S, which
corresponds to having received no inputs. Whenever an input is received that corre-
sponds to part of one of the sequences for which we are looking, the circuit should go
to a new state to “remember” having received this input. Figure 14-7 shows a partial
state graph which gives a 1 output for the sequence 010. In this graph S, corresponds
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FIGURE 14-12 State Input Sequences
So Reset or even 1's
S Odd 1's
S, Even 1's and ends in 0
S5 Even 1's and 00 has occurred
Sa Odd 1's and 00 has occurred
Ss Odd 1's and ends in 0

0’s can be ignored. Therefore, we can stay in S; (arrow f). Similarly, extra 0 inputs can be
ignored in S, (arrow g). This completes the Moore state diagram, and we should go back
and verify that the correct output sequence is obtained for various input sequences.

14.3 Guidelines for Construction of State Graphs

Although there is no one specific procedure which can be used to derive state
graphs or tables for every problem, the following guidelines should prove helpful:

1. First, construct some sample input and output sequences to make sure that you
understand the problem statement.

2. Determine under what conditions, if any, the circuit should reset to its initial state.

3. If only one or two sequences lead to a nonzero output, a good way to start is to
construct a partial state graph for those sequences.

4. Another way to get started is to determine what sequences or groups of
sequences must be remembered by the circuit and set up states accordingly.

5. Each time you add an arrow to the state graph, determine whether it can go to
one of the previously defined states or whether a new state must be added.

6. Check your graph to make sure there is one and only one path leaving each
state for each combination of values of the input variables.

7. When your graph is complete, test it by applying the input sequences formulated
in part 1 and making sure the output sequences are correct.

Several examples of deriving state graphs or tables follow.

—— A sequenttial circuit has one input (X) and one output (Z). The circuit examines groups
Example T four consecutive inputs and produces an output Z = 1 if the input sequence 0101 or
1001 occurs. The circuit resets after every four inputs. Find the Mealy state graph.

Solution A typical sequence of inputs and outputs is

X =0101 |0010 | 1001 | 0100
Z =0001 10000 | 0001 | 0000
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The vertical bars indicate the points at which the circuit resets to the initial state.
Note that an input sequence of either 01 or 10 followed by 01 will produce an output of
Z = 1. Therefore, the circuit can go to the same state if either 01 or 10 is received. The
partial state graph for the two sequences leading to a 1 output is shown in Figure 14-13.
Note that the circuit resets to S, when the fourth input is received. Next, we add
arrows and labels to the graph to take care of sequences which do not give a 1
output, as shown in Figure 14-14.
FIGURE 14-13 | Sequence Received
Partial State Reset
Graph for 0
Example 1 1
01 or 10
010 or 100
FIGURE 14-14 State Sequence Received
Complete State So Reset
Graph for S, 0
Example 1 S, 1
S, 01 or 10
S4 010 or 100
Ss Two inputs received, no 1
output is possible
Se Three inputs received, no 1
output is possible

The addition of states S5 and S, was necessary so that the circuit would not reset
to S, before four inputs were received. Note that once a 00 or 11 input sequence has
been received (state Ss), no output of 1 is possible until the circuit is reset.

F— A sequential circuit has one input ( X) and two outputs ( Z; and Z,). An output
Example 2 Z, = 1 occurs every time the input sequence 100 is completed, provided that the
sequence 010 has never occurred. An output Z, = 1 occurs every time the input
sequence 010 is completed. Note that once a Z, = 1 output has occurred, Z, = 1
can never occur but not vice versa. Find a Mealy state graph and table.
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Solution A typical sequence of inputs and outputs is:

X=100110010,1010010110100
Z;=001000100,0000000000000
Z,=000000001{0101001000010

Note that the sequence 100 occurs twice before 010 occurs, and Z; = 1 each time.
However, once 010 occurs and Z, = 1, Z; = 0 even when 100 occurs again. Z, = 1 all
five times that 010 occurs. Because we were not told to reset the circuit, 01010 means
that 010 occurred twice.

We can begin to solve this problem by constructing the part of the state graph
which will give the correct outputs for the sequences 100 and 010. Figure 14-15(a)
shows this portion of the state graph.

FIGURE 14-15
Partial Graphs for
Example 2

(@) (b)

An important question to ask at this point is, what does this circuit need to remember
to give the correct outputs? The circuit will need to remember how much progress has
been made on the sequence 010, so it will know when to output Z, = 1. The circuit will
also need to remember how much progress has been made on the sequence 100 and
whether 010 has ever occurred, so it will know when to output Z; = 1.

Keeping track of what is remembered by each state will help us make the correct
state graph. Table 14-5 will help us to do this. State S, is the initial state of the circuit, so
there is no progress on either sequence, and 010 has never occurred. State S| is the state
we go to when a 1 is received from S, so in state S;, we have made progress on the
sequence 100 by getting a 1. In state S,, we have made progress on the sequence 100 by
getting 10. Similarly, states S; and S, represent progress of 0 and 01 toward 010. In §;,

TABLE 14-5 State Description

State Descriptions So No progress on 100 No progress on 010
for Example 2 S, Progress of 1 on 100 No progress on 010

S, Progress of 10 on 100 Progress of 0 on 010 010 has never occurred

Ss No progress on 100 Progress of 0 on 010

S, | Progress of 1 on 100 Progress of 01 on 010

Ss Progress of 0 on 010
Se Progress of 01 on 010 010 has occurred
S, No progress on 010

Downloaded From : www.EasyEngineering.ngp9



Downloaded From : www.EasyEngineering.net

442 unit 14

there is no progress toward the sequence 010, and in S, there is no progress toward the
sequence 100. However, in S,, we have received 10, so if the next two inputs are 1 and 0,
the sequence 010 will be completed. Therefore, in S,, we have not only made progress
of 10 toward 100, but we have also made progress of 0 toward 010. Similarly, in S,, we
have made progress of 1 toward 100, as well as progress of 01 toward 010.

Using this information, we can fill in more of the state graph to get Figure 14-15(b).
If the circuit is in state S; and a 1 is received, then the last two inputs are 11. The pre-
vious 1 is of no use toward the sequence 100. However, the circuit will need to remem-
ber the new 1, and there is a progress of 1 toward the sequence 100. There is no
progress on the sequence 010, and 010 has never occurred, but this is the same situa-
tion as state S,;. Therefore, the circuit should return to state S;. Similarly, if a 0 is
received in state S;, the last two inputs are 00. There is a progress only of O toward the
sequence 010, there is no progress toward 100, and 010 has never occurred, so the cir-
cuit should return to state S;. In state S,, if a 0 is received, the sequence 100 is complete
and the circuit should output Z; = 1. Then, there is no progress on another sequence
of 100, and 010 has still not occurred. However, the last input is 0, so there is progress
of 0 toward the sequence 010. We can see from Table 14-5 that this is the same situa-
tion as S5, so the circuit should go to state S;. If, in state S,,a 1 is received, we have made
progress of 01 toward 010 and progress of 1 toward 100, and 010 has still not occurred.
We can see from Table 14-5 that the circuit should go to state S,.

If a 0 is received in state S,, the sequence 010 is complete, and we should output
Z, = 1. At this point we must go to a new state ( Ss) to remember that 010 has been
received so that Z; = 1 can never occur again. When S; is reached, we stop looking
for 100 and only look for 010. Figure 14-16(a) shows a partial state graph that out-
puts Z, = 1 when the input sequence ends in 010. In S5 we have progress of 0 toward
010 and additional 0’s can be ignored by looping back to Ss. In S5 we have progress
of 01 toward 010. If a 0 is received, the sequence is completed, Z, = 1 and we can go
back to S5 because this 0 starts the 010 sequence again.

FIGURE 14-16
State Graphs for
Example 2

(a) Partial graph for 010 (b) Complete state graph

If we receive a 1 in state Sq, the 010 sequence is broken and we must add a new
state (§,) to start looking for 010 again. In state S, we ignore additional 1’s, and
when a 0 is received, we go back to S5 because this 0 starts the 010 sequence over
again. Figure 14-16(b) shows the complete state graph, and the corresponding table
is Table 14-6.
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TABLE 14-6 Present Next State Output (Z,Z,)
State X=0X=1 X=0 X=1

So S3 S 00 00

S S, S 00 00

S, S3 Sa 10 00

S3 S3 Ss 00 00

Ss Ss S 01 00

Ss Ss Se 00 00

Se Ss S; 01 00

S, Ss S, 00 00

— A sequential circuit has two inputs (X, X5) and one output (Z). The output remains
Example 3, .onstant value unless one of the following input sequences occurs:

(a) The input sequence X; X, = 01, 11 causes the output to become 0.
(b) The input sequence X; X, = 10, 11 causes the output to become 1.
(c) The input sequence X; X, = 10, 01 causes the output to change value.

(The notation X, X, = 01, 11 means X; = 0, X, = 1 followed by X, = 1, X, = 1.)
Derive a Moore state graph for the circuit.

Solution  The only sequences of input pairs which affect the output are of length two.
Therefore, the previous and present inputs will determine the output, and the circuit
must remember only the previous input pair. At first, it appears that three states are
required, corresponding to the last input received being X;.X, = 01,10 and (00 or 11).
Note that it is unnecessary to use a separate state for 00 and 11 because neither input
starts a sequence which leads to an output change. However, for each of these states
the output could be either 0 or 1, so we will initially define six states as follows:

Previous  Output State
Input (X;X5) 2) Designation

00 or 11 0 So
00 or 11 1 S

01 0 S,

01 1 S5

10 0 Sa

10 1 Ss

Using this state designation, we can then set up a state table (Table 14-7). The six-row
table given here can be reduced to five rows, using the methods given in Unit 15.

TABLE 14-7 Present Next State
State V4 X;X; =00 01 11 10
So 0 So S5 S, S,
S 1 St S S S
S, 0 So S Sy S,
Ss 1 St S35 Sy S
Sa 0 So S35 S S,
Ss 1 Si S S 0Ss
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FIGURE 14-17
State Graph for
Example 3

14.4

FIGURE 14-18
Serial Data
Transmission
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The S, row of this table was derived as follows. If 00 is received, the input sequence
has been 10, 00, so the output does not change, and we go to S, to remember that the
last input received was 00. If 01 is received, the input sequence has been 10, 01, so the
output must change to 1, and we go to S; to remember that the last input received was
01.If 11 is received, the input sequence has been 10, 11, so the output should become
1, and we go to S;. If 10 is received, the input sequence has been 10, 10, so the output
does not change, and we remain in S,. Verify for yourself that the other rows in the
table are correct. The state graph is shown in Figure 14-17.

00, 11

Serial Data Code Conversion

As a final example of state graph construction, we will design a converter for serial
data. Binary data is frequently transmitted between computers as a serial stream of
bits. As shown in Figure 14-18(a), a clock signal is often transmitted along with the data,

Serial Data
Transmitter Receiver
Clock
(@)
Serial Data
Transmitter Clock Clock Receiver
Recovery >
Circuit

(b)

Downloaded From : Www.EasyEngineering.ngt72



16.2

TABLE 16-1

Downloaded From : www.EasyEngineering.net

Sequential Circuit Design 515

3. If the reduced table has m states (2" ' <m =2"), n flip-flops are required.
Assign a unique combination of flip-flop states to correspond to each state in
the reduced table. The guidelines given in Section 15.8 may prove helpful in
finding an assignment which leads to an economical circuit.

4. Form the transition table by substituting the assigned flip-flop states for each
state in the reduced state table. The resulting transition table specifies the next
states of the flip-flops, and the output in terms of the present states of the flip-
flops and the input.

5. Plot next-state maps and input maps for each flip-flop and derive the flip-flop
input equations. (Depending on the type of gates to be used, either determine the
sum-of-products form from the 1’s on the map or the product-of-sums form from
the 0’s on the map.) Derive the output functions.

6. Realize the flip-flop input equations and the output equations using the available
logic gates.

7. Check your design by signal tracing, computer simulation, or laboratory testing.

Design Example—Code Converter

We will design a sequential circuit to convert BCD to excess-3 code. This circuit
adds three to a binary-coded-decimal digit in the range 0 to 9. The input and output
will be serial with the least significant bit first. A list of allowed input and output
sequences is shown in Table 16-1.

Table 16-1 lists the desired inputs and outputs at times t, f, t,, and ;. After
receiving four inputs, the circuit should reset to the initial state, ready to receive
another group of four inputs. It is not clear at this point whether a sequential cir-
cuit can actually be realized to produce the output sequences as specified in
Table 16-1 without delaying the output.

X V4
Input Output
(BCD) (excess-3)

- = 00000000
OO == = =2000O0
OO0 = =00 —= =00
- 0O 0 -0 -0-=0
—__, e, e s 00000
0000 === =20
O = =200 - =-00 =
O -0, 0-0-=0=
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For example, if at ¢, some sequences required an output Z = 0 for X = 0 and
other sequences required Z = 1 for X = 0, it would be impossible to design the cir-
cuit without delaying the output. For Table 16-1 we see that at ¢, if the input is 0 the
output is always 1, and if the input is 1 the output is always 0; therefore, there is no
conflict at #,. At time ¢, the circuit will have available only the inputs received at ¢,
and t,. There will be no conflict at ¢ if the output at £, can be determined only from
the inputs received at ¢ and ¢,. If 00 has been received at ¢, and ¢, the output should
be 1 at ¢ in all three cases where 00 occurs in the table. If 01 has been received, the
output should be 0 at ¢ in all three cases where 01 occurs. For sequences 10 and 11
the outputs at 1, should be 0 and 1, respectively. Therefore, there is no output con-
flict at 7. In a similar manner we can check to see that there is no conflict at ¢,, and
at 3 all four inputs are available, so there is no problem.

We will now proceed to set up the state table (Table 16-2), using the same pro-
cedure as in Section 15.1. The arrangement of next states in the table is different
from that in Table 15-1 because in this example the input sequences are received
with least significant bit first, while for Table 15-1 the first input bit received is
listed first in the sequence. Dashes (don’t-cares) appear in this table because only
10 of the 16 possible 4-bit sequences can occur as inputs to the code converter. The
output part of the table is filled in, using the reasoning discussed in the preceding
paragraph. For example, if the circuit is in state B at f; and a 1 is received, this
means that the sequence 10 has been received and the output should be 0.

Next, we will reduce the table using row matching. When matching rows
which contain dashes (don’t-cares), a dash will match with any state or with any
output value. By matching rows in this manner, we have H=/=J/=K =L and
M = N = P. After eliminating 1, J, K, L, N, and P, we find E = F = G and the table
reduces to seven rows (Table 16-3).

TABLE 16-2 Input Sequence
State Table Received Present

for Code (Least Significant Present Next State Output (2)

Converter Time Bit First) State X = X=0

ty reset 1

0
t; 1
00
01
t 10

11
000
001
010
011
100
101
110
111

I'>>|lv=zz~|an|n|=
~s|loocoo=|=0o|lo|=-

i3

TZICASTI(OTMO|[A®|>
>EBBBBBDAS"I|mMO|w|o
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TABLE 16-3 Next Present
Reduced State Present State Output (2)
Table for Code Time State X=0 1 X=0 1

Converter t A B C 1 0
t, B D E 1 0

C E E 0 1

t, D H H 0 1

E H M 1 0

ts H A A 0 1

M A - 1 -

An alternate approach to deriving Table 16-2 is to start with a state graph. The
state graph (Figure 16-1) has the form of a tree. Each path starting at the reset state
represents one of the ten possible input sequences. After the paths for the input
sequences have been constructed, the outputs can be filled in by working backwards
along each path. For example, starting at 3, the path 0 0 0 0 has outputs 0 0 1 1
and the path 1 0 0 0 has outputs 1 0 1 1. Verify that Table 16-2 corresponds to this
state graph.

Three flip-flops are required to realize the reduced table because there are
seven states. Each of the states must be assigned a unique combination of flip-flop
states. Some assignments will lead to economical circuits with only a few gates, while
other assignments will require many more gates. Using the guidelines given in
Section 15.8,states B and C, D and E, and H and M should be given adjacent assign-
ments in order to simplify the next-state functions. To simplify the output function,
states (A, B, E,and M) and (C, D, and H) should be given adjacent assignments. A
good assignment for this example is given on the map and table in Figure 16-2. After
the state assignment has been made, the transition table is filled in according to the
assignment, and the next-state maps are plotted as shown in Figure 16-3. The D
input equations are then read off the QF maps as indicated. Figure 16-4 shows the
resulting sequential circuit.

FIGURE 16-1
State Graph
for Code
Converter
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FIGURE 16-2 0, Q,"Q," Q5" z
Assignment Map 0,05 0 1 0,0,05/X=0 X=1|X=0 X=1
and Transition ol a 5
Table for Flip-Flops A 000 1100 101 1 0
B 100 |111 110 1 0
01 C c 101 |1170 110 0 1
D 111|011 011 0 1
alw | op E 110 (011 010 1 0
H 011 |000 000 0 1
ol m E M 010 [000 xxx 1 X
- 001 [xxXx XXX X X
(a) Assignment map (b) Transition table
FIGURE 16-3 X0, X0,
Karnaugh 0,0,\_ 00 01 11 10 0,05\ 00 01 11 10
Maps for Code ol 1] olo]a]nlo
Converter Design
o |x [ 1]1]x o[ x|1] 1] x
I1ofo0o[07]0 1101 |1)0
10fojo|o0]|X 0foe (1] 1) x
Dy =0{=0; D,=03=0,
X0, X0,
0,03\ _00 01 11 10 0,03\,00 01 11 10
oolo{l1)]o m ofal1)]olo
ol X|ofo Q() oL X |o (1__)(]
o | [ Do ool ]1)
100 ([f1) 0 |X 101 ]1)0]X
a an
Dy = Q5= 00,03+ X'0,05 + X010; Z=X'05+XQ;
FIGURE 16-4 ,
Code Converter 01— A 2 I
o 0,— Gl FF1
Circuit 0; — , ,
— Q' 01
Q] . A Ql D Q — QZ
I 9 & 2 FF2 ¥ A
X’ +— o'+ 0 G5 5
X o As 1 Ga bs D 0 Lr Ag G7 z
D | I P
CLK o=
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16.3 Design of Iterative Circuits

Many of the design procedures used for sequential circuits can be applied to the design
of iterative circuits. An iterative circuit consists of a number of identical cells intercon-
nected in a regular manner. Some operations, such as binary addition, naturally lend
themselves to realization with an iterative circuit because the same operation is per-
formed on each pair of input bits. The regular structure of an iterative circuit makes it
easier to fabricate in integrated circuit form than circuits with less regular structures.

The simplest form of an iterative circuit consists of a linear array of combinational
cells with signals between cells traveling in only one direction (Figure 16-5). Each cell
is a combinational circuit with one or more primary inputs (x;) and possibly one or
more primary outputs (z;). In addition, each cell has one or more secondary inputs (a;)
and one or more secondary outputs (g; . ;). The g, signals carry information about the
“state” of one cell to the next cell.

The primary inputs to the cells (xy, x», ... ,x,,) are applied in parallel; that is, they are
all applied at the same time. The a; signals then propagate down the line of cells.
Because the circuit is combinational, the time required for the circuit to reach a steady-
state condition is determined only by the delay times of the gates in the cells. As soon
as steady state is reached, the outputs may be read. Thus, the iterative circuit can func-
tion as a parallel-input, parallel-output device, in contrast with the sequential circuit in
which the input and output are serial. One can think of the iterative circuit as receiv-
ing its inputs as a sequence in space in contrast with the sequential circuit which
receives its inputs as a sequence in time. The parallel adder of Figure 4-3 is an example
of an iterative circuit that has four identical cells. The serial adder of Figure 13-12 uses
the same full adder cell as the parallel adder, but it receives its inputs serially and stores
the carry in a flip-flop instead of propagating it from cell to cell.

Design of a Comparator

As an example, we will design a circuit which compares two n-bit binary numbers and
determines if they are equal or which one is larger if they are not equal. Direct design
as a 2n-input combinational circuit is not practical for #n larger than 4 or 5, so we will
try the iterative approach. Designate the two binary numbers to be compared as

X=xx...%, and Y=ywy,... ¥,

We have numbered the bits from left to right, starting with x; as the most significant
bit because we plan to do the comparison from left to right.

FIGURE 16-5 X, X, X, X; X,
Unilateral ¢ ¢ ¢ ¢ ¢
Iterative Circuit
P Cell @ | Cell @3 | Cell | a; | Cell [%i+1 ay | Cell [%n+1
| —> I > 5 > 3 e ce0o — 31 ; F— e o0 — 31 " F—
Zl ZZ 73 Z[ Z/l
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FIGURE 16-6 X
Form of Iterative ¢ ¢

S
[

o '\V” »“/I
as a; ¢ ¢ it a, In + 1

.C|rcu_|t for Compar- ay ] ] EI e > Output [ Z,(X < Y)
ing Binary Numbers Cell ‘ell Cell Cell Cir- | Z,(X=Y)

€
1 b, 2 | by b; b .
cuit |— Z3X>Y)

a,

~ < 5

Y

; i i+1 hu n o+ 1
0| — > F— e 00 —— ] I —— >

Figure 16-6 shows the form of the iterative circuit, although the number of leads
between each pair of cells is not yet known. Comparison proceeds from left to right.
The first cell compares x; and y; and passes on the result of the comparison to the next
cell, the second cell compares x, and y,, etc. Finally, x,, and y, are compared by the last
cell, and the output circuit produces signals to indicate if X = Y, X > Y,or X < Y.

We will now design a typical cell for the comparator. To the left of cell i, three
conditions are possible: X = Y'so far (x; x,...X;_; = ¥1¥»...¥;_1), X > Y so far, and
X < Y so far. We designate these three input conditions as states S, S;,and S,, respec-
tively. Table 16-4 shows the output state at the right of the cell (S;;;) in terms of the
x;y; inputs and the input state at the left of the cell (S;). If the numbers are equal to
the left of cell i and x; = y;, the numbers are still equal including cell i, so S;.; = S.
However, if S; = Sy and x;y; = 10, then xx, . . . x; > yy, ... y;and S; = S;. f X > Y
to the left of cell i, then regardless of the values of x; and y;, x;x, ... x; > y 1y, ... V;
and §;;; = §;. Similarly, if X < Y to the left of cell /, then X < Y including the inputs
tocelli,and S; . ; = S,.

TABLE 16-4 Si+1
State Table Si xy;=00 01 11 10
for Comparator X=Y S, Se S Sy S
X>Y S S S S S,
X<y S, S, S, S S,

N
oo =N

V4

w

- OO

0
1
0

The logic for a typical cell is easily derived from the state table. Because there
are three states, two intercell signals are required. Using the guidelines from
Section 15.8 leads to the state assignment a;b; = 00 for S, 01 for S, and 10 for S,.
Substituting this assignment into the state table yields Table 16-5. Figure 16-7
shows the Karnaugh maps, next-state equations, and the realization of a typical
cell using NAND gates. Inverters must be included in the cell because only g; and
b; and not their complements are transmitted between cells.

The a;b, inputs to the left end cell must be 00 because we must assume that the
numbers are equal (all 0) to the left of the most significant bit. The equations for the
first cell can then be simplified if desired:

p— ! | A !
a,=a; + xiy\bi = xiy,

J— ! [ — !
b, = by + xiyiai = x1y1

N
N

TABLE 16-5 aj1bi 1
Transition Table ab; xy; =00 01 11 10
for Comparator g ‘ 00 10 00 O1 ‘

1 223

01 01 01 01 O1
10 10 10 10 10

- O O
o O -

0
1
0
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FIGURE 16-7 X XiYi
Typical Cell a;b, 00 01, II 10 a;b, 00 01 11 10
for Comparator
p 00 0 1 0 0 00 0 0 0

11 (X X X XW 11

10 kl /D 1 IJ 101 0 0 0

’q
01 0 0 0 0 01 (1 1 1 \q
=[x

0

FIGURE 16-8 Ay 41 Ay 4 1 In+1
Output Circuit b1 0 1 byiq 0 1 by s 0 1
for Comparator
P 0 m 0] 1 0
1 @ 1 X (1 X )
Zi=a,, Zy=ay . \b 4 Zy=b, .
Ay 41 ZI(X <Y
Z(X=7Y)
byt Zy(X>Y)

For the output circuit, let Z, =1if X<Y, Z,=1if X=Y,Z;=1if X>Y.
Figure 16-8 shows the output maps, equations, and circuit.

Conversion to a sequential circuit is straightforward. If x; and y; inputs are received
serially instead of in parallel, Table 16-4 is interpreted as a state table for a sequential
circuit, and the next-state equations are the same as in Figure 16-7. If D flip-flops are
used, the typical cell of Figure 16-7 can be used as the combinational part of the
sequential circuit, and Figure 16-9 shows the resulting circuit. After all of the inputs
have been read in, the output is determined from the state of the two flip-flops.
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FIGURE 16-9
Sequential Yo i
Comparator for ¢ ¢ .
Binary Numbers @ ol D, 4 Z(X<Y)
Typical Cell X .
(see Fig. 16-7) Clock —a>CK D—> Z,(X=Y)
bi bis b;
D, ZyX>7Y)

Clock —> CK

This example indicates that the design of a unilateral iterative circuit is very sim-
ilar to the design of a sequential circuit. The principal difference is that for the iter-
ative circuit the inputs are received in parallel as a sequence in space, while for the
sequential circuit the inputs are received serially as a sequence in time. For the iter-
ative circuit, the state table specifies the output state of a typical cell in terms of its
input state and primary inputs, while for the corresponding sequential circuit, the
same table specifies the next state (in time) in terms of the present state and inputs.
If D flip-flops are used, the typical cell for the iterative circuit can serve as the com-
binational logic for the corresponding sequential circuit. If other flip-flop types are
used, the input equations can be derived in the usual manner.

16.4 Design of Sequential Circuits Using
ROMs and PLAs

A sequential circuit can easily be designed using a ROM (read-only memory) and flip-
flops. Referring to the general model of a Mealy sequential circuit given in Figure 13-17,
the combinational part of the sequential circuit can be realized using a ROM. The
ROM can be used to realize the output functions (Z,, Z,, ..., Z,) and the next-state
functions (Qf, O5,. .., OF). The state of the circuit can then be stored in a register of
D flip-flops and fed back to the input of the ROM. Thus, a Mealy sequential circuit with
m inputs, n outputs, and k state variables can be realized using k D flip-flops and a
ROM with m + k inputs (2% words) and n + k outputs. The Moore sequential circuit
of Figure 13-19 can be realized in a similar manner. The next-state and output combi-
national subcircuits of the Moore circuit can be realized using two ROMs. Alternatively,
a single ROM can be used to realize both the next-state and output functions.

Use of D flip-flops is preferable to J-K flip-flops because use of two-input flip-
flops would require increasing the number of outputs from the ROM. The fact that
the D flip-flop input equations would generally require more gates than the J-K
equations is of no consequence because the size of the ROM depends only on the
number of inputs and outputs and not on the complexity of the equations being
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realized. For this reason, the state assignment which is used is also of little impor-
tance, and, generally, a state assignment in straight binary order is as good as any.
In Section 16.2, we realized a code converter using gates and D flip-flops. We will
now realize this converter using a ROM and D flip-flops. The state table for the con-
verter is reproduced in Table 16-6(a). Because there are seven states, three D flip-
flops are required. Thus, a ROM with four inputs (2* words) and four outputs is
required, as shown in Figure 16-10. Using a straight binary state assignment, we can
construct the transition table, seen in Table 16-6(b), which gives the next state of the
flip-flops as a function of the present state and input. Because we are using D flip-
flops, D, = Qf, D, = Q5 ,and D5 = Q3 .The truth table for the ROM, shown in Table
16-6(c), is easily constructed from the transition table. This table gives the ROM out-
puts (Z, D,, D,, and D5) as functions of the ROM inputs (X, Q;, O,, and Q5).
Sequential circuits can also be realized using PLAs (programmable logic
arrays) and flip-flops in a manner similar to using ROMs and flip-flops. However,
in the case of PLAs, the state assignment may be important because the use of a

TABLE 16-6 (a) State table (b) Transition table
Present QfQIQf V4
Present | Next State | Output (2) Q:Q,0; | X=0 X=1|X=0 X=1
State | X=0 1/X=0 1 A000 | 001 010 1 0
A B C 1 0 B 001 011 100 1 0
B D E 1 0 co010 100 100 0 1
C E E 0 1 D011 101 101 0 1
E 100 101 110 1 0
? Z AH” ? ; H 101 000 000 0 1
M110 000 - 1 -
H A A 0 1
M A - 1 -

(c) Truth table

X QQ,Q; | ZDy D, Ds
0 0 0O 1 0 0 1
0 0 0 1 1T 0 1 1
00 10 01 00
00 1 1 01 0 1
01 00 1 1 0 1
01 0 1 0 0 0O
01 10 1000
o1 11 X X X X
10 00O 0 0 10
10 0 1 01 00
1010 1100
10 1 1 1 1 0 1
11 00 01 10
1T 1 0 1 1000
11 10 X X X X
1T 1 11 X X X X
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FIGURE 16-10 X — 7
Realization of 0¢
Table 16.6(a) ' D, o
Using a ROM :
—a>CK
ROM o3
16 Words = D,
X 4 Bits - 0
> > CK
03
D, 0,
—a> CK
Clock

good state assignment can reduce the required number of product terms and,
hence, reduce the required size of the PLA.

As an example, we will consider realizing the state table of Table 16-6(a) using a
PLA and three D flip-flops. The circuit configuration is the same as Figure 16-10,
except that the ROM is replaced with a PLA of appropriate size. Using a straight bina-
ry assignment leads to the truth table given in Table 16-6(c). This table could be stored
in a PLA with four inputs, 13 product terms, and four outputs, but this would offer lit-
tle reduction in size compared with the 16-word ROM solution discussed earlier.

If the state assignment of Figure 16-2 is used, the resulting output equation and
D flip-flop input equations, derived from the maps in Figure 16-3, are

D, =0 =0

D,=Q; =0, (16-1)
Dy =05 = 0,0,0; + X'0,05 + X010,

Z=X05 + X0,

The PLA table which corresponds to these equations is in Table 16-7. Realization of
this table requires a PLA with four inputs, seven product terms, and four outputs.

TABLE16-7 X Q, Q, Qs Z D, D, D
- - 0 - 0 1 0 0
-1 - - 0 0 1 0
-1 11 0 0 0 1
0 1 - 0 0 0 0 1
1 0 0 - 0 0 0 1
0 - - 0 1 0 0 0
1 - - 1 1 0 0 0O
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Next, we will verify the operation of the circuit of Figure 16-4 using a PLA which
corresponds to Table 16-7. Initially, assume that X =0 and Q0,05 = 000. This
selects rows --0- and 0--0 in the table, so Z = 1 and D,D,D; = 100. After the active
clock edge, Q0,05 = 100. If the next input is X = 1, then rows --0- and -1-- are
selected, so Z = 0 and D,D,D; = 110. After the active clock edge, 00,05 = 110.
Continuing in this manner, we can verify the transition table of Figure 16-2.

PALs also provide a convenient way of realizing sequential circuits. PALs are
available which contain D flip-flops that have their inputs driven from programma-
ble array logic. Figure 16-11 shows a segment of a sequential PAL. The D flip-flop
is driven from an OR gate which is fed by two AND gates. The flip-flop output is fed
back to the programmable AND array through a buffer. Thus, the AND gate inputs
can be connected to A, A’, B, B, O, or Q'. The X’s on the diagram show the con-
nections required to realize the next-state equation

Q"=D=A'BQ" + AB'Q

The flip-flop output is connected to an inverting tri-state buffer, which is enabled
when En = 1.

FIGURE 16-11 A A B B Q Q Clock
Segment of

a Sequential PAL (O—

— X D—L/ L boe %CR e
A % o’ Irlx"erting
Tri-State

I = ]

Output
Buffer

B

-
Programmable AND Array

16.5 Sequential Circuit Design Using CPLDs

As discussed in Section 9.7, a typical CPLD contains a number of macrocells that
are grouped into function blocks. Connections between the function blocks are
made through an interconnection array. Each macrocell contains a flip-flop and an
OR gate, which has its inputs connected to an AND gate array. Some CPLDs are
based on PALs, in which case each OR gate has a fixed set of AND gates associat-
ed with it. Other CPLDs are based on PLAs, in which case any AND gate output
within a function block can be connected to any OR gate input in that block.

Figure 16-12 shows the structure of a Xilinx CoolRunner II CPLD, which uses a
PLA in each function block. This CPLD family is available in sizes from two to 32
function blocks (32 to 512 macrocells). Each function block has 16 inputs from the
AIM (advanced interconnection matrix) and up to 40 outputs to the AIM. Each
function block PLA contains the equivalent of 56 AND gates.
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4. Optional simulation exercises:

(a) Simulate the serial adder of Figure 13-12 and test it.

(b) Connect two 4-bit shift registers to the inputs of the adder that you simu-
lated in (a) to form a serial adder with accumulator (as in Figure 18-1).
Supply the shift signal and clock signal from switches so that a control cir-
cuit is unnecessary. Test your adder using the following pairs of binary
numbers:

0101 + 0110,1011 + 1101

(¢) Input the control circuit from the equations of Figure 18-4, connect it to
the circuit which you built in (b), and test it.

5. When you are satisfied that you can meet all of the objectives, take the readi-
ness test.

Circuits for Arithmetic
Operations

This unit introduces the concept of using a sequential circuit to control a sequence
of operations in a digital system. Such a control circuit outputs a sequence of con-
trol signals that cause operations such as addition or shifting to take place at the
appropriate times. We will illustrate the use of control circuits by designing a serial
adder, a multiplier, and a divider.

18.1 Serial Adder with A ccumulator

In this section we will design a control circuit for a serial adder with an accumu-
lator. Figure 18-1 shows a block diagram for the adder. Two shift registers are
used to hold the 4-bit numbers to be added, X and Y. The X register serves as an
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FIGURE 18-1 N or
Block Diagram for ceumuiator
Serial Adder with > 2/1 x5l n [y | X AN
> O S:
Accumulator g (st Signal) 5 i
L Full
Adder
3 y.
Control | Sh _ 2/17 Y3 Y2 | Vi Yo d
Circuit L ¢ @ i
T  Addend Register =

Clock
Serial Adder - CK <o—

— 0’ CE<—|

accumulator and the Y register serves as an addend register. When the addition
is completed, the contents of the X register are replaced with the sum of X and
Y. The addend register is connected as a cyclic shift register so that after shifting
four times it is back in its original state, and the number Y is not lost. The box at
the left end of each shift register shows the inputs: Sk (shift signal), SI (serial
input), and Clock. When Sh = 1 and an active clock edge occurs, SI is entered
into x; (or y;) at the same time as the contents of the register are shifted one
place to the right. The additional connections required for initially loading the
X and Y registers and clearing the carry flip-flop are not shown in the block
diagram.

The serial adder, highlighted in blue in the diagram, is the same as the one in
Figure 13-12, except the D flip-flop has been replaced with a D flip-flop with clock
enable. At each clock time, one pair of bits is added. Because the full adder is a
combinational circuit, the sum and carry appear at the full adder output after the
propagation delay. When Sh = 1, the falling clock edge shifts the sum bit into the
accumulator, stores the carry bit in the carry flip-flop, and rotates the addend regis-
ter one place to the right. Because Sh is connected to CE on the flip-flop, the carry
is only updated when shifting occurs.

Figure 18-2 illustrates the operation of the adder. Shifting occurs on the
falling clock edge when Sk = 1. In this figure, ¢, is the time before the first shift,
f, is the time after the first shift, ¢, is the time after the second shift, etc. Initially,
at time t,, the accumulator contains X and the addend register contains Y.
Because the full adder is a combinational circuit, x,, vy, and ¢, are added inde-
pendently of the clock to form the sum s, and carry ¢;. When the first falling clock
edge occurs, s is shifted into the accumulator and the remaining accumulator
digits are shifted one position to the right. The same clock edge stores c; in the
carry flip-flop and rotates the addend register right. The next pair of bits, x; and
v, are now at the full adder input, and the adder generates the sum and carry, s,
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FIGURE 18-2
Operation of Serial
Adder

TABLE 18-1
Operation of
Serial Adder
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(d) At time 3

(e) At time 74

Full
Adder

unused

unused

and ¢, as seen in Figure 18-2(b). The second falling edge shifts s, into the accu-
mulator, stores ¢, in the carry flip-flop, and cycles the addend register right. Bits
x, and y, are now at the adder input, as seen in Figure 18-2(c), and the process
continues until all bit pairs have been added, as shown in Figure 18-2(e).

Table 18-1 shows a numerical example of the serial adder operation. Initially, the
accumulator contains 0101 and the addend register contains 0111. At ,, the full
adder computes 1 + 1+ 0 =10,s0 s, = 0 and ¢ = 1. After the first falling clock

| X Y ¢ S C*
t, | 0101 0111 0 0 1
t, | 0010 1011 1 0 1
t, | 0001 1101 1 1 1
t 1000 1110 1 1 0
t, | 1100 0111 0 (1) (0)
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edge (time #) the first sum bit has been entered into the accumulator, the carry has
been stored in the carry flip-flop, and the addend has been cycled right. After four
falling clock edges (time t,), the sum of X and Y is in the accumulator, and the
addend register is back to its original state.

The control circuit for the adder must now be designed so that after receiving a
start signal, the control circuit will put out four shift signals and then stop. Figure 18-3
shows the state graph and table for the control circuit. The circuit remains in S, until a
start signal is received, at which time the circuit outputs S~ = 1 and goes to S;. Then, at
successive clock times, three more shift signals are put out. It will be assumed that the
start signal is terminated before the circuit returns to state S, so that no further output
occurs until another start signal is received. Dashes appear on the graph because once
S is reached, the circuit operation continues regardless of the value of St. Starting with
the state table of Figure 18-3 and using a straight binary state assignment, the control
circuit equations are derived in Figure 18-4.

A serial processing unit, such as a serial adder with an accumulator, processes data
one bit at a time. A typical serial processing unit (Figure 18-5) has two shift registers.
The output bits from the shift register are inputs to a combinational circuit. The
combinational circuit generates at least one output bit. This output bit is fed into the
input of a shift register. When the active clock edge occurs, this bit is stored in the first
bit of the shift register at the same time the register bits are shifted to the right.

The control for the serial processing unit generates a series of shift signals. When
the start signal (S¢) is 1, the first shift signal (Sh) is generated. If the shift registers

FIGURE 18-3 Next State Sh
State Graph for St=0 1 0 1
Serial Adder S So S, 0 1
Control S, S, S, 1 1
S, S, S, 1 1
FIGURE 18-4 A*B* St St St
Derivation of AB 0 1 AB 0 1 AB o 1 AB 0 1
Control Circuit ¢ 00 00 01T oof o 0 0] o w ool o [(1)
Equations s, 01 10 10

S 10 1 G | 1) ol o | o ot (1 || 1)
S3 11 00 00

A* B* Sh
D,=AB+AB’ Dg=StB" + AB’ Sh=St+A+B
=A®B
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FIGURE 18-5 J
Typical Serial Sh ~| Shift Register >
Processing Unit B Control Combinational
Circuit
Shift Register >

FIGURE 18-6
State Graphs for
Serial Processing

Unit

St’/0

have n bits, then a total of n shift signals must be generated. If St is 1 for only one
clock time, then the control state graph [Figure 18-6(a)] stops when it returns to
state Sy. However, if St can remain 1 until after the shifting is completed, then a sep-
arate stop state is required, as shown in Figure 18-6(b). The control remains in the
stop state until St returns to 0.

18.2 Design of a Parallel Multiplier

Next, we will design a parallel multiplier for positive binary numbers. As illustrated
in the example in Section 1.3, binary multiplication requires only shifting and adding.
The following example shows how each partial product is added in as soon as it is
formed. This eliminates the need for adding more than two binary numbers at a time.

Multiplicand——> 1101 (13)
Multiplier —— 1011 (11)

1101
% 1101
Partial 100111
Products 0000
100111
1101

Product ~ —>10001111  (143)

The multiplication of two 4-bit numbers requires a 4-bit multiplicand register,
a 4-bit multiplier register, and an 8-bit register for the product. The product
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register serves as an accumulator to accumulate the sum of the partial products.
Instead of shifting the multiplicand left each time before it is added, as was
done in the previous example, it is more convenient to shift the product register
to the right each time. Figure 18-7 shows a block diagram for such a parallel mul-
tiplier. As indicated by the arrows on the diagram, 4 bits from the accumulator
and 4 bits from the multiplicand register are connected to the adder inputs; the
4 sum bits and the carry output from the adder are connected back to the
accumulator. (The actual connections are similar to the parallel adder with accu-
mulator shown in Figure 12-5.) The adder calculates the sum of its inputs, and
when an add signal (Ad) occurs, the adder outputs are stored in the accumulator
by the next rising clock edge, thus causing the multiplicand to be added to the
accumulator. An extra bit at the left end of the product register temporarily
stores any carry (C,) which is generated when the multiplicand is added to the
accumulator.

Because the lower four bits of the product register are initially unused, we will
store the multiplier in this location instead of in a separate register. As each mul-
tiplier bit is used, it is shifted out the right end of the register to make room for
additional product bits.

The Load signal loads the multiplier into the lower four bits of ACC and at the
same time clears the upper 5 bits. The shift signal (S%) causes the contents of the
product register (including the multiplier) to be shifted one place to the right
when the next rising clock edge occurs. The control circuit puts out the proper
sequence of add and shift signals after a start signal (St = 1) has been received. If
the current multiplier bit (M) is 1, the multiplicand is added to the accumulator
followed by a right shift; if the multiplier bit is 0, the addition is skipped and only
the right shift occurs. The multiplication example at the beginning of this section
(13 X 11) is reworked below showing the location of the bits in the registers at
each clock time.

FIGURE 18-7 Product
Block Diagram for .
. ACC
Parallel Binary Load
Multiplier 5 IR
Ad | | | | | | |
C | | | | | | |
: Ty
n
t Clk —
r y ¥ 1 7 Multiplier
(6]
1 Cy 4-Bit Adder
Done
P1n
e
oo
‘M Multiplicand
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initial contents of product register 0
(add multiplicand because M = 1)
after addition 0
after shift 0
(add multiplicand because M = 1) 1

after addition 11101
after shift 0 111110 «M
(skip addition because M = 0) i“--ﬁ:

after shift 0 1111 <M
(add multiplicand because M = 1) E
after addition 1
after shift (final answer) 010
dividing line between product and multiplier

01011 «M (1)
1] (13)
11011

011101 M

—_
— Ol O |~ O
O O = R =k O
S RO = OO0 O

S |= O

1
1 i
0011111

1111 (143)

S oo O
S == O

The control circuit must be designed to output the proper sequence of add and shift
signals. Figure 18-8 shows a state graph for the control circuit. The notation used on
this graph is defined in Section 14.5. M/Ad means if M = 1, then the output Ad is 1
(and the other outputs are 0). M'/Sh means if M' =1 (M = 0), then the output Sk is
1 (and the other outputs are 0). In Figure 18-8, S, is the reset state, and the circuit stays
in S, until a start signal (St = 1) is received. This generates a Load signal, which caus-
es the multiplier to be loaded into the lower 4 bits of the accumulator (ACC) and the
upper 5 bits of ACC to be cleared on the next rising clock edge. In state S, the low
order bit of the multiplier (M) is tested. If M = 1, an add signal is generated and, then,
a shift signal is generated in S,. If M =0 in S, a shift signal is generated because
adding 0 can be omitted. Similarly, in states S, S5, and §;, M is tested to determine
whether to generate an add signal followed by shift or just a shift signal. A shift signal
is always generated at the next clock time following an add signal (states S,, S, Sg, and
Sg). After four shifts have been generated, all four multiplier bits have been processed,
and the control circuit goes to a Done state and terminates the multiplication process.

FIGURE 18-8
State Graph for
Multiplier Control
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As the state graph indicates, the control performs two functions—generating
add or shift signals as needed and counting the number of shifts. If the number of
bits is large, it is convenient to divide the control circuit into a counter and an add-
shift control, as shown in Figure 18-9(a). First, we will derive a state graph for the
add-shift control which tests M and St and outputs the proper sequence of add and
shift signals (Figure 18-9(b)). Then, we will add a completion signal (K) from the
counter which stops the multiplier after the proper number of shifts have been
completed. Starting in S, in Figure 18-9(b), when a start signal (St = 1) is received,
a Load signal is generated. In state S, if M = 0, a shift signal is generated and the
circuit stays in S;. If M = 1, an add signal is generated and the circuit goes to state
S,. In §, a shift signal is generated because a shift always follows an add. Back in
S,, the next multiplier bit (M) is tested to determine whether to shift, or add and
then shift. The graph of Figure 18-9(b) will generate the proper sequence of add
and shift signals, but it has no provision for stopping the multiplier.

In order to determine when the multiplication is completed, the counter is incre-
mented on the active clock edge each time a shift signal is generated. If the multipli-
er is n bits, a total of n shifts are required. We will design the counter so that a
completion signal (K) is generated after n — 1 shifts have occurred. When K = 1, the
circuit should perform one more addition if necessary and then do the final shift. The
control operation in Figure 18-9(c) is the same as Figure 18-9(b) as long as K = 0.
In state Sy, if K =1, we test M as usual. If M = 0, we output the final shift signal
and stop; however, if M = 1, we add before shifting and go to state S,. In state S,, if
K =1, we output one more shift signal and then go to S;. The last shift signal will
reset the counter to 0 at the same time the add-shift control goes to the Done state.

As an example, consider the multiplier of Figure 18-7, but replace the control circuit
with Figure 18-9(a). Because n = 4, a 2-bit counter is needed, and K = 1 when the
counter is in state 3 (11,). Table 18-2 shows the operation of the multiplier when 1101
is multiplied by 1011. S, S;, and S, represent states of the control circuit [Figure 18-9(c)].
The contents of the product register at each step is the same as given on p. 600.

At time f, the control is reset and waiting for a start signal. At time ¢, the start
signal St = 1,and a Load signal is generated. At time t,, M = 1,s0 an Ad signal is gen-
erated. When the next clock occurs, the output of the adder is loaded into the accu-
mulator and the control goes to S,. At 13, an Sk signal is generated, so, shifting occurs
and the counter is incremented at the next clock. At t,, M = 1, s0 Ad = 1, and the

5 ——> Done St’10 M’ISh St’/0 K'M’ISh
Add-Shift [—> Load

Control |—» A4 St/Load

M —> ,
Sh
A
Clk K
—/Done K'ISh| | MIAd
Counter
K/Sh
(a) Multiplier control (b) State graph for (c) Final state graph for
add-shift control add-shift control
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TABLE 18-2 Product
Operation of a Time State Counter Register St M K Load Ad Sh Done

Multiplier Using te S 00 000000000 0 O O 0 0 0 o0
a Counter t, So 00 000000000 1 0 O 1 0 0 0

t, S 00 000001011 0 1 O 0 1 0 0

t; S, 00 011011011 0 1 O 0 0 1 0

t, S 01 001101101 0 1 O 0 1 0 0

ts S, 01 100111101 0 1 O 0 0 1 0

ts S 10 010011110 0 0 O 0 0 1 0

t, S, 11 001001111 0 1 1 0 1 0 0

tg S, 11 100011111 0 1 1 0 0 1 0

ty Ss 00 010001111 0 1 O 0 0 0 1

adder output is loaded into the accumulator at the next clock. At 5 and #, shifting and
counting occurs. At #;, three shifts have occurred and the counter state is 11,s0 K = 1.
Because M = 1, addition occurs, and the control goes to S,. At 5, Sh = K = 1,s0 at the
next clock the final shift occurs, and the counter is incremented back to state 00. At ,
a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits
simply by increasing the register size and the number of bits in the counter. The add-
shift control would remain unchanged.

18.3 Design of a Binary Divider

We will consider the design of a parallel divider for positive binary numbers. As an
example, we will design a circuit to divide an 8-bit dividend by a 4-bit divisor to
obtain a 4-bit quotient. The following example illustrates the division process:

1010 quotient
divisor 1101  / 10000111 dividend
1101
0111
0000
1111
(135 = 13 = 10 with 1101
a remainder of 5) 0101
0000
0101 remainder

Just as binary multiplication can be carried out as a series of add and shift
operations, division can be carried out by a series of subtraction and shift opera-
tions. To construct the divider, we will use a 9-bit dividend register and a 4-bit
divisor register, as shown in Figure 18-10. During the division process, instead of
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FIGURE 18-10 Dividend Register
Block Diagram for oy DL
Parallel Binary Xg | X7 | Xo | X5 | Xa | X5 | X2 | X1 | X Ld |
Divider ] 7\ 7\ C C T Y St (Start Signal)
Su
( ( ( ( (
Subtractor C
and —>| Control f——V
Comparator (Overflow
Indicator)

T \ 4 4 4
0 Clock

shifting the divisor to the right before each subtraction as shown in the preced-
ing example, we will shift the dividend to the left. Note that an extra bit is
required on the left end of the dividend register so that a bit is not lost when the
dividend is shifted left. Instead of using a separate register to store the quotient,
we will enter the quotient bit-by-bit into the right end of the dividend register as
the dividend is shifted left. Circuits for initially loading the dividend into the reg-
ister will be added later.

The preceding division example (135 divided by 13) is now reworked, showing
the location of the bits in the registers at each clock time. Initially, the dividend and
divisor are entered as follows:

Lof1]ofofoofr]1]1]

[1[1]o]1]

Subtraction cannot be carried out without a negative result, so we will shift before
we subtract. Instead of shifting the divisor one place to the right, we will shift the
dividend one place to the left:

<« Dividing line between dividend and quotient
01110
1 - “\Note that after the shift, the rightmost position
in the dividend register is “empty”.

Subtraction is now carried out, and the first quotient digit of 1 is stored in the
unused position of the dividend register:

000111111 <«—— first quotient digit

Next, we shift the dividend one place to the left:
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Because subtraction would yield a negative result, we shift the dividend to the left
again, and the second quotient bit remains 0:

011111{100
1101

Subtraction is now carried out, and the third quotient digit of 1 is stored in the
unused position of the dividend register:

000101{101-<«——— third quotient digit
A final shift is carried out and the fourth quotient bit is set to O:

00101{1010

—_— E —_—

remainder | quotient

The final result agrees with that obtained in the first example. Note that in the first
step the leftmost 1 in the dividend is shifted left into the leftmost position (Xjy) in
the X register. If we did not have a place for this bit, the division operation would
have failed at this step because 0000 < 1101. However, by keeping the leftmost bit
in Xg, 10000 = 1101, and subtraction can occur.

If as a result of a division operation, the quotient would contain more bits than
are available for storing the quotient, we say that an overflow has occurred. For
the divider of Figure 18-10 an overflow would occur if the quotient is greater than
15, because only 4 bits are provided to store the quotient. It is not actually neces-
sary to carry out the division to determine if an overflow condition exists, because
an initial comparison of the dividend and divisor will tell if the quotient will be too
large. For example, if we attempt to divide 135 by 7, the initial contents of the reg-
isters would be:

010000111
0111

Because subtraction can be carried out with a nonnegative result, we should sub-
tract the divisor from the dividend and enter a quotient bit of 1 in the rightmost
place in the dividend register. However, we cannot do this because the rightmost
place contains the least significant bit of the dividend, and entering a quotient bit
here would destroy that dividend bit. Therefore, the quotient would be too large to
store in the 4 bits we have allocated for it, and we have detected an overflow con-
dition. In general, for Figure 18-10, if initially XXX X5X, = Y;Y,YY| (i.e., if the
left five bits of the dividend register exceed or equal the divisor), the quotient will
be greater than 15 and an overflow occurs. Note that if XgX;X:X5X, = Y;Y,Y Y,
the quotient is

Xo Xy X Xs Xy Xs Xo X0 Xy _ X X X Xs X, 0000 _ Xo X X Xs X, X 16 _
Y, Y, B ;) Y, 1 ERERERY B

The operation of the divider can be explained in terms of the block diagram of
Figure 18-10. A shift signal (Sh) will shift the dividend one place to the left on the
next rising clock edge. Because the subtracter is a combinational circuit, it computes

Downloaded From : www.EasyEngineering.nglg4



Downloaded From : www.EasyEngineering.net

Circuits for Arithmetic Operations 605

X X7 X X5X, — Y3Y,Y Y, and this difference appears at the subtracter output after
a propagation delay. A subtract signal (Su) will load the subtracter output into
X X;X X5 X, and set the quotient bit (the rightmost bit in the dividend register) to 1
on the next rising clock edge. To accomplish this, Su is connected to both the Ld input
on the shift register and the data input on flip-flop X, If the divisor is greater than
the five leftmost dividend bits, the comparator output is C = 0; otherwise, C = 1.The
control circuit generates the required sequence of shift and subtract signals.
Whenever C = 0, subtraction cannot occur without a negative result, so a shift signal
is generated. Whenever C = 1, a subtract signal is generated, and the quotient bit is
set to one.

Figure 18-11 shows the state diagram for the control circuit. When a start signal
(8t) occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate reg-
isters. If C is 1, the quotient would require five or more bits. Because space is only
provided for a 4-bit quotient, this condition constitutes an overflow, so the divider
is stopped, and the overflow indicator is set by the V output. Normally, the initial
value of C is 0, so a shift will occur first, and the control circuit will go to state S,.
Then, if C = 1, subtraction occurs. After the subtraction is completed, C will always
be 0, so the next active clock edge will produce a shift. This process continues until
four shifts have occurred, and the control is in state Ss. Then, a final subtraction
occurs if C = 1, and no subtraction occurs if C = 0. No further shifting is required,
and the control goes to the stop state. For this example, we will assume that when
the start signal (St) occurs, it will be 1 for one clock time, and, then, it will remain
0 until the control circuit is back in state S,. Therefore, St will always be 0 in states
S) through Ss.

We will now design the control circuit using a one-hot assignment (see
Section 15.9) to implement the state graph. One flip-flop is used for each state with
Qo=1in 8, Q, = 1in §;, O, = 1in §,, etc. By inspection, the next-state and output
equations are

Qy =St'0Qy + COy + Os Qf = StQ, (18-1)
0, =CQ, + CO, Qs =C'Q, + CQO;s

0f=C0; + CO, Qs =C'OQy

Load = St Q, V=C0,

Sh=C(Qy + O, + O3 + Q) =C'(Qy + 0O5)
Su=C(Q, + O3 + O, + O5) =C(Q, + O))

FIGURE 18-11

State Graph for St'10
Divider Control
Circuit

St/Load C’ISh

C/Su
crv

C’ISh

C’ISh C’ISh
m S5 ClSu

4
\&‘/Su

Downloaded From : www.EasyEngineering.ngl95



Downloaded From : www.EasyEngineering.net

606 unit 18

Because there are three arrows leading into S,, O has three terms. The equation for
Sh has been simplified by noting that if the circuit is in state S; or S, or S; or §,, it is
not in state S, or Ss.

The subtracter in Figure 18-10 can be constructed using five full subtracters, as
shown in Figure 18-12. Because the subtracter is a combinational circuit, whenever
the numbers in the divisor and dividend registers change, these changes will propa-
gate to the subtracter outputs. The borrow signal will propagate through the full
subtracters before the subtracter output is transferred to the dividend register. If the
last borrow signal (by) is 1, this means that the result is negative. Hence, if byis 1, the
divisor (Y3Y,Y,Y,) is greater than XgX;X XX}, and C = 0. Therefore, C = by, and
a separate comparator circuit is unnecessary. Under normal operating conditions
(no overflow) for this divider, we can also show that C = d§. At any subtraction step,
because the divisor is only four bits, dg = 1 would allow a second subtraction with-
out shifting. However, this can never occur because the quotient digit cannot be
greater than 1. Therefore, if subtraction is possible, dg will always be 0 after the sub-
traction, so dg = 0 implies XgX;X(X5X, is greater than Y;Y,Y Y, and C = dg.

The block diagram of Figure 18-10 does not show how the dividend is initially
loaded into the X register. This can be accomplished by adding a MUX at the X reg-
ister inputs, as shown in Figure 18-13. This diagram uses bus notation to avoid draw-
ing multiple wires. When several busses are merged together to form a single bus, a
bus merger is used. For example, the symbol

means that the 5-bit subtracter output is merged with bits X3X,X; and a logic 1 to
form a 9-bit bus. Thus, the MUX output will be dgd,dsdsd,X5X,X,1 when Load = 0.
Similarly, the symbol

FIGURE 18-12 dg d; dg ds dy
Logic Diagram for T T T T T
5-Bit Subtracter
Full by Full by Full be Full bs Full
Subtracter | Subtracter | Subtracter | Subtracter | Subtracter

(A A A A R

Xy 0 X; Y, Xy Y, X5 X, Y,

by <—

l«—0b, =0
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FIGURE 18-13
Block Diagram for

Divider Using Bus LoadDL = :
Notation Su l_._ Sh X (8:0) <0

K
Bus _ ——"
Mc:‘l;cr SI’_I ! -(|)_]'_8

5-bit 3 Dividend (7:0)
Subtracter
X (8:4) 5
| X @3:1)
4
0 24 Bus
J_‘/ Splitter
Y (3:0) I 9

(Divisor)

represents a bus splitter that splits the 9 bits from the X register into XgX,; XXX,
and X;X,X;; X, is not used. Bus mergers and splitters do not require any actual
hardware; they are just a symbolic way of showing bus connections.

The X register is a left-shift register with parallel load capability, similar to the
register in Figure 12-10. On the rising clock edge, it is loaded when Ld =1
and shifted left when S/ = 1. Because the register must be loaded with the divi-
dend when Load =1 and with the subtracter output when Su = 1, Load and
Su are ORed together and connected to the Ld input. The MUX selects the
dividend (preceded by a 0) when Load = 1. When Load = 0, it selects the bus
merger output which consists of the subtracter output, X;X,X;, and a logic 1.
When Su =1 and the clock rises, this MUX output is loaded into X. The net
result is that XgX;5X XX, gets the subtracter output, X3X,X, is unchanged, and
X, is set to 1.

Programmed Exercise 18.1

Cover the lower part of each page with a sheet of paper and slide it down as you
check your answers. Write your answer in the space provided before looking at the
correct answers.
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