
Scanned with CamScanner 1

Scanned with CamScanner 2

Scanned with CamScanner 3

Scanned with CamScanner 4

Scanned with CamScanner 5

Scanned with CamScanner 6

Scanned with CamScanner 7

Scanned with CamScanner 8

Scanned with CamScanner 9

Scanned with CamScanner10

Scanned with CamScanner11

Scanned with CamScanner12

Scanned with CamScanner13

Scanned with CamScanner14

Scanned with CamScanner15

Scanned with CamScanner16

Scanned with CamScanner17

Scanned with CamScanner18

Scanned with CamScanner19

Scanned with CamScanner20

Scanned with CamScanner21

Scanned with CamScanner22

Scanned with CamScanner23

Scanned with CamScanner24

Scanned with CamScanner25

Scanned with CamScanner26

Scanned with CamScanner27

Scanned with CamScanner28

Scanned with CamScanner29

Scanned with CamScanner30

Scanned with CamScanner31

Scanned with CamScanner32

Scanned with CamScanner33

Scanned with CamScanner34

Scanned with CamScanner35

Scanned with CamScanner36

Scanned with CamScanner37

Scanned with CamScanner38

Scanned with CamScanner39

Scanned with CamScanner40

Scanned with CamScanner41

Scanned with CamScanner42

Scanned with CamScanner43

Scanned with CamScanner44

Scanned with CamScanner45

Scanned with CamScanner46

Scanned with CamScanner47

Scanned with CamScanner48

Scanned with CamScanner49

Scanned with CamScanner50

Scanned with CamScanner51

Scanned with CamScanner52

Scanned with CamScanner53

Scanned with CamScanner54

Scanned with CamScanner55

Scanned with CamScanner56

Scanned with CamScanner57

Scanned with CamScanner58

Scanned with CamScanner59

Scanned with CamScanner60

Scanned with CamScanner61

Scanned with CamScanner62

Scanned with CamScanner63

Scanned with CamScanner64

Scanned with CamScanner65

Scanned with CamScanner66

Scanned with CamScanner67

Scanned with CamScanner68

Scanned with CamScanner69

Scanned with CamScanner70

Scanned with CamScanner71

Scanned with CamScanner72

Scanned with CamScanner73

Scanned with CamScanner74

Scanned with CamScanner75

Scanned with CamScanner76

Scanned with CamScanner77

Scanned with CamScanner78

Scanned with CamScanner79

Scanned with CamScanner80

Scanned with CamScanner81

Scanned with CamScanner82

Scanned with CamScanner83

Scanned with CamScanner84

Scanned with CamScanner85

Scanned with CamScanner86

Scanned with CamScanner87

Scanned with CamScanner88

Scanned with CamScanner89

Scanned with CamScanner90

Scanned with CamScanner91

Scanned with CamScanner92

Scanned with CamScanner93

Scanned with CamScanner94

Scanned with CamScanner95

Scanned with CamScanner96

Scanned with CamScanner97

Scanned with CamScanner98

Scanned with CamScanner99

Scanned with CamScanner100

Scanned with CamScanner101

Scanned with CamScanner102

Scanned with CamScanner103

Scanned with CamScanner104

Scanned with CamScanner105

Scanned with CamScanner106

Scanned with CamScanner107

Scanned with CamScanner108

Scanned with CamScanner109

Scanned with CamScanner110

Scanned with CamScanner111

Scanned with CamScanner112

Scanned with CamScanner113

Scanned with CamScanner114

Scanned with CamScanner115

Scanned with CamScanner116

Scanned with CamScanner117

Scanned with CamScanner118

Scanned with CamScanner119

Scanned with CamScanner120

Scanned with CamScanner121

Scanned with CamScanner122

Scanned with CamScanner123

Scanned with CamScanner124

Scanned with CamScanner125

Scanned with CamScanner126

Scanned with CamScanner127

Scanned with CamScanner128

Scanned with CamScanner129

Scanned with CamScanner130

Scanned with CamScanner131

Scanned with CamScanner132

Scanned with CamScanner133

Scanned with CamScanner134

Scanned with CamScanner135

Scanned with CamScanner136

Scanned with CamScanner137

Scanned with CamScanner138

Scanned with CamScanner139

Scanned with CamScanner140

Scanned with CamScanner141

Scanned with CamScanner142

Scanned with CamScanner143

Scanned with CamScanner144

Scanned with CamScanner145

Scanned with CamScanner146

Scanned with CamScanner147

Scanned with CamScanner148

Scanned with CamScanner149

Scanned with CamScanner150

Scanned with CamScanner151

Scanned with CamScanner152

Scanned with CamScanner153

Scanned with CamScanner154

Scanned with CamScanner155

Scanned with CamScanner156

Scanned with CamScanner157

Scanned with CamScanner158

Scanned with CamScanner159

Scanned with CamScanner160

Scanned with CamScanner161

Scanned with CamScanner162

Scanned with CamScanner163

Scanned with CamScanner164

Scanned with CamScanner165

Scanned with CamScanner166

Scanned with CamScanner167

Scanned with CamScanner168

Scanned with CamScanner169

Scanned with CamScanner170

Scanned with CamScanner171

Scanned with CamScanner172

Scanned with CamScanner173

Scanned with CamScanner174

Scanned with CamScanner175

Scanned with CamScanner176

Scanned with CamScanner177

Scanned with CamScanner178

Scanned with CamScanner179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

14.1 Design of a Sequence Detector

To illustrate the design of a clocked Mealy sequential circuit, we will design a
sequence detector. The circuit has the form shown in Figure 14-1.

Derivation of State Graphs and Tables 431

FIGURE 14-2

FIGURE 14-1
Sequence Detector

to be Designed

ZX

Clock

1
0

0
0

S0

S1

The circuit will examine a string of 0’s and 1’s applied to the X input and generate an
output Z � 1 only when a prescribed input sequence occurs. It will be assumed that the
input X can only change between clock pulses. Specifically, we will design the circuit
so that any input sequence ending in 101 will produce an output Z � 1 coincident with
the last 1. The circuit does not reset when a 1 output occurs. A typical input sequence
and the corresponding output sequence are

X � 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Z � 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 (14-1)

(time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

Initially, we do not know how many flip-flops will be required, so we will designate the
circuit states as S0, S1, etc., and later assign flip-flop states to correspond to the circuit
states.We will construct a state graph to show the sequence of states and outputs which
occur in response to different inputs. Initially, we will start the circuit in a reset state des-
ignated S0. If a 0 input is received, the circuit can stay in S0 because the input sequence
we are looking for does not start with 0. However, if a 1 is received, the circuit must go
to a new state (S1) to “remember” that the first input in the desired sequence has been
received (Figure 14-2). The labels on the graph are of the form X/Z, where the symbol
before the slash is the input and the symbol after the slash is the corresponding output.

When in state S1, if we receive a 0, the circuit must change to a new state (S2) to
remember that the first two inputs of the desired sequence (10) have been received.
If a 1 is received in state S2, the desired input sequence (101) is complete and the out-
put should be l. The question arises whether the circuit should then go to a new state
or back to S0 or S1. Because the circuit is not supposed to reset when an output
occurs, we cannot go back to S0. However, because the last 1 in a sequence can also
be the first 1 in a new sequence, we can return to S1, as indicated in Figure 14-3.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net262

432 Unit 14

FIGURE 14-3 1
0

1
1

0
0

0
0

S0

S1

S2

1
0

1
0

1
1

0
0

0
0

0
0

S0

S1

S2

FIGURE 14-4
Mealy State Graph

for Sequence
Detector

Present
Present Next State Output
State X � 0 X � 1 X � 0 X � 1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

TABLE 14-1

The graph of Figure 14-3 is still incomplete. If a 1 input occurs when in state S1, we
can stay in S1 because the sequence is simply restarted. If a 0 input occurs in state S2, we
have received two 0’s in a row and must reset the circuit to state S0 because 00 is not
part of the desired input sequence, and going to one of the other states could lead to an
incorrect output.The final state graph is given in Figure 14-4.Note that for a single input
variable each state must have two exit lines (one for each value of the input variable)
but may have any number of entry lines, depending on the circuit specifications.

State S0 is the starting state, state S1 indicates that a sequence ending in 1 has
been received, and state S2 indicates that a sequence ending in 10 has been
received. An alternative way to start the solution would be to first define states
in this manner and then construct the state graph. Converting the state graph to
a state table yields Table 14-1. For example, the arc from S2 to S1 is labeled 1/1.
This means that when the present state is S2 and X � 1, the present output is 1.
This 1 output is present as soon as X becomes 1, that is, before the state change
occurs. Therefore, the 1 is placed in the S2 row of the table.

At this point, we are ready to design a circuit which has the behavior described by
the state table. Because one flip-flop can have only two states, two flip-flops are needed
to represent the three states. Designate the two flip-flops as A and B. Let flip-flop states
A � 0 and B � 0 correspond to circuit state S0; A � 0 and B � 1 correspond to S1; and
A � 1 and B � 0 correspond to circuit state S2. Each circuit state is then represented by
a unique combination of flip-flop states. Substituting the flip-flop states for S0, S1 and S2

in the state table yields the transition table (Table 14-2).

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net263

From this table, we can plot the next-state maps for the flip-flops and the map for
the output function Z:

Derivation of State Graphs and Tables 433

0 0

0 1

1 0

X X

0

00

AB

A+ = X ′B

X

01

11

10 0

0 1

0 1

0 1

X X

0

00

AB

B+ = X

X

01

11

10 1

0 0

0 1

0 0

X X

0

00

AB

Z = XA

X

01

11

10 1

The flip-flop inputs are then derived from the next-state maps using the
same method that was used for counters (Section 12.4). If D flip-flops are used,
DA � A� � X
B and DB � B� � X, which leads to the circuit shown in Figure 14-5.
Initially, we will reset both flip-flops to the 0 state. By tracing signals through the
circuit, you can verify that an output Z � 1 will occur when an input sequence
ending in 101 occurs. To avoid reading false outputs, always read the value of
Z after the input has changed and before the active clock edge.

Clock

Ck

A′ A

D
Ck

B ′ B

D

Z

X

FIGURE 14-5

A+B+ Z
AB X � 0 X � 1 X � 0 X � 1

00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

TABLE 14-2

The procedure for finding the state graph for a Moore machine is similar to that
used for a Mealy machine, except that the output is written with the state instead of
with the transition between states. We will rework the previous example as a Moore
machine to illustrate this procedure. The circuit should produce an output of 1 only
if an input sequence ending in 101 has occurred. The design is similar to that for the

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net264

434 Unit 14

1

0

0
S0

0

S1

0

S2

0

Mealy machine up until the input sequence 10 has occurred, except that 0 output is
associated with states S0, S1, and S2:

1
1

1

1
0

0

0

0
S0

0

S1

0

S2

0

S3

1

FIGURE 14-6
Moore State Graph

for Sequence
Detector

Present Next State Present
State X � 0 X � 1 Output(Z)

S0 S0 S1 0
S1 S2 S1 0
S2 S0 S3 0
S3 S2 S1 1

TABLE 14-3

Now, when a 1 input occurs to complete the 101 sequence, the output must become 1;
therefore, we cannot go back to state S1 and must create a new state S3 with a 1 output:

We now complete the graph, as shown in Figure 14-6. Note the sequence 100 resets
the circuit to S0. A sequence 1010 takes the circuit back to S2 because another 1
input should cause Z to become 1 again.

The state table corresponding to the circuit is given by Table 14-3. Note that there
is a single column for the output because the output is determined by the present state
and does not depend on X. Note that in this example the Moore machine requires one
more state than the Mealy machine which detects the same input sequence.

1

1

0

0
S0

0

S1

0

S2

0

S3

1

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net265

Because there are four states, two flip-flops are required to realize the circuit. Using
the state assignment AB � 00 for S0, AB � 01 for S1, AB � 11 for S2, and AB � 10 for
S3, the following transition table for the flip-flops results (Table 14-4):

Derivation of State Graphs and Tables 435

A+B+

AB X � 0 X � 1 Z

00 00 01 0
01 11 01 0
11 00 10 0
10 11 01 1

TABLE 14-4

The output function is Z � AB
. Note that Z depends only on the flip-flop states
and is independent of X, while for the corresponding Mealy machine, Z was a func-
tion of X. The derivation of the flip-flop input equations is straightforward and will
not be given here.

14.2 More Complex Design Problems

In this section we will derive a state graph for a sequential circuit of somewhat greater
complexity than the previous examples. The circuit to be designed again has the form
shown in Figure 14-1. The output Z should be 1 if the input sequence ends in either
010 or 1001, and Z should be 0 otherwise. Before attempting to draw the state graph,
we will work out some typical input-output sequences to make sure that we have a
clear understanding of the problem statement. We will determine the desired output
sequence for the following input sequence:

X � 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0
↑ ↑ ↑ ↑ ↑ ↑
a b c d e f

Z � 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0

At point a, the input sequence ends in 010, one of the sequences for which we are look-
ing, so the output is Z � 1. At point b, the input again ends in 010, so Z � 1. Note that
overlapping sequences are allowed because the problem statement does not say any-
thing about resetting the circuit when a 1 output occurs.At point c, the input sequence
ends in 1001, so Z is again 1. Why do we have a 1 output at points d, e, and f ? This is
just one of many input sequences.A state machine that gives the correct output for this
sequence will not necessarily give the correct output for all other sequences.

We will start construction of the state graph by working with the two sequences
which lead to a 1 output.Then, we will later add arrows and states as required to make
sure that the output is correct for other cases. We start off with a reset state S0 which
corresponds to having received no inputs. Whenever an input is received that corre-
sponds to part of one of the sequences for which we are looking, the circuit should go
to a new state to “remember” having received this input. Figure 14-7 shows a partial
state graph which gives a 1 output for the sequence 010. In this graph S1 corresponds

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net266

Derivation of State Graphs and Tables 439

0’s can be ignored.Therefore, we can stay in S3 (arrow f). Similarly, extra 0 inputs can be
ignored in S4 (arrow g).This completes the Moore state diagram, and we should go back
and verify that the correct output sequence is obtained for various input sequences.

14.3 Guidelines for Construction of State Graphs

Although there is no one specific procedure which can be used to derive state
graphs or tables for every problem, the following guidelines should prove helpful:

1. First, construct some sample input and output sequences to make sure that you
understand the problem statement.

2. Determine under what conditions, if any, the circuit should reset to its initial state.
3. If only one or two sequences lead to a nonzero output, a good way to start is to

construct a partial state graph for those sequences.
4. Another way to get started is to determine what sequences or groups of

sequences must be remembered by the circuit and set up states accordingly.
5. Each time you add an arrow to the state graph, determine whether it can go to

one of the previously defined states or whether a new state must be added.
6. Check your graph to make sure there is one and only one path leaving each

state for each combination of values of the input variables.
7. When your graph is complete, test it by applying the input sequences formulated

in part 1 and making sure the output sequences are correct.

Several examples of deriving state graphs or tables follow.

A sequential circuit has one input (X) and one output (Z).The circuit examines groups

FIGURE 14-12 State Input Sequences

S0 Reset or even 1’s
S1 Odd 1’s
S2 Even 1’s and ends in 0
S3 Even 1’s and 00 has occurred
S4 Odd 1’s and 00 has occurred
S5 Odd 1’s and ends in 0

0 0

0

0 0

0

e d

b

gcf

1

1

1
1

S0

0

S1

0

S2

0

1

Even 1’s Odd 1’s
1

S4

1

S5

0

S3

0

of four consecutive inputs and produces an output Z � 1 if the input sequence 0101 or
1001 occurs.The circuit resets after every four inputs. Find the Mealy state graph.

Solution A typical sequence of inputs and outputs is
X � 0101 0010 1001 0100
Z � 0001 | 0000 | 0001 | 0000

Example 1

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net267

440 Unit 14

1
1

0
0

0
0

0
0

1
0

1
0

S3

S4

S0

S1 S2

1
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0 1

0

1
0

1
0

1
0

1
0

S3

S4

S0

S1 S2

S5

S6

FIGURE 14-13
Partial State

Graph for
Example 1

FIGURE 14-14
Complete State

Graph for
Example 1

State Sequence Received

S0 Reset
S1 0
S2 1
S3 01 or 10
S4 010 or 100

State Sequence Received

S0 Reset
S1 0
S2 1
S3 01 or 10
S4 010 or 100
S5 Two inputs received, no 1

output is possible
S6 Three inputs received, no 1

output is possible

The vertical bars indicate the points at which the circuit resets to the initial state.
Note that an input sequence of either 01 or 10 followed by 01 will produce an output of
Z � 1. Therefore, the circuit can go to the same state if either 01 or 10 is received. The
partial state graph for the two sequences leading to a 1 output is shown in Figure 14-13.

Note that the circuit resets to S0 when the fourth input is received. Next, we add
arrows and labels to the graph to take care of sequences which do not give a 1
output, as shown in Figure 14-14.

The addition of states S5 and S6 was necessary so that the circuit would not reset
to S0 before four inputs were received. Note that once a 00 or 11 input sequence has
been received (state S5), no output of 1 is possible until the circuit is reset.

A sequential circuit has one input (X) and two outputs (Z1 and Z2). An output
Z1 � 1 occurs every time the input sequence 100 is completed, provided that the
sequence 010 has never occurred. An output Z2 � 1 occurs every time the input
sequence 010 is completed. Note that once a Z2 � 1 output has occurred, Z1 � 1
can never occur but not vice versa. Find a Mealy state graph and table.

Example 2

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net268

Solution A typical sequence of inputs and outputs is:

X � 1 0 0 1 1 0 0 1 0 |
| 1 0 1 0 0 1 0 1 1 0 1 0 0

Z1 � 0 0 1 0 0 0 1 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0

Z2 � 0 0 0 0 0 0 0 0 1 |
| 0 1 0 1 0 0 1 0 0 0 0 1 0

Note that the sequence 100 occurs twice before 010 occurs, and Z1 � 1 each time.
However, once 010 occurs and Z2 � 1, Z1 � 0 even when 100 occurs again. Z2 � 1 all
five times that 010 occurs. Because we were not told to reset the circuit, 01010 means
that 010 occurred twice.

We can begin to solve this problem by constructing the part of the state graph
which will give the correct outputs for the sequences 100 and 010. Figure 14-15(a)
shows this portion of the state graph.

Derivation of State Graphs and Tables 441

FIGURE 14-15
Partial Graphs for

Example 2
1
00

1
00

1
00

0
00

0
00

0
00

0
10

0
01

1
00

0
01

1
00

1
00

0
100

00

1
00

0
00

S4

S0

S1 S3

S2S4

S0

S1 S3

S2

(a) (b)

State Description

S0 No progress on 100 No progress on 010
S1 Progress of 1 on 100 No progress on 010
S2 Progress of 10 on 100 Progress of 0 on 010 010 has never occurred
S3 No progress on 100 Progress of 0 on 010
S4 Progress of 1 on 100 Progress of 01 on 010
S5 Progress of 0 on 010
S6 Progress of 01 on 010 010 has occurred
S7 No progress on 010

TABLE 14-5
State Descriptions

for Example 2

An important question to ask at this point is, what does this circuit need to remember
to give the correct outputs? The circuit will need to remember how much progress has
been made on the sequence 010, so it will know when to output Z2 � 1.The circuit will
also need to remember how much progress has been made on the sequence 100 and
whether 010 has ever occurred, so it will know when to output Z1 � 1.

Keeping track of what is remembered by each state will help us make the correct
state graph.Table 14-5 will help us to do this. State S0 is the initial state of the circuit, so
there is no progress on either sequence, and 010 has never occurred. State S1 is the state
we go to when a 1 is received from S0, so in state S1, we have made progress on the
sequence 100 by getting a 1. In state S2, we have made progress on the sequence 100 by
getting 10. Similarly, states S3 and S4 represent progress of 0 and 01 toward 010. In S1,

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net269

442 Unit 14

there is no progress toward the sequence 010, and in S3, there is no progress toward the
sequence 100. However, in S2, we have received 10, so if the next two inputs are 1 and 0,
the sequence 010 will be completed. Therefore, in S2, we have not only made progress
of 10 toward 100, but we have also made progress of 0 toward 010. Similarly, in S4, we
have made progress of 1 toward 100, as well as progress of 01 toward 010.

Using this information, we can fill in more of the state graph to get Figure 14-15(b).
If the circuit is in state S1 and a 1 is received, then the last two inputs are 11. The pre-
vious 1 is of no use toward the sequence 100. However, the circuit will need to remem-
ber the new 1, and there is a progress of 1 toward the sequence 100. There is no
progress on the sequence 010, and 010 has never occurred, but this is the same situa-
tion as state S1. Therefore, the circuit should return to state S1. Similarly, if a 0 is
received in state S3, the last two inputs are 00. There is a progress only of 0 toward the
sequence 010, there is no progress toward 100, and 010 has never occurred, so the cir-
cuit should return to state S3. In state S2, if a 0 is received, the sequence 100 is complete
and the circuit should output Z1 � 1. Then, there is no progress on another sequence
of 100, and 010 has still not occurred. However, the last input is 0, so there is progress
of 0 toward the sequence 010. We can see from Table 14-5 that this is the same situa-
tion as S3, so the circuit should go to state S3. If, in state S2, a 1 is received, we have made
progress of 01 toward 010 and progress of 1 toward 100, and 010 has still not occurred.
We can see from Table 14-5 that the circuit should go to state S4.

If a 0 is received in state S4, the sequence 010 is complete, and we should output
Z2 � 1. At this point we must go to a new state (S5) to remember that 010 has been
received so that Z1 � 1 can never occur again. When S5 is reached, we stop looking
for 100 and only look for 010. Figure 14-16(a) shows a partial state graph that out-
puts Z2 � 1 when the input sequence ends in 010. In S5 we have progress of 0 toward
010 and additional 0’s can be ignored by looping back to S5. In S6 we have progress
of 01 toward 010. If a 0 is received, the sequence is completed, Z2 � 1 and we can go
back to S5 because this 0 starts the 010 sequence again.

1
00

1
00

1
00

0
00

1
00

1
00

1
00

1
00

1
00

1
00

0
100

00

0
00

0
01

0
01

0
01

0
01

1
00

0
00

0
00

0
00

S4

S0

S1 S3

S2

S5

S6

S7

S6

S5

(a) Partial graph for 010 (b) Complete state graph

FIGURE 14-16
State Graphs for

Example 2

If we receive a 1 in state S6, the 010 sequence is broken and we must add a new
state (S7) to start looking for 010 again. In state S7 we ignore additional 1’s, and
when a 0 is received, we go back to S5 because this 0 starts the 010 sequence over
again. Figure 14-16(b) shows the complete state graph, and the corresponding table
is Table 14-6.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net270

Derivation of State Graphs and Tables 443

TABLE 14-7

Previous Output State
Input (X1X2) (Z) Designation

00 or 11 0 S0

00 or 11 1 S1

01 0 S2

01 1 S3

10 0 S4

10 1 S5

Present Next State
State Z X1X2 � 00 01 11 10

S0 0 S0 S2 S0 S4

S1 1 S1 S3 S1 S5

S2 0 S0 S2 S0 S4

S3 1 S1 S3 S0 S5

S4 0 S0 S3 S1 S4

S5 1 S1 S2 S1 S5

A sequential circuit has two inputs (X1, X2) and one output (Z). The output remains

Present Next State Output (Z1Z2)
State X � 0 X � 1 X � 0 X � 1

S0 S3 S1 00 00
S1 S2 S1 00 00
S2 S3 S4 10 00
S3 S3 S4 00 00
S4 S5 S1 01 00
S5 S5 S6 00 00
S6 S5 S7 01 00
S7 S5 S7 00 00

TABLE 14-6

Using this state designation, we can then set up a state table (Table 14-7).The six-row
table given here can be reduced to five rows, using the methods given in Unit 15.

a constant value unless one of the following input sequences occurs:

(a) The input sequence X1 X2 � 01, 11 causes the output to become 0.
(b) The input sequence X1 X2 � 10, 11 causes the output to become 1.
(c) The input sequence X1 X2 � 10, 01 causes the output to change value.

(The notation X1X2 � 01, 11 means X1 � 0, X2 � 1 followed by X1 � 1, X2 � 1.)
Derive a Moore state graph for the circuit.

Solution The only sequences of input pairs which affect the output are of length two.
Therefore, the previous and present inputs will determine the output, and the circuit
must remember only the previous input pair. At first, it appears that three states are
required, corresponding to the last input received being X1X2 � 01, 10 and (00 or 11).
Note that it is unnecessary to use a separate state for 00 and 11 because neither input
starts a sequence which leads to an output change. However, for each of these states
the output could be either 0 or 1, so we will initially define six states as follows:

Example 3

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net271

444 Unit 14

The S4 row of this table was derived as follows. If 00 is received, the input sequence
has been 10, 00, so the output does not change, and we go to S0 to remember that the
last input received was 00. If 01 is received, the input sequence has been 10, 01, so the
output must change to 1, and we go to S3 to remember that the last input received was
01. If 11 is received, the input sequence has been 10, 11, so the output should become
1, and we go to S1. If 10 is received, the input sequence has been 10, 10, so the output
does not change, and we remain in S4. Verify for yourself that the other rows in the
table are correct. The state graph is shown in Figure 14-17.

00, 11

00, 11

00, 11

00, 11

11

11

10

00

00

10

10

01
01

01

01
01

01

10

10
10

S3

1

S4

0

S1

1

S5

1

S0

0

S2

0

FIGURE 14-17
State Graph for

Example 3

FIGURE 14-18
Serial Data

Transmission

Serial Data

Clock
Transmitter Receiver

(a)

Serial Data

Clock
Transmitter Receiver

(b)

Clock
Recovery

Circuit

14.4 Serial Data Code Conversion

As a final example of state graph construction, we will design a converter for serial
data. Binary data is frequently transmitted between computers as a serial stream of
bits.As shown in Figure 14-18(a), a clock signal is often transmitted along with the data,

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net272

3. If the reduced table has m states (2n�1 � m � 2n), n flip-flops are required.
Assign a unique combination of flip-flop states to correspond to each state in
the reduced table. The guidelines given in Section 15.8 may prove helpful in
finding an assignment which leads to an economical circuit.

4. Form the transition table by substituting the assigned flip-flop states for each
state in the reduced state table. The resulting transition table specifies the next
states of the flip-flops, and the output in terms of the present states of the flip-
flops and the input.

5. Plot next-state maps and input maps for each flip-flop and derive the flip-flop
input equations. (Depending on the type of gates to be used, either determine the
sum-of-products form from the 1’s on the map or the product-of-sums form from
the 0’s on the map.) Derive the output functions.

6. Realize the flip-flop input equations and the output equations using the available
logic gates.

7. Check your design by signal tracing, computer simulation, or laboratory testing.

16.2 Design Example–Code Converter

We will design a sequential circuit to convert BCD to excess-3 code. This circuit
adds three to a binary-coded-decimal digit in the range 0 to 9. The input and output
will be serial with the least significant bit first. A list of allowed input and output
sequences is shown in Table 16-1.

Table 16-1 lists the desired inputs and outputs at times t0, tl, t2, and t3. After
receiving four inputs, the circuit should reset to the initial state, ready to receive
another group of four inputs. It is not clear at this point whether a sequential cir-
cuit can actually be realized to produce the output sequences as specified in
Table 16-1 without delaying the output.

Sequential Circuit Design 515

X Z
Input Output
(BCD) (excess-3)

t3 t2 t1 t0 t3 t2 t1 t0

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

TABLE 16-1

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net273

For example, if at t0 some sequences required an output Z � 0 for X � 0 and
other sequences required Z � 1 for X � 0, it would be impossible to design the cir-
cuit without delaying the output. For Table 16-1 we see that at t0 if the input is 0 the
output is always 1, and if the input is 1 the output is always 0; therefore, there is no
conflict at t0. At time tl the circuit will have available only the inputs received at tl

and t0. There will be no conflict at tl if the output at tl can be determined only from
the inputs received at tl and t0. If 00 has been received at tl and t0, the output should
be 1 at tl in all three cases where 00 occurs in the table. If 01 has been received, the
output should be 0 at tl in all three cases where 01 occurs. For sequences 10 and 11
the outputs at tl should be 0 and 1, respectively. Therefore, there is no output con-
flict at tl. In a similar manner we can check to see that there is no conflict at t2, and
at t3 all four inputs are available, so there is no problem.

We will now proceed to set up the state table (Table 16-2), using the same pro-
cedure as in Section 15.1. The arrangement of next states in the table is different
from that in Table 15-1 because in this example the input sequences are received
with least significant bit first, while for Table 15-1 the first input bit received is
listed first in the sequence. Dashes (don’t-cares) appear in this table because only
10 of the 16 possible 4-bit sequences can occur as inputs to the code converter. The
output part of the table is filled in, using the reasoning discussed in the preceding
paragraph. For example, if the circuit is in state B at tl and a 1 is received, this
means that the sequence 10 has been received and the output should be 0.

Next, we will reduce the table using row matching. When matching rows
which contain dashes (don’t-cares), a dash will match with any state or with any
output value. By matching rows in this manner, we have H ≡ I ≡ J ≡ K ≡ L and
M ≡ N ≡ P. After eliminating I, J, K, L, N, and P, we find E ≡ F ≡ G and the table
reduces to seven rows (Table 16-3).

516 Unit 16

Input Sequence
Received Present

(Least Significant Present Next State Output (Z)
Time Bit First) State X � 0 1 X � 0 1

t0 reset A B C 1 0

t1
0 B D F 1 0
1 C E G 0 1

00 D H L 0 1

t2
01 E I M 1 0
10 F J N 1 0
11 G K P 1 0

000 H A A 0 1
001 I A A 0 1
010 J A – 0 –

t3
011 K A – 0 –
100 L A – 0 –
101 M A – 1 –
110 N A – 1 –
111 P A – 1 –

TABLE 16-2
State Table

for Code
Converter

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net274

An alternate approach to deriving Table 16-2 is to start with a state graph. The
state graph (Figure 16-1) has the form of a tree. Each path starting at the reset state
represents one of the ten possible input sequences. After the paths for the input
sequences have been constructed, the outputs can be filled in by working backwards
along each path. For example, starting at t3, the path 0 0 0 0 has outputs 0 0 1 1
and the path 1 0 0 0 has outputs 1 0 1 1. Verify that Table 16-2 corresponds to this
state graph.

Three flip-flops are required to realize the reduced table because there are
seven states. Each of the states must be assigned a unique combination of flip-flop
states. Some assignments will lead to economical circuits with only a few gates, while
other assignments will require many more gates. Using the guidelines given in
Section 15.8, states B and C, D and E, and H and M should be given adjacent assign-
ments in order to simplify the next-state functions. To simplify the output function,
states (A, B, E, and M) and (C, D, and H) should be given adjacent assignments. A
good assignment for this example is given on the map and table in Figure 16-2.After
the state assignment has been made, the transition table is filled in according to the
assignment, and the next-state maps are plotted as shown in Figure 16-3. The D
input equations are then read off the Q� maps as indicated. Figure 16-4 shows the
resulting sequential circuit.

Sequential Circuit Design 517

Next Present
Present State Output (Z)

Time State X � 0 1 X � 0 1

t0 A B C 1 0

t1 B D E 1 0
C E E 0 1

t2 D H H 0 1
E H M 1 0

t3 H A A 0 1
M A – 1 –

TABLE 16-3
Reduced State
Table for Code

Converter

t0

t1

t2

t3

A

N IJLH P

G

C

EF

B

D

KM

Reset

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

FIGURE 16-1
State Graph

for Code
Converter

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net275

518 Unit 16

D3 = Q3 = Q1Q2Q3 + X ′Q1Q3 + XQ1Q2

D1 = Q1 = Q2′

1 1 1 1

00 01 11 10

X 1 1 X

0 0 0 0

0 0 0

00

XQ1

Q2Q3

01

11

10 X

+ D2 = Q2 = Q1

0 1 1 0

00 01 11 10

X 1 1 X

0 1 1 0

0 1 1

00

XQ1

Q2Q3

01

11

10 X

+

′ ′ ′

0 1 0 1

00 01 11 10

X 0 0 X

0 1 1 0

0 1 0

00

XQ1

Q2Q3

01

11

10 X

+ Z = X ′Q3 + XQ3′

1 1 0 0

00 01 11 10

X 0 1 X

0 0 1 1

1 1 0

00

XQ1

Q2Q3

01

11

10 X

FIGURE 16-3
Karnaugh

Maps for Code
Converter Design

FIGURE 16-4
Code Converter

Circuit

Q3 A6

A5

Z

Q2

D

FF1G1

G2

G3
G4

G5

G6

Q ′

Q

D

FF2I1
Q ′

Q

D

FF3

Q ′

Q

Q1

Q1

CLK

Q1

Q1

A1

A2

A3

D3

X

X ′
Q1′

′

Q1

Q2
Q3

Q3

X ′

X

′

Q2

Q2

Q3

′

Q2′

′

′

G7

Q1
�Q2

�Q3
� Z

Q1Q2 Q3 X � 0 X � 1 X � 0 X � 1

A 0 0 0 1 0 0 1 0 1 1 0
B 1 0 0 1 1 1 1 1 0 1 0
C 1 0 1 1 1 0 1 1 0 0 1
D 1 1 1 0 1 1 0 1 1 0 1
E 1 1 0 0 1 1 0 1 0 1 0
H 0 1 1 0 0 0 0 0 0 0 1
M 0 1 0 0 0 0 x x x 1 x
– 0 0 1 x x x x x x x x

(b) Transition table

0 1

00

Q2Q3

Q1

01

11

10

A B

H D

M E

C

(a) Assignment map

FIGURE 16-2
Assignment Map

and Transition
Table for Flip-Flops

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net276

16.3 Design of Iterative Circuits

Many of the design procedures used for sequential circuits can be applied to the design
of iterative circuits.An iterative circuit consists of a number of identical cells intercon-
nected in a regular manner. Some operations, such as binary addition, naturally lend
themselves to realization with an iterative circuit because the same operation is per-
formed on each pair of input bits. The regular structure of an iterative circuit makes it
easier to fabricate in integrated circuit form than circuits with less regular structures.

The simplest form of an iterative circuit consists of a linear array of combinational
cells with signals between cells traveling in only one direction (Figure 16-5). Each cell
is a combinational circuit with one or more primary inputs (xi) and possibly one or
more primary outputs (zi). In addition, each cell has one or more secondary inputs (ai)
and one or more secondary outputs (ai � 1). The ai signals carry information about the
“state” of one cell to the next cell.

The primary inputs to the cells (x1, x2, ... ,xn) are applied in parallel; that is, they are
all applied at the same time. The ai signals then propagate down the line of cells.
Because the circuit is combinational, the time required for the circuit to reach a steady-
state condition is determined only by the delay times of the gates in the cells. As soon
as steady state is reached, the outputs may be read.Thus, the iterative circuit can func-
tion as a parallel-input, parallel-output device, in contrast with the sequential circuit in
which the input and output are serial. One can think of the iterative circuit as receiv-
ing its inputs as a sequence in space in contrast with the sequential circuit which
receives its inputs as a sequence in time.The parallel adder of Figure 4-3 is an example
of an iterative circuit that has four identical cells. The serial adder of Figure 13-12 uses
the same full adder cell as the parallel adder, but it receives its inputs serially and stores
the carry in a flip-flop instead of propagating it from cell to cell.

Design of a Comparator
As an example, we will design a circuit which compares two n-bit binary numbers and
determines if they are equal or which one is larger if they are not equal. Direct design
as a 2n-input combinational circuit is not practical for n larger than 4 or 5, so we will
try the iterative approach. Designate the two binary numbers to be compared as

X � x1x2 . . . xn and Y � y1y2 . . . yn

We have numbered the bits from left to right, starting with x1 as the most significant
bit because we plan to do the comparison from left to right.

Sequential Circuit Design 519

a1
a2

Z1

X1

Cell
1

a3

Z2

X2

Cell
2

a4

Z3

X3

Cell
3

ai ai + 1

Zi

Xi

Cell
i

an an + 1

Zn

Xn

Cell
n

.

FIGURE 16-5
Unilateral

Iterative Circuit

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net277

Figure 16-6 shows the form of the iterative circuit, although the number of leads
between each pair of cells is not yet known. Comparison proceeds from left to right.
The first cell compares x1 and y1 and passes on the result of the comparison to the next
cell, the second cell compares x2 and y2, etc. Finally, xn and yn are compared by the last
cell, and the output circuit produces signals to indicate if X � Y, X � Y, or X � Y.

We will now design a typical cell for the comparator. To the left of cell i, three
conditions are possible: X � Y so far (x1 x2 . . . xi�1 � y1y2 . . . yi�1), X � Y so far, and
X � Y so far.We designate these three input conditions as states S0, S1, and S2, respec-
tively. Table 16-4 shows the output state at the right of the cell (Si�1) in terms of the
xiyi inputs and the input state at the left of the cell (Si). If the numbers are equal to
the left of cell i and xi � yi, the numbers are still equal including cell i, so Si�1 � S0.
However, if Si � S0 and xiyi � 10, then x1x2 . . . xi � y1y2 . . . yi and Si�1 � S1. If X � Y
to the left of cell i, then regardless of the values of xi and yi, x1x2 . . . xi � y1y2 . . . yi

and Si�1 � S1. Similarly, if X � Y to the left of cell i, then X � Y including the inputs
to cell i, and Si�1 � S2.

520 Unit 16

a1
a2

x1

Cell
1

a3

x2

Cell
2

y1 y2

ai ai + 1
Z1(X < Y)
Z2(X = Y)
Z3(X > Y)

xi yi

Cell
i

xn yn

Cell
n

an an + 1
Output

Cir-
cuit

. . .

b1
b2 b3 bi. . .

. . .
bi + 1 bn bn + 1. . .

FIGURE 16-6
Form of Iterative

Circuit for Compar-
ing Binary Numbers

Si � 1

Si xiyi � 00 01 11 10 Z1 Z2 Z3

X � Y S0 S0 S2 S0 S1 0 1 0
X � Y S1 S1 S1 S1 S1 0 0 1
X � Y S2 S2 S2 S2 S2 1 0 0

TABLE 16-4
State Table

for Comparator

The logic for a typical cell is easily derived from the state table. Because there
are three states, two intercell signals are required. Using the guidelines from
Section 15.8 leads to the state assignment aibi � 00 for S0, 01 for S1, and 10 for S2.
Substituting this assignment into the state table yields Table 16-5. Figure 16-7
shows the Karnaugh maps, next-state equations, and the realization of a typical
cell using NAND gates. Inverters must be included in the cell because only ai and
bi and not their complements are transmitted between cells.

The a1b1 inputs to the left end cell must be 00 because we must assume that the
numbers are equal (all 0) to the left of the most significant bit.The equations for the
first cell can then be simplified if desired:

a2 � a1 � x
1y1b
1 � x
1y1

b2 � b1 � x1y
1a
1 � x1y
1

ai�1bi�1

aibi xiyi � 00 01 11 10 Z1 Z2 Z3

0 0 00 10 00 01 0 1 0
0 1 01 01 01 01 0 0 1
1 0 10 10 10 10 1 0 0

TABLE 16-5
Transition Table
for Comparator

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net278

Sequential Circuit Design 521

For the output circuit, let Z1 � 1 if X � Y, Z2 � 1 if X � Y, Z3 � 1 if X � Y.
Figure 16-8 shows the output maps, equations, and circuit.

Conversion to a sequential circuit is straightforward. If xi and yi inputs are received
serially instead of in parallel, Table 16-4 is interpreted as a state table for a sequential
circuit, and the next-state equations are the same as in Figure 16-7. If D flip-flops are
used, the typical cell of Figure 16-7 can be used as the combinational part of the
sequential circuit, and Figure 16-9 shows the resulting circuit. After all of the inputs
have been read in, the output is determined from the state of the two flip-flops.

xiyi

ai

bi

ai

bi′

′
ai + 1

bi + 1

0 1 0 0

00 01 11 10

0 0 0 0

X X X X

1

00

aibi

ai + 1 = ai + xiyibi′′ bi + 1 = bi + xiyi ai′′

xiyi

01

11

10 1 1 1

0 0 0 1

00 01 11 10

1 1 1 1

X X X X

0

00

aibi

xiyi

01

11

10 0 0 0

Z1(X < Y)

Z2(X = Y)

Z3(X > Y)

Z1 = an + 1 Z2 = an + 1bn + 1′ ′ Z3 = bn + 1

0 1

1

X

0

bn + 1

bn + 1

an + 1

an + 1

1

0 1

1

X

0

bn + 1

an + 1

1

0 1

1 X

0

bn + 1

an + 1

1

FIGURE 16-7
Typical Cell

for Comparator

FIGURE 16-8
Output Circuit

for Comparator

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net279

This example indicates that the design of a unilateral iterative circuit is very sim-
ilar to the design of a sequential circuit. The principal difference is that for the iter-
ative circuit the inputs are received in parallel as a sequence in space, while for the
sequential circuit the inputs are received serially as a sequence in time. For the iter-
ative circuit, the state table specifies the output state of a typical cell in terms of its
input state and primary inputs, while for the corresponding sequential circuit, the
same table specifies the next state (in time) in terms of the present state and inputs.
If D flip-flops are used, the typical cell for the iterative circuit can serve as the com-
binational logic for the corresponding sequential circuit. If other flip-flop types are
used, the input equations can be derived in the usual manner.

16.4 Design of Sequential Circuits Using
ROMs and PLAs

A sequential circuit can easily be designed using a ROM (read-only memory) and flip-
flops. Referring to the general model of a Mealy sequential circuit given in Figure 13-17,
the combinational part of the sequential circuit can be realized using a ROM. The
ROM can be used to realize the output functions (Z1, Z2, . . . , Zn) and the next-state
functions (Q1

�, Q2
�, . . . , Qk

�). The state of the circuit can then be stored in a register of
D flip-flops and fed back to the input of the ROM.Thus, a Mealy sequential circuit with
m inputs, n outputs, and k state variables can be realized using k D flip-flops and a
ROM with m � k inputs (2m�k words) and n � k outputs.The Moore sequential circuit
of Figure 13-19 can be realized in a similar manner. The next-state and output combi-
national subcircuits of the Moore circuit can be realized using two ROMs.Alternatively,
a single ROM can be used to realize both the next-state and output functions.

Use of D flip-flops is preferable to J-K flip-flops because use of two-input flip-
flops would require increasing the number of outputs from the ROM. The fact that
the D flip-flop input equations would generally require more gates than the J-K
equations is of no consequence because the size of the ROM depends only on the
number of inputs and outputs and not on the complexity of the equations being

522 Unit 16

Clock

Clock

Da

CK

ai ai + 1
Z1(X < Y)

Z2(X = Y)

Z3(X > Y)

xi yi

Typical Cell
(see Fig. 16-7)

bi

ai

bibi + 1
Db

CK

FIGURE 16-9
Sequential

Comparator for
Binary Numbers

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net280

realized. For this reason, the state assignment which is used is also of little impor-
tance, and, generally, a state assignment in straight binary order is as good as any.

In Section 16.2, we realized a code converter using gates and D flip-flops. We will
now realize this converter using a ROM and D flip-flops. The state table for the con-
verter is reproduced in Table 16-6(a). Because there are seven states, three D flip-
flops are required. Thus, a ROM with four inputs (24 words) and four outputs is
required, as shown in Figure 16-10. Using a straight binary state assignment, we can
construct the transition table, seen in Table 16-6(b), which gives the next state of the
flip-flops as a function of the present state and input. Because we are using D flip-
flops, D1 � Q1

�, D2 � Q2
�, and D3 � Q3

�.The truth table for the ROM, shown in Table
16-6(c), is easily constructed from the transition table. This table gives the ROM out-
puts (Z, D1, D2, and D3) as functions of the ROM inputs (X, Q1, Q2, and Q3).

Sequential circuits can also be realized using PLAs (programmable logic
arrays) and flip-flops in a manner similar to using ROMs and flip-flops. However,
in the case of PLAs, the state assignment may be important because the use of a

Sequential Circuit Design 523

(a) State table

Present
Present Next State Output (Z)
State X � 0 1 X � 0 1

A B C 1 0

B D E 1 0
C E E 0 1

D H H 0 1
E H M 1 0

H A A 0 1
M A – 1 –

TABLE 16-6 (b) Transition table

Q1
�Q2

�Q3
� Z

Q1Q2Q3 X � 0 X � 1 X � 0 X � 1

A 0 0 0 001 010 1 0
B 0 0 1 011 100 1 0
C 0 1 0 100 100 0 1
D 0 1 1 101 101 0 1
E 1 0 0 101 110 1 0
H 1 0 1 000 000 0 1
M 1 1 0 000 – 1 –

(c) Truth table

X Q1 Q2 Q3 Z D1 D2 D3

0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 1
0 0 1 0 0 1 0 0
0 0 1 1 0 1 0 1
0 1 0 0 1 1 0 1
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 1 x x x x
1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 0 1 1 0
1 1 0 1 1 0 0 0
1 1 1 0 x x x x
1 1 1 1 x x x x

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net281

good state assignment can reduce the required number of product terms and,
hence, reduce the required size of the PLA.

As an example, we will consider realizing the state table of Table 16-6(a) using a
PLA and three D flip-flops. The circuit configuration is the same as Figure 16-10,
except that the ROM is replaced with a PLA of appropriate size. Using a straight bina-
ry assignment leads to the truth table given in Table 16-6(c).This table could be stored
in a PLA with four inputs, 13 product terms, and four outputs, but this would offer lit-
tle reduction in size compared with the 16-word ROM solution discussed earlier.

If the state assignment of Figure 16-2 is used, the resulting output equation and
D flip-flop input equations, derived from the maps in Figure 16-3, are

D1 � Q1
� � Q
2

D2 � Q2
� � Q1 (16-1)

D3 � Q3
� � Q1Q2Q3 � X
Q1Q
3 � XQ
1Q
2

Z � X
Q
3 � XQ3

The PLA table which corresponds to these equations is in Table 16-7. Realization of
this table requires a PLA with four inputs, seven product terms, and four outputs.

524 Unit 16

Clock

D1

CK

Q1

Q1

Z

Q2

Q2

Q3

Q3

+

+

+ROM
16 Words
� 4 Bits

D2

CK

X

D3

CK

FIGURE 16-10
Realization of

Table 16.6(a)
Using a ROM

X Q1 Q2 Q3 Z D1 D2 D3

– – 0 – 0 1 0 0
– 1 – – 0 0 1 0
– 1 1 1 0 0 0 1
0 1 – 0 0 0 0 1
1 0 0 – 0 0 0 1
0 – – 0 1 0 0 0
1 – – 1 1 0 0 0

TABLE 16-7

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net282

Sequential Circuit Design 525

FIGURE 16-11
Segment of

a Sequential PAL

Clock En

D Q

Q ′

Q ′

Q ′

Q

Q ′A

A

A′ B

B

B ′ Q

Inverting
Tri-State
Output
Buffer

Programmable AND Array

Next, we will verify the operation of the circuit of Figure 16-4 using a PLA which
corresponds to Table 16-7. Initially, assume that X � 0 and Q1Q2Q3 � 000. This
selects rows --0- and 0--0 in the table, so Z � 1 and D1D2D3 � 100. After the active
clock edge, Q1Q2Q3 � 100. If the next input is X � 1, then rows --0- and -1-- are
selected, so Z � 0 and D1D2D3 � 110. After the active clock edge, Q1Q2Q3 � 110.
Continuing in this manner, we can verify the transition table of Figure 16-2.

PALs also provide a convenient way of realizing sequential circuits. PALs are
available which contain D flip-flops that have their inputs driven from programma-
ble array logic. Figure 16-11 shows a segment of a sequential PAL. The D flip-flop
is driven from an OR gate which is fed by two AND gates.The flip-flop output is fed
back to the programmable AND array through a buffer. Thus, the AND gate inputs
can be connected to A, A
, B, B
, Q, or Q
. The X’s on the diagram show the con-
nections required to realize the next-state equation

Q� � D � A
BQ
 � AB
Q

The flip-flop output is connected to an inverting tri-state buffer, which is enabled
when En � 1.

16.5 Sequential Circuit Design Using CPLDs

As discussed in Section 9.7, a typical CPLD contains a number of macrocells that
are grouped into function blocks. Connections between the function blocks are
made through an interconnection array. Each macrocell contains a flip-flop and an
OR gate, which has its inputs connected to an AND gate array. Some CPLDs are
based on PALs, in which case each OR gate has a fixed set of AND gates associat-
ed with it. Other CPLDs are based on PLAs, in which case any AND gate output
within a function block can be connected to any OR gate input in that block.

Figure 16-12 shows the structure of a Xilinx CoolRunner II CPLD, which uses a
PLA in each function block. This CPLD family is available in sizes from two to 32
function blocks (32 to 512 macrocells). Each function block has 16 inputs from the
AIM (advanced interconnection matrix) and up to 40 outputs to the AIM. Each
function block PLA contains the equivalent of 56 AND gates.

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net283

This unit introduces the concept of using a sequential circuit to control a sequence
of operations in a digital system. Such a control circuit outputs a sequence of con-
trol signals that cause operations such as addition or shifting to take place at the
appropriate times. We will illustrate the use of control circuits by designing a serial
adder, a multiplier, and a divider.

18.1 Serial Adder with Accumulator

In this section we will design a control circuit for a serial adder with an accumu-
lator. Figure 18-1 shows a block diagram for the adder. Two shift registers are
used to hold the 4-bit numbers to be added, X and Y. The X register serves as an

4. Optional simulation exercises:

(a) Simulate the serial adder of Figure 13-12 and test it.
(b) Connect two 4-bit shift registers to the inputs of the adder that you simu-

lated in (a) to form a serial adder with accumulator (as in Figure 18-1).
Supply the shift signal and clock signal from switches so that a control cir-
cuit is unnecessary. Test your adder using the following pairs of binary
numbers:

0101 � 0110, 1011 � 1101

(c) Input the control circuit from the equations of Figure 18-4, connect it to
the circuit which you built in (b), and test it.

5. When you are satisfied that you can meet all of the objectives, take the readi-
ness test.

594 Unit 18

Circuits for Arithmetic
Operations

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net284

accumulator and the Y register serves as an addend register. When the addition
is completed, the contents of the X register are replaced with the sum of X and
Y. The addend register is connected as a cyclic shift register so that after shifting
four times it is back in its original state, and the number Y is not lost. The box at
the left end of each shift register shows the inputs: Sh (shift signal), SI (serial
input), and Clock. When Sh � 1 and an active clock edge occurs, SI is entered
into x3 (or y3) at the same time as the contents of the register are shifted one
place to the right. The additional connections required for initially loading the
X and Y registers and clearing the carry flip-flop are not shown in the block
diagram.

The serial adder, highlighted in blue in the diagram, is the same as the one in
Figure 13-12, except the D flip-flop has been replaced with a D flip-flop with clock
enable. At each clock time, one pair of bits is added. Because the full adder is a
combinational circuit, the sum and carry appear at the full adder output after the
propagation delay. When Sh � 1, the falling clock edge shifts the sum bit into the
accumulator, stores the carry bit in the carry flip-flop, and rotates the addend regis-
ter one place to the right. Because Sh is connected to CE on the flip-flop, the carry
is only updated when shifting occurs.

Figure 18-2 illustrates the operation of the adder. Shifting occurs on the
falling clock edge when Sh � 1. In this figure, t0 is the time before the first shift,
tl is the time after the first shift, t2 is the time after the second shift, etc. Initially,
at time t0, the accumulator contains X and the addend register contains Y.
Because the full adder is a combinational circuit, x0, y0, and c0 are added inde-
pendently of the clock to form the sum s0 and carry c1. When the first falling clock
edge occurs, s0 is shifted into the accumulator and the remaining accumulator
digits are shifted one position to the right. The same clock edge stores c1 in the
carry flip-flop and rotates the addend register right. The next pair of bits, x1 and
y1, are now at the full adder input, and the adder generates the sum and carry, s1

Circuits for Arithmetic Operations 595

Control
Circuit

SI

Accumulator

Full
Adder

Addend Register

Serial Adder

Sh
x3

St (Start Signal)

Clock

x2 x1 x0

SI

CK

Sh

D

CE

Q

Q′

Sh y3

ci

yi

si

ci + 1

xi

y2 y1 y0

FIGURE 18-1
Block Diagram for
Serial Adder with

Accumulator

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net285

596 Unit 18

Full
Adder

(a) At time t0

x3 x2 x1 x0

y3 y2 y1 y0

D

c0 = 0

c1

s0

Full
Adder

unused

unused

(c) At time t2

s1 s0 x3 x2

y1 y0 y3 y2

D

c2

c3

s2

Full
Adder

(b) At time t1

s0 x3 x2 x1

y0 y3 y2 y1

D

c1

c2

s1

Full
Adder

(d) At time t3

s2 s1 s0 x3

y2 y1 y0 y3

D

c3

c4

s3

Full
Adder

(e) At time t4

s3 s2 s1 s0

y3 y2 y1 y0

D

c4

FIGURE 18-2
Operation of Serial

Adder

and c2, as seen in Figure 18-2(b). The second falling edge shifts s1 into the accu-
mulator, stores c2 in the carry flip-flop, and cycles the addend register right. Bits
x2 and y2 are now at the adder input, as seen in Figure 18-2(c), and the process
continues until all bit pairs have been added, as shown in Figure 18-2(e).

Table 18-1 shows a numerical example of the serial adder operation. Initially, the
accumulator contains 0101 and the addend register contains 0111. At t0, the full
adder computes 1 � 1 � 0 � 10, so si � 0 and ci

� � 1. After the first falling clock

X Y Ci Si Ci
�

t0 0101 0111 0 0 1
t1 0010 1011 1 0 1
t2 0001 1101 1 1 1
t3 1000 1110 1 1 0
t4 1100 0111 0 (1) (0)

TABLE 18-1
Operation of
Serial Adder

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net286

Circuits for Arithmetic Operations 597

edge (time tl) the first sum bit has been entered into the accumulator, the carry has
been stored in the carry flip-flop, and the addend has been cycled right. After four
falling clock edges (time t4), the sum of X and Y is in the accumulator, and the
addend register is back to its original state.

The control circuit for the adder must now be designed so that after receiving a
start signal, the control circuit will put out four shift signals and then stop. Figure 18-3
shows the state graph and table for the control circuit. The circuit remains in S0 until a
start signal is received, at which time the circuit outputs Sh � 1 and goes to S1.Then, at
successive clock times, three more shift signals are put out. It will be assumed that the
start signal is terminated before the circuit returns to state S0 so that no further output
occurs until another start signal is received. Dashes appear on the graph because once
S1 is reached, the circuit operation continues regardless of the value of St. Starting with
the state table of Figure 18-3 and using a straight binary state assignment, the control
circuit equations are derived in Figure 18-4.

A serial processing unit, such as a serial adder with an accumulator, processes data
one bit at a time. A typical serial processing unit (Figure 18-5) has two shift registers.
The output bits from the shift register are inputs to a combinational circuit. The
combinational circuit generates at least one output bit. This output bit is fed into the
input of a shift register.When the active clock edge occurs, this bit is stored in the first
bit of the shift register at the same time the register bits are shifted to the right.

The control for the serial processing unit generates a series of shift signals.When
the start signal (St) is 1, the first shift signal (Sh) is generated. If the shift registers

–/Sh

–/Sh –/Sh

St/Sh

St ′/0

S1

S0

S3

S2

Next State Sh
St � 0 1 0 1

S0 S0 S1 0 1
S1 S2 S2 1 1
S2 S3 S3 1 1
S3 S0 S0 1 1

FIGURE 18-3
State Graph for

Serial Adder
Control

A+

DA = A′B + AB′
= A ⊕ B

0 0

0 1

1 1

0 0

1

00

AB
St

01

11

10 1

B+

DB = St B′ + AB′

0 1

0 1

0 0

0 0

1

00

AB
St

01

11

10 1

Sh

Sh = St + A + B

0 1

0 1

1 1

1 1

1

00

AB
St

01

11

10 1

FIGURE 18-4
Derivation of

Control Circuit
Equations

A�B�

AB 0 1

S0 00 00 01
S1 01 10 10
S2 10 11 11
S3 11 00 00

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net287

have n bits, then a total of n shift signals must be generated. If St is 1 for only one
clock time, then the control state graph [Figure 18-6(a)] stops when it returns to
state S0. However, if St can remain 1 until after the shifting is completed, then a sep-
arate stop state is required, as shown in Figure 18-6(b). The control remains in the
stop state until St returns to 0.

18.2 Design of a Parallel Multiplier

Next, we will design a parallel multiplier for positive binary numbers. As illustrated
in the example in Section 1.3, binary multiplication requires only shifting and adding.
The following example shows how each partial product is added in as soon as it is
formed.This eliminates the need for adding more than two binary numbers at a time.

Multiplicand 1101 (13)
Multiplier 1011 (11)

1101
1101

Partial 100111
Products 0000

100111
1101

Product 10001111 (143)

The multiplication of two 4-bit numbers requires a 4-bit multiplicand register,
a 4-bit multiplier register, and an 8-bit register for the product. The product

598 Unit 18

Sn–1

S0

S2

S1

–/Sh

–/Sh –/Sh

–/Sh

–/Sh

–/Sh

St/Sh St/Sh

St ′/0

(a)

Sn–1

Stop
S0

S2

S1

St ′/0
St/0

St ′/0

(b)

FIGURE 18-6
State Graphs for
Serial Processing

Unit

⎯→

⎯→

⎯→

⎯→

a
≈

a≈≈

a≈≈¸
˝

˛

ControlSt

Sh

Combinational
Circuit

Shift Register

Shift Register

FIGURE 18-5
Typical Serial

Processing Unit

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net288

register serves as an accumulator to accumulate the sum of the partial products.
Instead of shifting the multiplicand left each time before it is added, as was
done in the previous example, it is more convenient to shift the product register
to the right each time. Figure 18-7 shows a block diagram for such a parallel mul-
tiplier. As indicated by the arrows on the diagram, 4 bits from the accumulator
and 4 bits from the multiplicand register are connected to the adder inputs; the
4 sum bits and the carry output from the adder are connected back to the
accumulator. (The actual connections are similar to the parallel adder with accu-
mulator shown in Figure 12-5.) The adder calculates the sum of its inputs, and
when an add signal (Ad) occurs, the adder outputs are stored in the accumulator
by the next rising clock edge, thus causing the multiplicand to be added to the
accumulator. An extra bit at the left end of the product register temporarily
stores any carry (C4) which is generated when the multiplicand is added to the
accumulator.

Because the lower four bits of the product register are initially unused, we will
store the multiplier in this location instead of in a separate register. As each mul-
tiplier bit is used, it is shifted out the right end of the register to make room for
additional product bits.

The Load signal loads the multiplier into the lower four bits of ACC and at the
same time clears the upper 5 bits. The shift signal (Sh) causes the contents of the
product register (including the multiplier) to be shifted one place to the right
when the next rising clock edge occurs. The control circuit puts out the proper
sequence of add and shift signals after a start signal (St � 1) has been received. If
the current multiplier bit (M) is 1, the multiplicand is added to the accumulator
followed by a right shift; if the multiplier bit is 0, the addition is skipped and only
the right shift occurs. The multiplication example at the beginning of this section
(13 � 11) is reworked below showing the location of the bits in the registers at
each clock time.

Circuits for Arithmetic Operations 599

ACC

Product

C
o
n
t
r
o
l

Load
Sh

Done

St

M

Ad

8 7 6 5 4 3 2 1 0

Clk

4-Bit Adder

Multiplicand

Multiplier

C4

FIGURE 18-7
Block Diagram for

Parallel Binary
Multiplier

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net289

initial contents of product register 0 0 0 0 0 1 0 1 1 dM (11)

(add multiplicand because M � 1) 1 1 0 1 (13)

after addition 0 1 1 0 1 1 0 1 1

after shift 0 0 1 1 0 1 1 0 1 dM

(add multiplicand because M � 1) 1 1 0 1

after addition 1 0 0 1 1 1 1 0 1

after shift 0 1 0 0 1 1 1 1 0 dM

(skip addition because M � 0)

after shift 0 0 1 0 0 1 1 1 1 dM

(add multiplicand because M � 1) 1 1 0 1

after addition 1 0 0 0 1 1 1 1 1

after shift (final answer) 0 1 0 0 0 1 1 1 1 (143)

dividing line between product and multiplier

The control circuit must be designed to output the proper sequence of add and shift
signals. Figure 18-8 shows a state graph for the control circuit. The notation used on
this graph is defined in Section 14.5. M/Ad means if M � 1, then the output Ad is 1
(and the other outputs are 0). M
/Sh means if M
 � 1 (M � 0), then the output Sh is
1 (and the other outputs are 0). In Figure 18-8, S0 is the reset state, and the circuit stays
in S0 until a start signal (St � 1) is received. This generates a Load signal, which caus-
es the multiplier to be loaded into the lower 4 bits of the accumulator (ACC) and the
upper 5 bits of ACC to be cleared on the next rising clock edge. In state S1, the low
order bit of the multiplier (M) is tested. If M � 1, an add signal is generated and, then,
a shift signal is generated in S2. If M � 0 in S1, a shift signal is generated because
adding 0 can be omitted. Similarly, in states S3, S5, and S7, M is tested to determine
whether to generate an add signal followed by shift or just a shift signal.A shift signal
is always generated at the next clock time following an add signal (states S2, S4, S6, and
S8).After four shifts have been generated, all four multiplier bits have been processed,
and the control circuit goes to a Done state and terminates the multiplication process.

600 Unit 18

⎯⎯⎯⎯→

S5 S4

S3

S2

S1

S0S9

S8

S7

S6

–/Sh –/Done

–/Sh

–/Sh

–/Sh

M/Ad M ′/Sh

M ′/Sh

M ′/Sh

M ′/Sh

M/Ad M/Ad

M/Ad

St/Load

St ′/0FIGURE 18-8
State Graph for

Multiplier Control

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net290

As the state graph indicates, the control performs two functions—generating
add or shift signals as needed and counting the number of shifts. If the number of
bits is large, it is convenient to divide the control circuit into a counter and an add-
shift control, as shown in Figure 18-9(a). First, we will derive a state graph for the
add-shift control which tests M and St and outputs the proper sequence of add and
shift signals (Figure 18-9(b)). Then, we will add a completion signal (K) from the
counter which stops the multiplier after the proper number of shifts have been
completed. Starting in S0 in Figure 18-9(b), when a start signal (St � 1) is received,
a Load signal is generated. In state S1, if M � 0, a shift signal is generated and the
circuit stays in S1. If M � 1, an add signal is generated and the circuit goes to state
S2. In S2 a shift signal is generated because a shift always follows an add. Back in
S1, the next multiplier bit (M) is tested to determine whether to shift, or add and
then shift. The graph of Figure 18-9(b) will generate the proper sequence of add
and shift signals, but it has no provision for stopping the multiplier.

In order to determine when the multiplication is completed, the counter is incre-
mented on the active clock edge each time a shift signal is generated. If the multipli-
er is n bits, a total of n shifts are required. We will design the counter so that a
completion signal (K) is generated after n – 1 shifts have occurred. When K � 1, the
circuit should perform one more addition if necessary and then do the final shift.The
control operation in Figure 18-9(c) is the same as Figure 18-9(b) as long as K � 0.
In state S1, if K � 1, we test M as usual. If M � 0, we output the final shift signal
and stop; however, if M � 1, we add before shifting and go to state S2. In state S2, if
K � 1, we output one more shift signal and then go to S3. The last shift signal will
reset the counter to 0 at the same time the add-shift control goes to the Done state.

As an example, consider the multiplier of Figure 18-7, but replace the control circuit
with Figure 18-9(a). Because n � 4, a 2-bit counter is needed, and K � 1 when the
counter is in state 3 (112). Table 18-2 shows the operation of the multiplier when 1101
is multiplied by 1011.S0,S1, and S2 represent states of the control circuit [Figure 18-9(c)].
The contents of the product register at each step is the same as given on p. 600.

At time t0 the control is reset and waiting for a start signal. At time tl, the start
signal St � 1, and a Load signal is generated.At time t2, M � 1, so an Ad signal is gen-
erated. When the next clock occurs, the output of the adder is loaded into the accu-
mulator and the control goes to S2. At t3, an Sh signal is generated, so, shifting occurs
and the counter is incremented at the next clock. At t4, M � 1, so Ad � 1, and the

Circuits for Arithmetic Operations 601

Counter

(a) Multiplier control (b) State graph for
add-shift control

–/Sh

St

M

K
M/Ad

Add-Shift
Control

Done

Clk

Load
Ad
Sh

S0 S1

S2

St ′/0 M ′/Sh

St/Load

(c) Final state graph for
add-shift control

K ′/Sh

K/Sh

M/Ad
KM′/Sh

S0 S1

S2

St ′/0 K ′M ′/Sh

St/Load

–/Done

S3

FIGURE 18-9

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net291

adder output is loaded into the accumulator at the next clock.At t5 and t6, shifting and
counting occurs.At t7, three shifts have occurred and the counter state is 11, so K � 1.
Because M � 1, addition occurs, and the control goes to S2.At t8, Sh � K � 1, so at the
next clock the final shift occurs, and the counter is incremented back to state 00.At t9,
a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits
simply by increasing the register size and the number of bits in the counter.The add-
shift control would remain unchanged.

18.3 Design of a Binary Divider

We will consider the design of a parallel divider for positive binary numbers. As an
example, we will design a circuit to divide an 8-bit dividend by a 4-bit divisor to
obtain a 4-bit quotient. The following example illustrates the division process:

1010 quotient
divisor 1101 10000111 dividend

1101
0111
0000
1111
1101
0101
0000
0101 remainder

Just as binary multiplication can be carried out as a series of add and shift
operations, division can be carried out by a series of subtraction and shift opera-
tions. To construct the divider, we will use a 9-bit dividend register and a 4-bit
divisor register, as shown in Figure 18-10. During the division process, instead of

602 Unit 18

Product
Time State Counter Register St M K Load Ad Sh Done

t0 S0 00 000000000 0 0 0 0 0 0 0
t1 S0 00 000000000 1 0 0 1 0 0 0
t2 S1 00 000001011 0 1 0 0 1 0 0
t3 S2 00 011011011 0 1 0 0 0 1 0
t4 S1 01 001101101 0 1 0 0 1 0 0
t5 S2 01 100111101 0 1 0 0 0 1 0
t6 S1 10 010011110 0 0 0 0 0 1 0
t7 S1 11 001001111 0 1 1 0 1 0 0
t8 S2 11 100011111 0 1 1 0 0 1 0
t9 S3 00 010001111 0 1 0 0 0 0 1

TABLE 18-2
Operation of a

Multiplier Using
a Counter

(135 � 13 � 10 with
a remainder of 5)

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net292

shifting the divisor to the right before each subtraction as shown in the preced-
ing example, we will shift the dividend to the left. Note that an extra bit is
required on the left end of the dividend register so that a bit is not lost when the
dividend is shifted left. Instead of using a separate register to store the quotient,
we will enter the quotient bit-by-bit into the right end of the dividend register as
the dividend is shifted left. Circuits for initially loading the dividend into the reg-
ister will be added later.

The preceding division example (135 divided by 13) is now reworked, showing
the location of the bits in the registers at each clock time. Initially, the dividend and
divisor are entered as follows:

Subtraction cannot be carried out without a negative result, so we will shift before
we subtract. Instead of shifting the divisor one place to the right, we will shift the
dividend one place to the left:

1 0 0 0 0 1 1 1 0
Dividing line between dividend and quotient

1 1 0 1 Note that after the shift, the rightmost position
in the dividend register is “empty”.

Subtraction is now carried out, and the first quotient digit of 1 is stored in the
unused position of the dividend register:

0 0 0 1 1 1 1 1 1 first quotient digit

Next, we shift the dividend one place to the left:

0 0 1 1 1 1 1 1 0
1 1 0 1

0 1 0 0 0

1 1 0 1

0 1 1 1

Circuits for Arithmetic Operations 603

Sh
LdX8 X7 X6 X5 X4

Y3 Y2 Y1 Y0

C

Su

Sh

St (Start Signal)

V
(Overflow
Indicator)

X3 X2 X1 X0

Subtractor
and

Comparator

Dividend Register

Control

Clock
0

FIGURE 18-10
Block Diagram for

Parallel Binary
Divider

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net293

Because subtraction would yield a negative result, we shift the dividend to the left
again, and the second quotient bit remains 0:

0 1 1 1 1 1 1 0 0
1 1 0 1

Subtraction is now carried out, and the third quotient digit of 1 is stored in the
unused position of the dividend register:

0 0 0 1 0 1 1 0 1 third quotient digit

A final shift is carried out and the fourth quotient bit is set to 0:

0 0 1 0 1 1 0 1 0

remainder quotient

The final result agrees with that obtained in the first example. Note that in the first
step the leftmost 1 in the dividend is shifted left into the leftmost position (X8) in
the X register. If we did not have a place for this bit, the division operation would
have failed at this step because 0000 � 1101. However, by keeping the leftmost bit
in X8, 10000 � 1101, and subtraction can occur.

If as a result of a division operation, the quotient would contain more bits than
are available for storing the quotient, we say that an overflow has occurred. For
the divider of Figure 18-10 an overflow would occur if the quotient is greater than
15, because only 4 bits are provided to store the quotient. It is not actually neces-
sary to carry out the division to determine if an overflow condition exists, because
an initial comparison of the dividend and divisor will tell if the quotient will be too
large. For example, if we attempt to divide 135 by 7, the initial contents of the reg-
isters would be:

0 1 0 0 0 0 1 1 1
0 1 1 1

Because subtraction can be carried out with a nonnegative result, we should sub-
tract the divisor from the dividend and enter a quotient bit of 1 in the rightmost
place in the dividend register. However, we cannot do this because the rightmost
place contains the least significant bit of the dividend, and entering a quotient bit
here would destroy that dividend bit. Therefore, the quotient would be too large to
store in the 4 bits we have allocated for it, and we have detected an overflow con-
dition. In general, for Figure 18-10, if initially X8X7X6X5X4 � Y3Y2YlY0 (i.e., if the
left five bits of the dividend register exceed or equal the divisor), the quotient will
be greater than 15 and an overflow occurs. Note that if X8X7X6X5X4 � Y3Y2YlY0,
the quotient is

The operation of the divider can be explained in terms of the block diagram of
Figure 18-10. A shift signal (Sh) will shift the dividend one place to the left on the
next rising clock edge. Because the subtracter is a combinational circuit, it computes

X8 X7 X6 X5 X4 X3 X2 X1 X0

Y3 Y2 Y1 Y0
�

X8 X7 X6 X5 X4 0000
Y3 Y2 Y1 Y0

�
X8 X7 X6 X5 X4 � 16

Y3 Y2 Y1 Y0
� 16

604 Unit 18

¯˚˘˚˙ ¯̊ ˘̊ ˙

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net294

X8X7X6X5X4 � Y3Y2Y1Y0, and this difference appears at the subtracter output after
a propagation delay. A subtract signal (Su) will load the subtracter output into
X8X7X6X5X4 and set the quotient bit (the rightmost bit in the dividend register) to 1
on the next rising clock edge.To accomplish this, Su is connected to both the Ld input
on the shift register and the data input on flip-flop X0. If the divisor is greater than
the five leftmost dividend bits, the comparator output is C � 0; otherwise, C � 1.The
control circuit generates the required sequence of shift and subtract signals.
Whenever C � 0, subtraction cannot occur without a negative result, so a shift signal
is generated. Whenever C � 1, a subtract signal is generated, and the quotient bit is
set to one.

Figure 18-11 shows the state diagram for the control circuit. When a start signal
(St) occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate reg-
isters. If C is 1, the quotient would require five or more bits. Because space is only
provided for a 4-bit quotient, this condition constitutes an overflow, so the divider
is stopped, and the overflow indicator is set by the V output. Normally, the initial
value of C is 0, so a shift will occur first, and the control circuit will go to state S2.
Then, if C � 1, subtraction occurs. After the subtraction is completed, C will always
be 0, so the next active clock edge will produce a shift. This process continues until
four shifts have occurred, and the control is in state S5. Then, a final subtraction
occurs if C � 1, and no subtraction occurs if C � 0. No further shifting is required,
and the control goes to the stop state. For this example, we will assume that when
the start signal (St) occurs, it will be 1 for one clock time, and, then, it will remain
0 until the control circuit is back in state S0. Therefore, St will always be 0 in states
Sl through S5.

We will now design the control circuit using a one-hot assignment (see
Section 15.9) to implement the state graph. One flip-flop is used for each state with
Q0 � 1 in S0, Q1 � 1 in S1, Q2 � 1 in S2, etc. By inspection, the next-state and output
equations are

Q0
� � St
Q0 � CQ1 � Q5 Q1

� � StQ0 (18-1)

Q2
� � C
Q1 � CQ2 Q3

� � C
Q2 � CQ3

Q4
� � C
Q3 � CQ4 Q5

� � C
Q4

Load � St Q0 V � CQ1

Sh � C
(Q1 � Q2 � Q3 � Q4) � C
(Q0 � Q5)

Su � C(Q2 � Q3 � Q4 � Q5) � C(Q0 � Q1)

Circuits for Arithmetic Operations 605

S5

S0
(stop) S1 S2

S4 S3

St ′/0
St/Load

C/V
C/Su
C ′/0

C ′/Sh

C/Su

C ′/Sh

C ′/Sh

C ′/Sh

C/Su

C/Su
FIGURE 18-11

State Graph for
Divider Control

Circuit

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net295

Because there are three arrows leading into S0, Q0
� has three terms.The equation for

Sh has been simplified by noting that if the circuit is in state S1 or S2 or S3 or S4, it is
not in state S0 or S5.

The subtracter in Figure 18-10 can be constructed using five full subtracters, as
shown in Figure 18-12. Because the subtracter is a combinational circuit, whenever
the numbers in the divisor and dividend registers change, these changes will propa-
gate to the subtracter outputs. The borrow signal will propagate through the full
subtracters before the subtracter output is transferred to the dividend register. If the
last borrow signal (b9) is 1, this means that the result is negative. Hence, if b9 is 1, the
divisor (Y3Y2Y1Y0) is greater than X8X7X6X5X4, and C � 0. Therefore, C � b9
, and
a separate comparator circuit is unnecessary. Under normal operating conditions
(no overflow) for this divider, we can also show that C � d8
.At any subtraction step,
because the divisor is only four bits, d8 � 1 would allow a second subtraction with-
out shifting. However, this can never occur because the quotient digit cannot be
greater than 1. Therefore, if subtraction is possible, d8 will always be 0 after the sub-
traction, so d8 � 0 implies X8X7X6X5X4 is greater than Y3Y2Y1Y0 and C � d8
.

The block diagram of Figure 18-10 does not show how the dividend is initially
loaded into the X register.This can be accomplished by adding a MUX at the X reg-
ister inputs, as shown in Figure 18-13. This diagram uses bus notation to avoid draw-
ing multiple wires. When several busses are merged together to form a single bus, a
bus merger is used. For example, the symbol

means that the 5-bit subtracter output is merged with bits X3X2X1 and a logic 1 to
form a 9-bit bus. Thus, the MUX output will be d8d7d6d5d4X3X2X11 when Load � 0.

Similarly, the symbol

9

5
3

X0

X (3:1)

X (8:4)

5

3
1

9

606 Unit 18

Full
Subtracter

d8

b9

b8 b7 b6 b5
b4 = 0

X8 0

Full
Subtracter

d7

X7 Y3

Full
Subtracter

d6

X6 Y2

Full
Subtracter

d5

X5 Y1

Full
Subtracter

d4

X4 Y0

FIGURE 18-12
Logic Diagram for

5-Bit Subtracter

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net296

represents a bus splitter that splits the 9 bits from the X register into X8X7X6X5X4

and X3X2X1; X0 is not used. Bus mergers and splitters do not require any actual
hardware; they are just a symbolic way of showing bus connections.

The X register is a left-shift register with parallel load capability, similar to the
register in Figure 12-10. On the rising clock edge, it is loaded when Ld � 1
and shifted left when Sh � 1. Because the register must be loaded with the divi-
dend when Load � 1 and with the subtracter output when Su � 1, Load and
Su are ORed together and connected to the Ld input. The MUX selects the
dividend (preceded by a 0) when Load � 1. When Load � 0, it selects the bus
merger output which consists of the subtracter output, X3X2X1, and a logic 1.
When Su � 1 and the clock rises, this MUX output is loaded into X. The net
result is that X8X7X6X5X4 gets the subtracter output, X3X2X1 is unchanged, and
X0 is set to 1.

Programmed Exercise 18.1

Cover the lower part of each page with a sheet of paper and slide it down as you
check your answers. Write your answer in the space provided before looking at the
correct answers.

Circuits for Arithmetic Operations 607

X (8:0)

10
9-Wide

2-to-1 MUX

Ld
Sh

Clock

0

9

9

9

8

Dividend (7:0)

9

5 1

0

Load

Load

Su

Sh

5-bit
Subtracter

0

5

4

3

X (3:1)
X (8:4)

Y (3:0)
(Divisor)

X0

Bus
Merger

Bus
Splitter

9

FIGURE 18-13
Block Diagram for
Divider Using Bus

Notation

Downloaded From : www.EasyEngineering.net

Downloaded From : www.EasyEngineering.net297

Scanned with CamScanner298

Scanned with CamScanner299

Scanned with CamScanner300

Scanned with CamScanner301

Scanned with CamScanner302

Scanned with CamScanner303

Scanned with CamScanner304

Scanned with CamScanner305

Scanned with CamScanner306

Scanned with CamScanner307

Scanned with CamScanner308

Scanned with CamScanner309

Scanned with CamScanner310

Scanned with CamScanner311

Scanned with CamScanner312

Scanned with CamScanner313

Scanned with CamScanner314

Scanned with CamScanner315

Scanned with CamScanner316

Scanned with CamScanner317

Scanned with CamScanner318

Design of Binary Multiplier

Design a multiplier for positive binary numbers
Binary multiplication requires only shifting and

adding
considerthefollowingexamplei

Multiplicand 1 1 01

Multiplier I O l I
1101 xlatoth I I O l
1101 X1att't I I O l Jhene

we are

Iii3
O

qq.iggmaymtoese.inminateafI 0 O O I 1 I 1 by below
method

Multiplicand 1 I 0 1

Multiplier I 0 l I
1101 1atomposition 7 I I O l

performedZbitnow at1stposition I I 0 I addition
partialproduct I DO I 1 If1101 0at2ndposition 0 O O O L

partialproduct y O O I 1

1101 1 at3rdPos I 1 O l

I 0 O O I l l l answerCT

Multiplication of two 4 bit numbers requires
one 4 bit multiplicand register
one a bit multiplier register
one 8 bit register for product 319

The product register serves as an accumulator
to accumulate the sum of the partial products
Instead of shifting multiplicand left each time
it is convenient if we shift the product register
to the night each time
Block diagram of a parallel binary multiplier

ACC X
K Product

I 8 7 6 5
41 3 2 I O

c so n n a n n n n a n
ne
tr v v v v Multiplier

Done Chk Cy bit Adder
L St m n n nr
M Multiplicand

4 bits from the accumulator and a bits from the

multiplicand register are connected to the adder
Che adder oyp sum and carry are connected back to
accumulator
when'Ad signal is given adder adds and its gp is
stored in accumulator during next dock
Load signed loads the multiplier into the lower
four bits of ACC and clears the upper bits
Shift signed eaures the content of the product
register to be shifted one place to the right 320

Control circuit put the proper sequence of
add and shift signals after 4 L

If current multiplier bit is 1 Ma multiplicand
is added to the accumulator followed by rightshi
if M o addition is skipped and only right shift
occurs
Consider following example
I't 0 I1 X 13 1101 143 10001111

step'O o o o co o o i Product register contents
sinceM I l l 0 I Add multiplicand

henceadgdw.tt O l lo I I O l I after addition
step O O l lo I i OD after shifting
M4heute l l U l
addesbitt

step I 0 0 I I 1 I O l after addition

M o O l O 0 I l l l after shifting
hencewhy o o e o o I 1 I after shifting
swift I I 0 I

step I 0 o o l I 1 I after addition
0 I 0 O O I 1 I 1

In step 1 Last four bits of the product register is loade
0000010110M with the multiplier values eg 1011I 101

Since M ie last bit is t the multiplicand
values eg1101 are added to the 4bits in the
MSB of the product register initially these
bits are zero

321

Step 2 The product register now contains the results

of addition in upper nibble lower nibble is
the multiplier values Hence after addition
the productregistervalues are in this examp
I 101 I 011

Step3 In this step the productregister is shifted
to the right by one bit In our example

after shift the product register is 0110110 Mbi

step4 After shifting the M bit is checked Sincethis
bit is 1 in our example once again the

multiplicand is added to upper four bits
ie 0110 1101 Hence after addition
11011001I 1 I O l

the product register is 00111101

Steps The product register shifted right again and
the value is 100 I 11110J and M bit is o
Hence addition process is skipped and
product register will be shifted again
and new value is 01001 1110

step6 since M bit is 1 the multiplicand is added
and product register will be shifted
Hence after 4 shifting operation the product
register contains 10001111 which is the
result 322

Design of control circuit for the binary multiplier

The control circuit is designed to output the proper
sequence of add Ad and shift Sh signals
The state graph of control circuit is shown
belone
St Done The notation bred is7Load
M sad input Mp St M Ad Sh

Sh
means 51 1 M L

Ad l Sh
St15h means St 1,54 1

allothervalues are zero

M Ish means M O Sh L and
all othervaluesarezero

stYo So resetstate

Ish 359 pone mad

s Mis tested

S8 Sl
MlAd 7 mysh MlAd

vmiIshSI p S2
r

n15h V IshIsh WISH t
S6 S3
r

MlAd Sss Sq L MlAd
Ish

at reset state if St _o it will remain in

same state till st I 323

Once St L product register will be loaded
with values and multiplicand is available at

adder inputs Hence Load L StlLoad
at this state Circuit will check for M bit
if m I the addition will happen Adt and
will move to next state lata will shift the

product register bymaking Sh l and move to

If M o the addition will be skipped at will only
shift the product register and will move to

S
MlAd M 1 Ad 1 add the multiplier

mysh
M o Ad o Sh l Shh shif productregister

Cdn stifftaggy

sn

The same sequence will be continued till
at the control circuit goes to bone state
and terminates the multiplication process

324

Serial Adder with Accumulator

The figure below shows the block diagram of
serial adder with accumulator
stcstart

5thJ kg R2 K xo di Si
segno gcontrol I

circuit eggSI fI Sh f 43 42 Yi Yo Yigif I
d c Citi

CLK

Q D

a
Agg
Ena

Two swift registers are used to hold the
4 bit numbers to be added X and Y
X register is accumulator and Y register is
addend register
When addition is completed content of
X'register is replaced with the sum

of X and Y
Y register is a cyclic shift register such
that at the end of four clock pulses
the value in addend register is back to

original state SI is serial input Sh is

shift control signal
325

g
Sh I allows the value at SI to enter into
the shift register and values at acs aux will

get shifted night and no value will be available
at the input of full adder A similar

operation happens to the Y register also
The result of addition of Ko and yo will
be sum So and

Carry Ci This carny is fed as carry in
while adding Ki and Yi

since Ci need to bae added with Xi and Yi
Ci will be stored in D register and will arrive
at the input of full adder during next clockpulse
only
At every clock pulse the next Isb of and
will arrive at the input of full adder and will
be added along with carry generated by previous
bit's addition
The figure below shows a numerical example
for the same

X Y Ci Si Cit
to 0101 0111 O O l

ti 0010 1011 I O l

1320001 1101 I 1 I

3 10001110 I 1 O

tu 1100 0111 0 l O
326

723 2274 Xo
no so So23 12 74 Si
Full Fulladder adder43 41 42 Yo yo Yo 43 4241 7

a Cz
Ct

Coto
DL DL

at to att

51 So 13 K2 s g z 5251 So 13 Sz
Full Full

41 Yo 43 42 added 42 y yo yz
adder

3 Cy
CZ C3

at Ez D at c z DC

S3 S251 So notcured at 4
Full
adder accumulator is434241 Yo notused

filled with Blum MP
Goto

atta Dc

Designofcontrolcircintforsenaladderi
After receiving a stout signal Lst 1 control circuit
will put out four swift signals Ski and stops Sto
The state diagram is shown here

SHSh
St state input so

Sh ShiftsignedMp S3 Si
f L

H1 Sz Y 327

A B
let So 00

Si 01

Sz I 0

53 I 1 Da At
AB

SE A B At Bt 5h st

ooo ooo l
O O I 1 0 I

I O l I i DA A B ABT A B
I 1 O O I
O O o y DBCBt

I I I 0 AB
I O l 1 gf 100 01 11 10

I i 1 o o I O
Oo fD C

DB St B t A B
Sh ADOO 01 11 10
St o O I l l

T
l

DI DAR DBQB sh St 1 A113
a a

on

Realization of Controller circuit
328

