
DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 1

Introduction to VERILOG: Structure of Verilog Module, Operators, Data Types, Styles of

description

VERILOG Data Flow Description: Highlights of Data Flow description, Structure of Data

Flow Description

MODULE-4 INTRODUCTION TO VERILOG

Why HDL?

What is Hardware description language (HDL):

HDL is a computer aided design (CAD) tool for the modern digital design and synthesis of
digital systems.

Need for HDL

The advancement in the semiconductor technology, the power and complexity of digital
systems has increased. Due to this, such digital systems cannot be realized using discrete
integrated circuits (IC’s).

Complex digital systems can be realized using high-density programmable chips such as
application specific integrated circuits (ASIC’s) and field programmable gate arrays (FPGA’s).
To design such systems, we require sophisticated CAD tool such as HDL.

HDL is used by designer to describe the system in a computer language that is similar to other
software Language like C. Debugging the design is easy, since HDL package implement
simulators and test benches. The two widely used Hardware description languages are VHDL
and Verilog

A Brief History of Verilog

Evolution of Verilog

➢ In 1983, a company called Gateway design Automation developed a hardware-
description language for its newly introduced logic simulator verilog_XL

➢ Gateway was bought by cadence in 1989 & cadence made Verilog available as public
domain.

➢ In December 1995, Verilog HDL became IEEE standard 1364-1995.
➢ The language presently is maintained by the Open Verilog international (OVI)

organization.
➢ Verilog code structure is based on C software language.

Structure of Verilog Module

The Verilog module has a declaration and a body. In the declaration, name, input and outputs
of the modules are listed. The body shows the relationship between the input and the outputs
with help of signal assignment statements.

The syntax of the Verilog module is shown below

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 2

The example program is halfadder

module halfadder (a,b,sum,carry);

input a;

input b;

output sum;

output carry;

assign sum=a ^b; // statement 1

assign carry=a &b; // statement2

end module

➢ Verilog is case sensitive. Halfadder and halfadder are two different modules in verilog.

The declaration starts with predefined word module.
➢ The name of the module should start with alphabetical letter and can include special

character underscore (_). It is user selected.
➢ Semicolon (;) is a line separator. The order in which the inputs, &outputs and their

declarations are written is irrelevant.

➢ “=” is assignment operator, and symbols ^ and & are used for: “xor” and “and”
respectively.

➢ The doubles slashes (//) signal a comment command or /*… */ the pair is used to
write a comment of any length.

➢ The program ends with predefined word endmodule

Verilog ports

input: the port is only an input port. In any assignment statement, the port should appear
only on the right hand side of the assignment statement.(i.e., port is read.)

output: the port is an output port. In contrast to VHDL, the Verilog output port can appear on
either side of the assignment statement.

inout: this port can be used as both an input and output. The inout port represents a
bidirectional bus.

module name of module(port_list);

// declaration:

input , output, reg, wire, parameter,

inout;

functions, tasks;

// statements or body

Initial statement

always statement

module instantiation

continuous assignment

endmodule

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 3

1.4 Operators

HDL has a extensive list of operators. Operator performs a wide variety of functions.
Functions classified

1. Logical operators such as and, or, nand, nor, xor, xnor and not
2. Relational operators: to express the relation between objects. The operators include =,

/=, <, <=, >and >=.
3. Arithmetic operators: such as +, -, * and division.

4. Shifts operators: To move the bits of an objects in a certain direction such as right or left
sll, srl, sla, sra, rol and ror .

Logical operators

These operator performs Logical operations, such as and, or, nand, nor, xor, xnor, and not.
The operation can be on two operands or on a single operand. The operand can be single bit
or multiple bits.

Verilog
operator

(bitwise)

Equivalent
logic

Operand
type

Result

type

&

Bit Bit

|

Bit Bit

~(&)

Bit Bit

~(|)

Bit Bit

^

Bit Bit

~^

Bit Bit

~

Bit Bit

Table 1.1 logical operators.

Verilog logical operators

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 4

Verilog logical operator can be classified as Bitwise, Boolean logical and reduction logical
operators.

The bitwise operators are similar to VHDL logical operators. They operate on the
corresponding bits of two operands. These are shown in table1.1

Example Z= x & y, if x=1011 and y=1010 are 4-bit signals then z=1010 is logical and operation
of x and y.

Boolean operators operate on the two operands. The result is Boolean true (1) or false (0).
These are shown in table 1.2

Example for z= x && y, if x=1011 and y=0001 then Z=1, 2nd case if x=1010 and y=0101 then
z=0;

For z! =x if x=1111 then z=0;

Operators Operation Number of
operands

&& AND two

|| OR two

Table 1.2 Boolean operators

Reduction operators: These operators operate on a single operand. The result is Boolean.

Example y=&x, if x=1010 then y= (1&0&1&0) =0

Operators Operation Number of
operands

& Reduction AND One

| Reduction OR One

~(&) Reduction
NAND

One

~(|) Reduction NOR One

^ Reduction XOR One

~(^) Reduction
XNOR

One

! Negation One

Table 1.3 Verilog Reduction logical operators

1.4.2 Relational operators

These are implemented to compare the values of two objects. The result is false (0) or true
(1).

Verilog Relational operators

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 5

Verilog has a set of Relational operator similar to VHDL. Returns Boolean values false (0) or
true (1).

The result can also be of type unknown (X) when any of the operand include don’t care or
unknown (X) or high impedance. Table 1.4 shows the list of Verilog Relational operators

Example: if (A==B), if the values of A or B contains one or more don’t care or Z bits. The value
of the expression is unknown.

If A is equal to B, then result of the expression (A==B) is true (1).

If A is not equal to B, then result of the expression (A==B) is false (0).

Operators Description Result type

== Equality 0,1,X

!= Inequality 0,1,X

=== Equality Inclusive 0,1

!== Inequality Inclusive 0,1

< Less than 0,1,X

<= Less than equal to 0,1,X

> Greater than 0,1,X

>= Greater than equal
to

0,1,X

Table 1.5 List of Verilog Relational operators

1.4.3 Arithmetic operators

Arithmetic operators can perform a wide variety of operation, such as addition, subtraction,
multiplication and division.

Verilog Arithmetic operators

It is not an extensive type-oriented language. Example y :=(A *B) calculates the values of y as
the product of A times B. Table 1.7 shows the Verilog arithmetic operator

.

Operators Description A or B type Y type

+ Addition

A+B

A numeric

B numeric

Numeric

- Subtraction

A-B

A numeric

B numeric

Numeric

* Multiplication

A?B

A numeric

B numeric

Numeric

/ division

A/B

A numeric

B numeric

Numeric

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 6

% Modulus

A%B

A numeric,

not real

B numeric,

not real

Numeric,

not real

** Exponent

A**B

A numeric

B numeric

Numeric

{,} Concatenation

{A,B}

A numeric,

or array

B numeric,

or array

Same as

A

Table1.7 Verilog arithmetic operator

1.4.4 Shift and Rotate operators

A shift left represents multiplication by two, and a shift left represents division by two.

b). Verilog Shift and Rotate operators

It has basic shift operators. These are unary operators i.e., operate on single operand.
Example if A=1110, is a 4 bit vectors table 1.8 shows the Verilog shift and rotate operators.

Operation Description Operand A

Before shift

Operand A
After shift

A <<1 Shift A one
position left logical

1110 110X

A <<2 Shift A two
position left logical

1110 10XX

A >>1 Shift A one
position right
logical

1110 X111

A >> 2 Shift A two
position right
logical

1110 XX11

Table 1.8 the Verilog shift operators

Data types

The data or operands used in the language must have several types to match the need for
describing the hardware.

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 7

2Verilog Data types

There are different types of Verilog data types. Namely

1. Nets
2. Registers
3. Vectors
4. Integer
5. Real
6. Parameters
7. Array

Nets:

These are declared by the predefined word “wire”. Nets values are change continuously by
the circuits that are driving them. A wire represents a physical wire in a circuit and is used to
connect gates or modules. The value of a wire can be read, but not assigned to, in a function
or block. Verilog supports 4 values for nets.

Value Net Definition Reg

0

1

X

Z

Logic 0(false)

Logic 1(true)

Unknown

High impedance

Logic 0

Logic 1

Unknown

High impedance

Eg. Wire sum; // statement declares a net by name sum.

Wire s1=1’b0; // this statement declares a net by the name of s1; it is initial value 1 bit with
value 0.

Registers: Registers store values until they are updated. They are data storage elements.
Declared by the predefined word “reg” Verilog supports 4 values for registers. As shown in
above table.

Eg reg sum_total; // declares a register by the name sum_total.

Vectors:

These are multiple bits. A reg or net can be declared as a vector. Vectors are declared by
brackets [].

Eg. Wire [3:0] a=4’b1010;

Reg [7:0] total =8’d12;

Integer: declared by the predefined word “integer”. Integers are general-purpose variables.
For synthesis they are used mainly loops-indices, parameters, and constants.

Eg. Integer no_bits;//The above statement declares no_bits as an integer.

Real:

Real (floating point) numbers are declared with the predefined word “real”. Examples of real
values are 2.4, 56.3 5e12.

Eg. Real weight; // the statement declares the register weight as real.

Parameters:

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 8

It represents global constants. Declared by the predefined word “parameter”

Eg. Module comp_genr (x, y, xgty, xlty, xeqy);

Parameter N=3;

Input [n:0] x,y;

Output xgty, xlty, xeqy;

Wire [N:0] sum, xb;

Array: there is no predefined word “array”. Registers and integers can be used as arrays.

Parameter N=4;

Parameter M=3;

Reg signed [M: 0] carry [0:N]

Reg [M: 0] b [0: N];

Integer sum [0: N];

The above statement declares an array by the name sum. It has 5 elements, and each element
is an integer type.

array carry has 5 elements, and each elements is 4bits. They are in 2’S complement form

The array b has 5 elements, each element is 4 bits. The value of each bit can be 0, 1, X or Z;

1.6 Style (Types) of Descriptions

1.6.1 Behavioral Descriptions

This models the system as to how the outputs behave with inputs.

The definition of Behavioral Description is one where architecture (VHDL) or module (Verilog)
includes the predefined word process (VHDL) or always or initial (Verilog).

This description is considered pure behavioral if it does not contain any other features from
other styles.

Listings refer class notes.

VHDL Behavioral Description

Verilog Behavioral Description

1.6.2 Structural Descriptions

This model the system as components or gates, this description is defined by the presence of
the Keyword component in the architecture (VHDL) or gates construct such as “and”, “or”, or
“not” in the module (Verilog).

If the VHDL architecture or the Verilog module consists of only components or gates; this style
is coined as pure structural.

Listings refer class notes.

VHDL structural Description

 Verilog structural Description

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 9

1.6.3 Dataflow Descriptions

It describes how the systems signals flow from the input to the output. The dataflow
statements are concurrent; their execution is controlled by events.

Usually, the description is done by writing the Boolean function of the outputs. It should not
include any of keywords that identify behavioral, structural, or switch level descriptions.

Listings refer class notes.

VHDL dataflow Description

Verilog dataflow Description

1.6.4 Switch level Descriptions

It is the lowest level of description. The system is described using switches or transistors. The
Verilog keywords nmos, pmos, cmos, tran, or tranifo describe the system. VHDL does not have
built in switch level primitives, we are constructing packages to include such primitives and
attach them to the VHDL module.

Listings refer class notes.

VHDL switch level Description

Verilog switch level Description

1.6.5 Mixed-type Descriptions

It uses more than type. Here we may describe some parts of the system using one type and
other parts using another type. Example of Mixed-type Description using both dataflow and
behavioral style is explained in the listing.

Listings refer class notes.

VHDL mixed-type Description

Verilog mixed type Description

1.6.6 Mixed-language Descriptions

It is newly added tool for HDL descriptions. The user can write a module in one language
(VHDL or Verilog) and invoke or import a construct (entity or module) written in the other
language.

Listings refer class notes.

VHDL mixed language Description

Verilog mixed language Description

VERILOG DATA FLOW DESCRIPTION:

Highlights of Data Flow description

Dataflow is a type of hardware description which shows how the signal flows from

system inputs to outputs. It uses signal assignment statements which are executed concurrently

when an event occurs on the signals on the right side of the statement.

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 10

In HDL language, programming is carried out two standard methods.

1. Concurrent program execution: In this method of program execution, all the

statements within the program are executed simultaneously.

The above gate network has two inputs A and B, two outputs

Y1 and Y2. The outputs will get evaluated simultaneously

whenever an event occurs on either of the inputs A or B or

both, assuming the propagation delay of both the gates to be

same.

In order to describe the above hardware we need concurrent

program execution where the outputs are updated whenever an

event occurs on its inputs, irrespective of the order of

statements. All combinational circuits need this style of

execution for accurate description of the hardware.

2. Sequential program execution: In this method all the statements are executed

sequentially in the order of their appearance.

An example of hardware that requires this method of program

execution is a flip-flop. The data given at D input will be

transferred to the output only after the rising or falling edge of

the clock. All sequential circuits like flip-flops, counters,

registers require this method of program execution.

Structure of Data-Flow Description

A dataflow model specifies the functionality of the system without explicitly

specifying its structure. It specifies how the system’s signal flow from inputs to the outputs.

The description is usually done by writing the Boolean functions of the outputs.

The dataflow statements are concurrent and their execution is controlled by events.

EVENT: An event is a change in the value of a signal, such as a change from 0 to 1 or 1 to 0.

Dataflow description is modeled using concurrent signal assignment statements

(VHDL) and continuous signal assignment statements (Verilog).

Example program1:
VHDL dataflow description

entity system is

Port (I1, I2 : in bit ; O1, O2 : out bit) ;

end;

architecture dtf of system is

Verilog dataflow description

module system (I1, I2, O1,O2);

input I1, I2;

output O1, O2;

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 11

begin

O1 <= I1 and I2 ; --st1

O2 <= I1 xor I2 ; --st2

end dtf;

assign O1 = I1 & I2; //st1

assign O2 = I1 ^ I2; //st2

end module

Above example shows HDL code, describing a system using dataflow description. The

entity (module) name is system. I1 and I2 are the two inputs and O1 and O2 are the two outputs.

St1 and st2 are signal assignment statements which assigns value to the outputs O1 and O2.

SIGNAL DECLARATION:

Input and output signals are declared in the entity (module) as ports. Intermediate

Signals (other than input and output signals) are declared using the predefined word signal in

VHDL and wire in Verilog as shown in the below example. In Verilog signals are declared

using reg when the value of the signal needs to be stored.

signal s1, s2 : bit; --VHDL

wire s1, s2; // Verilog

SIGNAL ASSIGNMENT STATEMENTS:

A signal assignment statement is used to assign a value to a signal. The left hand side

of the statement should be declared as a signal. The right hand side can be a signal, a variable,

or a constant. ‘<=’ is a signal assignment operator in VHDL and in verilog predefined word

assign is used.

Execution of signal assignment statement has two phases. In the above example of

system, assume that an event at T0 occurs on either signal I1 or I2. This event changes the value

of I1 from 0 to 1 and also the value of I2 from 0 to 1.

1. Calculation: The value of O1 is calculated using the current values of I1 and I2 at time

T0. The value 1 and 1=1 is calculated. This is not yet assigned to O1.

2. Assignment: The calculated value 1 is assigned to O1 after a delay time. The delay

time can be implicitly or explicitly specified. If no delay time is specified, the HDL

uses a default, small delay of Δ (delta) seconds.

Continuous signal assignment statements:
A continuous assignment statement is the most basic statement in Verilog dataflow

modeling. It is used to drive a value onto a net or assigns a value to a net. It uses the keyword

assign. It has the following form,

assign LHS_target = RHS_Expression;

Example: wire[3:0] Z, preset, clr;

assign Z = preset & clr;

The target of the continuous assignment is Z and the right hand expression is (preset & clr).

The continuous assignment statement executes whenever an event occurs on an operand on the

right hand side of the expression, it is evaluated and assigned to the target.

Concurrent signal assignment statements:

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 12

One of the primary mechanisms for dataflow modeling in VHDL is the concurrent

signal assignment statement. It has the following form,

LHS_target <= RHS_expression;

The value computed by the RHS_expression is assigned to the LHS_target. ‘<=’ is called the

signal assignment oprator.

Example: C <= A and B;

Right hand side expression A and B is computed and the value is assigned to the LHS_target

C.

In HDL dataflow descriptions, concurrent signal assignment statements constitute the

major part. In exampleprogram1 both st1 and st2 are concurrent statements. For the execution

of concurrent statement to start, an event on the right hand side of the statement has to occur.

An event is a change in the value of the signal or a variable. If an event occurs on more than

one statement, then all those statements regardless of their order in the architecture (module)

are executed concurrently (simultaneously).

CONSTANT DECLARATION AND ASSIGNMENT STATEMENTS:

The value of a constant is constant within the segment of the program where it is visible.

A constant in VHDL can be declared using the predefined word constant and in Verilog it is

declared by its type, such as time or integer.

Ex: constant period: time ; --VHDL

time period ; //verilog

To assign a value to the constant we use assignment operator := in VHDL or = in verilog.

Ex: period := 100ns; --VHDL

Period = 100; //verilog

The above example assigns a value of 100 nanoseconds to the constant period which was

declared above. In verilog there are no explicit units of time. 100 means 100 simulation screen

time units. The declaration and assignment can be combined in one statement as:

constant period: time := 100ns; --VHDL

time period = 100 ; //verilog

Conditional signal assignment statement:
The conditional signal assignment statement selects one out of different values for the

target signal based on the specified condition.

The typical syntax for this statement is as follows.

target_signal <= expression1 when boolean_condition1 else

expression2 when boolean_condition2 else

.

.

expression n;

When there is an event on any of the operands present in the boolean_condition or the

expression, the execution of when-else starts. The boolean condition1 is evaluated first. If the

result is true then expression1 is assigned to the target signal. If the result is false, next

condition2 is checked. If the result is true then expression2 is assigned to the target or else

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 13

condition3 is cheked and so on. If no conditions are true then expression n is assigned to the

target_signal.

The target_signal will receive the value of the first expression whose boolean condition

is TRUE. If more than one condition is true, the value of the first condition that is TRUE will

be assigned.

Though the when-else statement is a concurrent statement, within the body the

execution is sequential. Hence the first condition gets the highest priority. This special feature

of when-else can be used to describe “priority encoders”.

Example: Z <= A when s0=’0’ and s1=’0’ else

B when s0=’0’ and s1=’1’ else

C when s0=’1’ and s1=’0’ else

D when s0=’1’ and s1=’1’;

In this example, the statement is executed any time an event occurs on A, B, C, D, s0 or s1.

The first condition(s0=0 and s1=0) is checked, if false, the second condition is checked and so

on and when the condition is true the corresponding value is assigned to Z.

The conditional signal assignment will be executed if any of the signals in the

conditions or expression change.

entity MUX is

port (A, B, C, D: in std_logic;

SEL: in std_logic_vector (1 down to 0);

Z : out std_logic);

end MUX;

architecture MUX41 of MUX is

begin

Z <= A when SEL = “00” else

B when SEL = “01” else

C when SEL = “10” else

D;

end MUX41;

Selected signal assignment statement:
The selected signal assignment is another concurrent statement in VHDL. It provides

selective signal assignment. The syntax is as follows,

with choice_expression select

target_name <= expression1 when choices1,

expression2 when choices2,

.

.

expression n when choices n;

Whenever an event occurs on a signal in the choice_expression or any expression1,

expression2…, the statement gets executed. The choice_expression gets evaluated first and

then this value is compared with all the choices simultaneously. When the value matches with

any of the choices, the corresponding expression is assigned to the target_signal.

DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 14

For example if the value of the choice_expression matches with choice1, then

expression1 is assigned to the target_signal.

* The choice expression must contain atleast one signal because an EVENT can occur only on

a signal. For example if the choice_expression is Y then Y must be a signal. If

choice_expression is X+Y, then either of X or Y must be a signal.

The following rules must be followed for choices:

1. All possible values of the choice expression must be covered by the choices exactly

once. Values not covered explicitly may be covered by an “others” choice.

2. The choices must be static expressions. Ex: 5, 5+6 or w+u where w and u are constants

which are already declared.

3. The choices must be mutually exclusive.

Example 2.1: Data-flow description of a half adder

Truth table

Logic diagram

Logic symbol

VHDL and Verilog code

Simulation waveform

ASSIGNING A DELAY TIME TO THE SIGNAL-ASSIGNMENT STATEMENT

To assign a delay time to a signal-assignment statement, we use the predefined word

after in VHDL or # (delay time) in Verilog.

s1 <= sel and b after 10ns; --VHDL for 10ns delay

assign #10 s1 = sel and b; //Verilog for 10 screen units delay

Note: In Verilog, we cannot specify the units of delay time. The delay is in simulation screen

unit time.

Example 2.2: 2×1 Multiplexer with Active Low Enable

Truth table

Logic diagram

Logic symbol

VHDL and Verilog code

Simulation waveform

