
DEPARTMENT OF ECE DIGITAL SYSTEM DESIGN USING VERILOG (BEC302)

Pg. 1

r e g yurt;

……….

i ni t i al

Yurt=2;

MODULE-5 INTRODUCTION TO VERILOG

5.1 Behavioral Description highlights

The behavioral description is a powerful tool to describe the systems for which the digital logic

structures are not known or hard to generate. Examples of such system are complex arithmetic

units, computer control units, and some biological mechanisms.

In dataflow modeling a system was described by using logic equations. In behavioral modeling

a system is described by showing how the outputs behave according to the changes in inputs.

In this style of description (modeling), it is not necessary to know the logic diagram of the

system, but we must know the behavior of the outputs in response to the changes in the inputs

The primary mechanisms used for behavioral modeling in Verilog are

i) I ni tia l statement: An initial statement executes only once. It begins its execution at the start

of the simulation which is at time 0. The syntax for the initial statement is,

i ni t i al

[timing control]

Procedural_statements

*timing_control can be a delay or an event control.

*Where procedural_statement can be one of the following:

1. Continuous_assignment

2. Conditional_statement

3. Case_statement

4. Loop_statement

5. Wait_statement

6. Sequential_block

*execution of an initial statement will result in execution of the procedural_statement once.

Here is an example of an initial statement

In the above example the initial statement contains a procedural assignment with no timing

control(delay). The initial statement executes at time 0 and yurt is assigned value 2 at time 0

 only.

Pg. 2

R e g curt;

………..

I ni t i al

#5 curt=1;

al w ays

#5 clk=~clk;

module halfadd(a, b, sum, carry);

input a, b;

output sum, carry;

reg sum, carry; /*since sum and carry are outputs and they are written inside

“always”, they should be declared as “reg” or else it will result

in syntax error/*

always @(a, b)

begin

#10 sum = a^b; //statement1-procedural as it is inside always.

#10 carry = a&b; //statement2- procedural as it is inside always.

end

endmodule

Consider

Register curt is assigned value 2 at time 5. The initial statement starts execution at time 0 but

completes execution at time 5.

ii) al ways statement: Just like the initial statement, an always statement also begins execution

at time 0. But In contrast to the initial statement, an always statement executes repeatedly. The

syntax of an always statement is:

alw ay s

[timing_control]

Procedural_statement. //same as explained in initial statement.]

Example:

In the above example the always statement has one procedural_statement. Since always

statement executes repeatedly and there is no timing control the statement clk=~clk will loop

indefinitely. Therefore an always statement must have a timing control (delay or an event).

Consider

This always statement upon execution, produces a waveform with a period of 10 time units.

5.2 Structure of Verilog Behavioral Description

Verilog description

In the above example

*The name of the module is halfadd. It has two inputs a and b, two outputs sum and carry.

al w ays

clk=~clk; //will loop indefinitely.

Pg. 3

Verilog if format

If (boolen expression)

begin

statement1;

statement2; ….

end

else

begin

statement a;

statement b; ….

end

Verilog

if (Boolean expression1) begin

statement 1;

statement 2;

end

else if (Boolean expression2) begin

*Any signal declared as output should be declared as a register (reg).Therefore sum and carry

are declared as registers.

5.3 Sequential statements
There are several statements associated with the behavioral descriptions which appear inside

initial or alw ays in Verilog.

5.3.1 IF statement

“IF” is a sequential statement that appears inside inside always or initial in Verilog. An “IF”

statement selects a sequence of statements for execution, depending upon the value of a

condition. The condition can be an expression that evaluates to a Boolean value. The general

form of an IF statement is:

The execution of “if” is controlled by the Boolean expression. If the expression is true, then

statements A are executed. If the expression is false, statements B are executed.

Execution of IF as ELSE-IF

if(temp==1)

temp=s1;

else

temp=s2;

//Verilog

Pg. 4

if(signal 1==1) //Verilog

temp=s1;

else if(signal 2==1)

temp=s2;

else

temp=s3;

Example program:

Examples1: Behavioral description of the 2X1 Multiplexers with tristate output.

Flowchart & Logic symbol

statement i;

statement ii;

end

else begin

statement a;

statement b;

end

Pg. 5

Verilog Program using IF-ELSE and ELSE-IF

Verilog 2x1 Multiplexer Using IF-ELSE

module mux2x1 (A, B, SEL, Gbar, Y);

input A, B, SEL, Gbar;

output Y;

reg Y;

always @(SEL, A, B, Gbar)

begin
if (Gbar == 1)

Y =1'bz;
else
begin

Verilog 2x1 Multiplexer Using ELSE-IF

module MUXBH (A, B, SEL, Gbar, Y);

input A, B, SEL, Gbar;

output Y;

reg Y;

always @ (SEL, A, B, Gbar)

begin

if (Gbar == 0 & SEL == 1)

begin

Y = B;

end

end

if (SEL)

else

Y = B;

Y = A;

end

end

else if (Gbar == 0 & SEL == 0))

Y =A;

else

Y = 1'bz;

endmodule endmodule

5.3.2 Signal and Variable assignment
With the help of Behavioral description of a D-latch, here we study the difference between the

signal- and Variable assignment statements.

A process is written based on signal-assignment statements, and then another program is

written based on Variable assignment statements. A comparison of the simulation waveforms

highlights the difference between the two methods.

Examples2: Behavioral description of the D-Latch.

module D_latch (d, E, Q, Qb);

input d, E;

output Q, Qb;

reg Q, Qb;

always @ (d, E)

begin

end

if (E == 1)

begin

end

Q = d;

Qb = ~Q;

endmodule

Pg. 6

Examples3: Behavioral description of a Positive edge triggered JK Flip-Flop using the CASE

statements.

module JK_FF (JK, clk, q, qb);

input [1:0] JK;

input clk;

output g, gb;

reg q, qb

always @(posedge clk)

begin

case (JK)

2’d0 :q =q;

2’d1 :q = 0;

2’d2 :q =1;

2‘d3: q= ~q;

endcase

Examples4: Behavioral description of a 3-bit Binary counter with Active High Synchronous

Clear

module CT_CASE (clk, clr, q);
input clk, clr
output [2:0] q;
reg [2:0] q;
initial

q= 3'b101;
always @ (posedge clk)
begin

begin

else

if (clr == 0)

case (q)
3’d0 : q = 3' d1;
3’d1 : q = 3'd2;
3’d2 : q = 3'd3;
3’d3 : q = 3'd4;
3’d4 : q = 3'd5;
3’d5 : q = 3'd6;
3’d6 : q =3'd7;
3’d7 : q = 3’d0;
endcase
end

q= 3'b000;
end
endmodule

Pg. 7

5.3.4 Loop statement

• Loop is used to repeat the execution of the statements inside its body; this repeatation

is controlled by the range of an index parameter.

• The loop reduces the size of the code.

• Loop is a sequential statement that has to appear inside process in VHDL or inside

always or initial in verilog.

• There are several formats of loop statement namely for,while, verilog repeat and

forever.

a).For -loop

The general syntax of for loop in Verilog is as shown below.

The general syntax of for loop in both VHDL and Verilog is as shown below.

Verilog

fo r (initial_assignment;condition;step_assignment)

beg i n

Statements… ;

E n d

For loop execution in Verilog:

Example for Verilog for loop

fo r (i=0;i<=2;i=i+1)

beg i n

if (temp[i]==1)

beg i n

result=result+2;

en d

en d

b).while loop

A while loop is another iterative statement. The general format of while loop is

Verilog

while(condition)
begin

Statement 1;
Statement 2;

end

Pg. 8

repeat (32)
begin

#100 i=i+1;
end

As long as the condition is true, all the statements within the body of the loop are executed. If

the condition is false the loop is suspended and the next statement after loop is executed.

Note: 1. In a while loop, we must ensure that statements inside the while loop will cause the

loop’s condition to evaluate false or else the loop infinite.

“For” loop and “while” loop are common to both VHDL and Verilog except some

minor differences in the syntax. But apart from that there are some language specific loop

statements.

c). Verilog repeat: The repeat construct executes the set of statements between it’s begin and

end a fixed number of times. A repeat construct must contain a number which can be a constant,

variable or a signal. It cannot contain an expression or condition.

Example:

*In the above example, the statement is executed 32 times. Each time “i” is incremented and

assigned to itself after a delay of 100 time units.

d). Verilog forever: The statement “forever” in Verilog repeats the loop endlessly. The loop

does not contain any expression and executes until it encounters “$finish” task. A forever can

be exited or stopped by using “disable” statement.

• “forever” loop is equivalent to “while” loop with an expression that always evaluates

to true.

• One common use of “forever” is to generate clocks in code-oriented test benches.

Initial

Begin

clk=1’b0;

Forever #20 clk=~clk;

End

Pg. 9

5.4 Highlights of Structural description.

The structural description is a method of defining a system with its basic hardware components.

The structural description is best implementation when the hardware components are known.

For example consider 2:1 multiplexer, this can be easily implemented if structural descriptions

of the basic components are known i.e. ‘AND, OR and NOT gates. Structural description can

easily describe these components. Structural description is very close to schematic simulation.

Here we are going to discuss about gate level and register level descriptions for VERILOG and

VHDL.

Facts:

1. Structural description stimulates the system by describing its logical components (AND gate,

OR gate and NOT gate).or can be a higher logical level such as Register Transfer Level (RTL)

or processor level.

2. The structural description is more suitable rather than behavioral description for the system

that required a specific design. Consider for example, a system is performing the operation

A+B=C. In behavioral description, we usually write C= A+B and we have no choice in the type

of adders used to perform this addition. In structural description, we can specify the type of the

adder. For example, look-ahead adders.

3. All statements in structural description are concurrent. At any simulation time, all statements

that have an event executed concurrently.

4. The main difference between the VHDL and VERILOG structural description is availability

of the components to the user. Verilog recognizes all the primitive gates, such as AND, OR,

XOR, NOT, and XNOR gates. Basic VHDL packages do not recognize any gates unless the

package is linked to one or more libraries, packages, or modules that have the gate descriptions.

5.5 Organization of the structural description:

The following program (HDL code) describes a system with the help of structural description,

Example 4.1. In this program architecture part has parts declaration and instantiation.

In the declaration part all the components used in the system description are declared. For

example following description declares XOR gate component.

Pg. 10

Verilog Half Adder Description

module half_add (a, b, S, C);

input a, b;

output S, C;

xor (S, a, b);

and (C, a, b);

endmodule

Component xor2

port (i1, i2: in

std_logic:o1: O1: out

std_logic:

end component;

The xor2 component has tow inputs “i1” and “i2”, and one output “o1”.

Once the component is used we can use the same component one or more times in the system

description. The instantiation part of the code maps the generic input/output to the actual input/output

of the system. For example, the statement

X1: xor2 port map (A, B, sum) ;

Maps A to input i1 of xor2, input B to input i2 of xor2., and output sum to output o1 of xor2. This

mapping means that the logic relationship between A,B and sum is same as between i1, i2 and o1.

Verilog has a large number of built-in gates; for example the statement

Xor X1(sum, a , b);

Describes a two-input XOR gate, the inputs a and b, and the output is sum. X1 is an optional identifier

for the gate: we can also write it as

Xor (sum, a ,b);

Verilog has a complete list of built-in primitive gates. The output of the gate sum has to be listed before

the inputs a and b. Figure4.1 shows a list of gates and their code in Verilog.

Program 4.1:HDL Structural Description—Verilog

Verilog Structural Description

module system (a, b, sum, cout);

input a, b;

output sum, cout;

xor X1 (sum, a, b); /* X1 is an optional identifier; it can be omitted.*/

and a1 (cout, a, b); /* a1 is optional identifier; it can be omitted.*/

endmodule

Pg. 11

Example : Structural description of a 3 bit ripple-carry adder

 The 3-bit ripple-carry adder is built using 3 1-bit full adders as shown in the following figure.

Verilog code for 1-bit full adder using structural modeling:

// Verilog code for 1-bit full adder

 module fulladder(A, B, Cin, SUM, COUT);

 input A, B, Cin;

 output SUM, COUT;

 wire w1,w2,w3;

 //Structural code for one bit full adder

 xor G1(w1, A, B);

 xor G2(SUM, w1, Cin);

 and G3(w2, w1, Cin);

 and G4(w3, A, B);

 or G5(COUT, w2, w3);

endmodule

Then, instantiate the full adders in a Verilog module to create a 3-bit ripple-carry adder using

 structural modeling.

Following is the Verilog code for the 3-bit ripple-carry adder:

Verilog code for 3-bit ripple-carry adder:

module rippe_adder(X, Y, S, Co);

 input [2:0] X, Y;// Two 4-bit inputs

 output [2:0] S;

 output Co;

 wire a1, a2;

 // instantiating 3 1-bit full adders in Verilog

 fulladder u1(X[0], Y[0], 1'b0, S[0], a1);

 fulladder u2(X[1], Y[1], a1, S[1], a2);

 fulladder u3(X[2], Y[2], a2, S[2], Co);

endmodule

