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Syllabus

Module 1

Coulomb’s Law, Electric Field Intensity and Flux density: Experimental law of
Coulomb, Electric field intensity, Field due to continuous volume charge
distribution, Field of a line charge, Field due to Sheet of charge, Electric flux
density, Numerical Problems. (Text: Chapter 2.1 to 2.5, 3.1)

Module 2

Gauss’s law and Divergence: Gauss ‘law, Application of Gauss’ law to point
charge, line charge, Surface charge and volume charge, Point (differential) form of
Gauss law, Divergence. Maxwell‘s First equation (Electrostatics), Vector Operator
¥ and divergence theorem, Numerical Problems (Text: Chapter 3.2 to 3.7).

Energy, Potential and Conductors: Energy expended or work done in moving a
point charge in an electric field, The line integral, Definition of potential
difference and potential, The potential field of point charge, Potential gradient,
Numerical Problems (Text: Chapter 4.1 to 4.4 and 4.6). Current and Current
density, Continuity of current. (Text: Chapter 5.1, 5.2)
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Module 3

Poisson’s and Laplace’s Equations: Derivation of Poisson‘s and Laplace’s
Equations, Uniqueness theorem, Examples of the solution of Laplace‘s
equation, Numerical problems on Laplace equation (Text: Chapter 7.1 to
7.3)

Steady Magnetic Field: Biot-Savart Law, Ampere‘s circuital law, Curl,
Stokes‘ theorem, Magnetic flux and magnetic flux density, Basic
concepts Scalar and Vector Magnetic Potentials, Numerical problems.
(Text: Chapter 8.1 to 8.6)

Module 4

Magnetic  Forces: Force on a moving charge, differential current
elements, Force between differential current elements, Numerical
problems (Text: Chapter 9.1 to 9.3).

Magnetic Materials: Magnetization and permeability, Magnetic boundary
conditions, The magnetic circuit, Potential energy and forces on
magnetic materials, Inductance and mutual reactance, Numerical
problems (Text: Chapter 9.6 to 9.7).

Faraday’ law of Electromagnetic Induction —Integral form and Point
form, Numerical problems (Text: Chapter 10.1)
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Module 5

Maxwell’s equations Continuity equation, Inconsistency of Ampere’s law with
continuity equation, displacement current, Conduction current, Derivation of
Maxwell‘s equations in point form, and integral form, Maxwell’s equations for
different media, Numerical problems (Text: Chapter 10.2 to 10.4)

Uniform Plane Wave: Plane wave, Uniform plane wave, Derivation of plane
wave equations from Maxwell’s equations, Solution of wave equation for perfect
dielectric, Relation between E and H, Wave propagation in free space, Solution of
wave equation for sinusoidal excitation, wave propagation in any conducting
media (y, a, B, ) and good conductors, Skin effect or Depth of penetration,
Poynting‘s theorem and wave power, Numerical problems. (Text: Chapter 12.1
to 12.4)
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Textbooks

« W.H. Hayt and J.A. Buck, —Engineering Electromagneticsl, 8th
Edition, Tata McGraw-Hill, 2014, ISBN-978-93-392-0327-6.
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Reference Books

1. Elements of Electromagnetics — Matthew N.O., Sadiku, Oxford university
press, 4th Edn.

2. 2. Electromagnetic Waves and Radiating systems — E. C. Jordan and K.G.
Balman, PHI, 2ndEdn.

3. 3. Electromagnetics- Joseph Edminister, Schaum Outline Series, McGraw Hill.
N. Narayana Rao, —Fundamentals of Electromagnetics for Engineering|,
Pearson.
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Course OQutcomes

Evaluate problems on electrostatic force, electric field due to point, linear,
volume charges by applying conventional methods and charge in a volume..

Apply Gauss law to evaluate Electric fields due to different charge
distributions and Volume Charge distribution by using Divergence Theorem
and determine potential and energy of a point charge

Determine capacitance of a parallel plate capacitor, coaxial cylindrical
capacitor with different charge distributions using Laplace equation and Apply
Biot-Savart’s and Ampere’s laws for evaluating Magnetic field for different
current configurations

Calculate magnetic force, potential energy and Magnetization with respect to
magnetic materials and voltage induced in electric circuits..

Apply Maxwell’s equations for time varying fields, EM waves in free space
and conductors and Evaluate power associated with EM waves using Poynting
theorem.
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Module 1

« Revision of Vector Calculus —(Text 1: Chapter 1)

Coulomb’s Law, Electric Field Intensity and Flux density: Experimental law
of Coulomb, Electric field intensity, Field due to continuous volume
charge distribution, Field of a line charge, Field due to Sheet of
charge, Electric flux density, Numerical Problems. (Text: Chapter 2.1
to 2.5,3.1)
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Revision of Vector Calculus
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What Is Electromagnetics

Electric field

Produced by the presence of
electrically charged particles,
and gives rise to the electric

force.

Magnetic field

Produced by the motion of
electric charges, or electric
current, and gives rise to the
magnetic force associated
with magnets.




Direction of movement

EMW

B An electromagnetic  field s
generated when charged particles,
such as electrons, are accelerated.

MW All electrically charged particles are
surrounded by electric fields.

M Charged particles in motion produce
magnetic fields.

B When the velocity of a charged
particle changes, an electromagnetic
field is produced.
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Why do we learn Engineering

Electromagnetics
v Electric and magnetic field exist nearly everywhere.

THE ELECTROMAGNETIC SPECTRUM
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Applications

v" Electromagnetic principles find application in various ciscpines
such as microwaves, x-rays, antennas, electric machines,
plasmas, etc.
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Applications

v Electromagnetic fields are used in induction heaters for mding,
forging, annealing, surface hardening, and soldering operation.

v" Electromagnetic devices include transformers, radio, television,
mobile phones, radars, lasers, etc.
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Applications

Transrapid Train

* A magnetic traveling field moves the Propuslon
vehicle without contact. v~

* The speed can be continuously
regulated by varying the frequency of
the alternating current.
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Scalars and Vectors

v Scalar refers to a quantity whose value may be represented
va single (positive or negative) real number.

v' Some examples include distance, temperature, mass, densiy,
pressure, volume, and time.

v A vector quantity has both a magnitude and a direction
In space. We especially concerned with two- and three-
dimensional spaces only.

v" Displacement, velocity, acceleration, and force are examples
of vectors.

« Scalar notation: A orA (italic or plain)
 Vector notation: A orA (bold or plain with arrow)

EMW 16



Vector Algebra

A-\’B A %)

-

A+B=B+A
A+(B+C)=(A+B)+C

A-B=A+(-B)
A 1

n n
A-B=0—>A=B
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Rectangular Coordinate
SyStem Differential surface units:

A
dx - dy
dy - dz
x =0 plane dXdZ
y = 0 plane P
Origin
» -  Differential volume unit:
z=0 plane dxdydz
»
A A
Volume = dx dy dz
1 dx dy i
T«f P(12,3) " “’"
Pl B
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Vector Components and Unit
Vectors

TZ
| : —+—P(1,2,3)
’ r R ?

/ | PO
02,-2,1)

r=X+y+z |

I =xa,+ya, +za,

a,,a,,a, . unitvectors

X1 Fyr Hz Reoo =1o T

=(2a,-2a,+a,)-(la,+2a,+3a,)

l“: =a, —4a, —2a,
a, '
al‘
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Vector Components and Unit Vectors

v" For any vector B, B=Ba+B,a,+B,a,:

|B| = \/Bj + B§+ BZZ= B Magnitude of B

B B
B \/BZ+ B2+ B2~ E Unit vector in the direction of B
X y Z

a

v’ Example
Given points M(-1,2,1) and N(3,-3,0), find Ry, and a.

Ruw = (33, —3a,+0a,) - (-1a, +2a, +1a,) = 4a, —5a, -4,

Run 4a,— 5a ,—1a,
A = R N 2 2 2
R \/4 +(=9)"+(-1)
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The Dot Product

v Given two vectors A and B, the dot product, or scalar p
IS defines as the product of the magnitude of A, the magnitude
of B, and the cosine of the smaller angle between them:

A-B = |A|B|cosb)

v" The dot product is a scalar, and it obeys the commutative bw
A-B=B-A

v' Forany vector A= +Aa,+AaandB=Ba, +Ba,+B.a,,
Aa,

A-B=AB+AB,+AB,
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The Dot Product

v One of the most important applications of the dot product is that
of finding the component of a vector in a given direction.

» The scalar component of B in the direction
of the unit vector a isB-a

 The vector component of B in the direction
of the unit vector a is (B-a)a

B -a<Blajcosbs,= B dosd,,
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The Dot Product
v Example

The three vertices of a triangle are located at A(6,—1,2), B(—
2,3,—4), and C(-3,1,5). Find: (a) Rpg; (b) Rac; (c) the angle
OBAC at vertex A; (d) the vector projection of Ryg ONR 4.

R =(-2a, +3a, —4a,)-(6a, —a, +2a,) =—-8a, +4a, — 64, B

R, =(-3a, +la, +53a,) - (6a, —a, +2a,) =-9a, +2a, + 33,

QBAC

RAB' RAC:‘RABHRAC‘COSQBAC A C
"R, Ry (—8a,+ 4a,—- 6a,) - (-9a,+ 2a,+ 3a,) 062
— c0sd =
" Rua[Racl B+ @7+ 6|0+ (27 + @7 \\/—11 Hﬂ

= Ggac = C0s_, (0.594) 3560
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The Cross Product

v" Given two vectors A and B, the magnitude of the cross
or vector product, written as AxB, is defines as the product of
the magnitude of A, the magnitude of B, and the sine of the
smaller angle between them.

v" The direction of AxB is perpendicular to the plane containing
A and B and is in the direction of advance of a right-handed
screw as A is turned into B.

AxB = ay |AB §inbs, Q @ -a
a xa,=a,
v" The cross product is a vector, and t g a X a,=a,
IS not commutative:
(BxA)=—(AxB) 4"

1A><B

EMW 24



The Cross Product
v Example

Given A = 2a,—3a,+a, and B = —4a,—2a,+5a,, find AxB.

AxB=(AB,-AB,)a, +(AB,—AB,)a,+(AB, - AB,)a,

= ((=3)(5) - (M(-2))a, +((D(-4) - (2)(5) )a, +((2)(-2) - (-3)(-4) )z,
=-13a,—-14a ,-16a,
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¢ = a constant
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The Cylindrical Coordinate System

117

s R,
z+dz » ‘”:::;;J* %
A | y - \1 ~ -
_¢_\\§‘*’ -~ | pag
y ¢ +do \P \ 3
S prdpy -
¥

» Differential surface units:

dp-dz
pdg-dz
dp-pdg
e Differential volume unit :

dp-pdg-dz

 Relation between the
rectangular and the cylindrical
coordinate systems __
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The Cylindrical Coordine%te System

| )
0

v ;'//‘

A=Aa+Aa,+Aa,=A=Aa +Aa,+Aga,
ApzA-ap

a, a,
9 =(Aa, + Aa,+ Aa,) -a,
¢
= A&ax-ap+Ayay -a, +Aa, a,
ay = A,cosg + A sin g
a

A,=A-a,
=(Aa,+Aa,+Aa,) a,

* Dot products of unit vectors in =Aa,-a,+Aa,-a;tAa,-a,

cylindrical and rectangular
coordinate systems

=—A,sin ¢+ A, cos¢

4 A= Aa,

— SIn ¢

0 =(Aa,+Aa,+Aa,)- a,
U =Aa,-a,+Aa, a,+Aa,-a,
= A
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The Spherical Coordinate System

— % =aconstant
(plane)
r = a constant
(sphere)
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e Differential surface units:
dr-rd@

dr - rsinéd¢
rd@-rsinfdg

e Differential volume unit :
dr-rd@-rsinéde 30



The Spherical Coordinate System

« Relation between the rectangular and
the spherical coordinate systems

X =rsinécos¢g rz\/xz+y2+22, r>0

Z

y =rsin@sing 6= cos™ , 0°<0<180°
\/XZ + Y2 +72
Z=rcosd ¢:tan‘1l
X
A
* Dot products of unit vectors in spherical and
rectangular coordinate systems
a, dy 4y
a,- siInfcosg  cosbcose —Sin ¢
a,- sIn @ sin ¢ cosfsin ¢ CoS ¢

a,- cos — s f 0
EVW | 31




COULOMB'S LAW AND
ELECTRIC FIELD INTENSITY
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The Experimental Law of Coulomb

v"In 1600, Dr. Gilbert, a physician from England, published te
first major classification of electric and non-electric
materials.

v' He stated that glass, sulfur, amber, and some other naeis
“not only draw to themselves straw, and chaff, but all metals,
wood, leaves, stone, earths, even water and olil.”

v In the following century, a French Army Engnes;
Colonel Charles Coulomb, performed an
elaborate series of experiments using devices
Invented by himself.

v" Coulomb could determine quantitatively the fe
exerted between two objects, each having a
static charge of electricity.

v' He wrote seven important treatises on electric
and magnetism, developed a theory of attraction
and repulsion between bodies,Qf the opposite
and the same electrical charge.




I
laYil
I

vl
e/

The Experimental Law of Coulomb

v" Coulomb stated that the force between two very small obeds
separated in vacuum or free space by a distance which is large
compared to their size is proportional to the charge on each
and inversely proportional to the square of the distance
between them.

Sele]
R

v In S| Units, the quantities of charge Q are measured In
coulombs (C), the separation R in meters (m), and the force F
should be newtons (N).

v This will be achieved if the constant of proportionality k is
written as:

kK= L
4 7ré,
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The Experimental Law of Coulomb

v" The permittivity of free space ¢ is measured in farads per mes
(F/m), and has the magnitude of:

Ey = 8.854x10 7% = ilO‘9 F/m
367

vThe Coulomb’slaw is
v F . 1 QlQZ
o 2
e, R

v The force F acts along the line joining the two charges. It is
repulsive if the charges are alike in sign and attractive if the are
of opposite sign.

- ' -
q_,@ (/l (/‘l@—)D (I|®_>D Q'_Tell‘.’

Repulsion Attraction
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The Experimental Law of Coulomb

o / a = R, _Rp _hL—Nh
12
P Rl R
H I

0,®

g
°
Origin

v'I n vector form, Coulomb’s law is written

a F . 1 Q1Q2 a

2 = 2 12

v F,is the force on Q,, for the case where Q, and Q, have the
same sign, while ay, Is the unit vector in the direction of Ry,, the
line segment from Q4 to Q..
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Electric Field Intensity

v" Let us consider one charge, say Q,, fixed in position in space.

v" Now, imagine that we can introduce a second charge, Q,, as a “unit test charge”, tawe
can move around.

v" We know that there exists everywhere a force on this second charge » This second
charge is displaying the existence of a force field.

v" The force on it is given by Coulomb’s law as:

F 1 Q].Qt
' Ame, R Y

v Writing this force as a “force per unit charge” gus

Ft 1 Ql Vector Field,
Qt 47ng th Electric Field Intensity




Electric Field Intensity

v We define the electric field intensity as the vector of force on a unit positive &t
charge.

v Electric field intensity, E, is measured by the unit newtons per coulomb (N/C) or \dper
meter (V/m).

E = Ft = 1 Qla
Q 4ng, R ™

v' The field of a single point charge can be written
8 1
- 1 9,
dre, R

v'aris a unit vector in the direction from the point at which the point charge Q is located, to &
point at which E is desired/measured.
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Electric Field Intensity

v" For a charge which is not at the origin of fe s
coordinate, the electric field intensity Is:

_ Q
A jr—f| [H] |

_ 1 Q(r-m

Az, |r -

E(r)

Origin

__1 Qlx—xp+(y-yR+(z-28]
8 | =X+ (y - Y+ 27 )

)ZSZ
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Electric Field Intensity

v" The electric field intensity due to two point charges, say Q; atr;and Q,atr,, is t&
sum of the electric field intensity on Q, caused by Q; and Q, acting alone
(Superposition Principle).

E(r)= —— 2
A7g, ‘r ‘
1

A7g, ‘r—rz‘

a,

E(r)
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Field Due to a Continuous Volume Charge
Distribution
v"W e denote the volume charge density by p,, having the units

of
coulombs per cubic meter (C/m3).

v'T h e small amount of charge AQ in a small volume Av is
AQ = p,Av

v Rguatinay (Ae@'ne p, mathematically by using a limit on the ane
A= iy

v" The total charge within some finite volume is obtained
pintegrating throughout that volume:

Q= ijdV

vol



Field Due to a Continuous VVolume Charge
Distribution

v" The contributions of all the volume charge in a given
region, Hthe volume element Av approaches zero, is an
Integral in the form of:

1 pv(m,r_ "
E(r) =
(r) vol47z-80 ‘r_fz‘ ‘r_f ‘




Field of a Line Charge

v Now we consider a filamentlike distribution of volume dage
density. It is convenient to treat the charge as a line charge of
density p, C/m.

0,0,z |

v' Let us assume a straight-line charge extending
along the z axis in a cylindrical coordinate system
from
—o {0 +o0.

v" Wedesire the electric field intensity E at any point
resulting from a uniform line charge density p, .

dE=dE a, +dE,3,
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Field of a Line Charge

7 The incremental field dE only has the components in a, and
) direction, and no ay direction. < Why?

v' The component dE, is the result
of symmetrical contributions of
line segments above and below
the observation point P.

v Since the length is infinity, they are
canceling each other » dEz = 0.

v" The component dE, exists, and fm
the Coulomb’s law we know that

dE, will be inversely proportional to
the distance to the line charge, p. dE = dE a +dE.a
pp Ay
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Field of a Line Charge

v Take PQy0),

dE =

1 dQ(r -
r—f]|

_1 pdz(m,-79)

4”50 (,02 4 532 /
1 ppad
475, (0 + B

I P
ane (074 2
_ap 7
dng, (P + Y|

E =

Yo,

PL
2TE P

EMW

=23
r=ya,=pa,

(0,0,2) }

dE =dE a, +dE,3,

du u
j‘ (@ +u)"? & Va5 u?



Field of a Line Charge

v" Now let us analyze the answer i

E-_ 4
2TE, P

Yo,

v" The field falls off inversely with the distance to the charged e
as compared with the point charge, where the field decreased
with the square of the distance.
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Field of a Sheet of Charge

v" Another basic charge configuration
IS the infinite sheet of charge
having a uniform density of pg 5 4 B
C/mz,

v' The charge-distribution family b '

now complete: point (Q), line
(0,), surface (ps), and volume

v/* 0

R=ViZFy?
P(x, 0, 0)

v' Let us examine a sheet of charge above, which is placed in te
yz plane.

v" The plane can be seen to be assembled from an infinite

number of line charge, extending along the z axis, from — to
+ 00
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Field of a Sheet of Charge

v For a differential width strip dy’, t®
line charge density Is given by \ o —ady
pL=psdy’.

v' The component dE, at P is ze,
because the differential segments

above and below the y axis will
cancel each other.

v The componentdE, at P is a0
zero, because the differential 00
segments to the right and to the
left of z axis will cancel each
other.

v' Only dE, is present, and this
component is a function of x alone.

7 A
R=ViTty2
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Field of a Sheet of Charge

v" The contribution of a strip to E, &
P is given by:

Py B
dE, = cosé ps )
276, X* + ¥ )
_ P9
27e, X° +
v" Adding the effects of all the sj5 03

£ _of T _xdy’
Co2mE  XP 4yt

_Lptap1— YT
2 7ts, X J|_OO
f______du ==-1~tan"—li + C
— ps a® + u? a a

2&,

R=VxTty2

P(x, 0, 0)
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Field of a Sheet of Charge

v Fact: The electric field is always directed away from the posive
charge, into the negative charge.

v"W e now introduce a unit vector ay, which is normal to the dud
and directed away from it.

E=sa
28,

v The field of a sheet of charge is constant in magnitude al
direction. It is not a function of distance.
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Electric Flux Density
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ELECTRIC FLUX DENSITY
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Electric Flux Density

v About 1837, the Director of the Royal Society in London,
Michael Faraday, was interested in static electric fields and the
effect of various insulating materials on these fields.

v This is the lead to his famous invention, the electric motor.

v" He found that if he moved a magnet through a loop of wire, @
electric current flowed in the wire. The current also flowed if the
loop was moved over a stationary magnet.

» Changing magnetic field produces an electric field.
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Electric Flux Density

v"In his experiments, Faraday had a pair of concentric megic
spheres constructed, the outer one consisting of two
hemispheres that could be firmly clamed together.

v He also prepared shells of insulating material (or dielectric
material), which would occupy the entire volume between the
concentric spheres. v

Insulating or
' dielectric
"~ matenal

C
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Electric Flux Density

vFaraday found out, that there was a sort of “charge
displacement” from the inner sphere to the outer sphere, which
was independent of the medium.

v'"W e refer to this flow as displacement, displacement flux,
or simply electric flux.

v=Q

v Where y is the electric flux, measured in coulombs, and Q
IS the total charge on the inner sphere, also in coulombs.
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Electric Flux Density

v Atthe surface of the inner sphere, e
coulombs of electric flux are produced e
by the given charge Q coulombs, and

distributed uniformly over a surface @
having an area of 41ma2 mz2. ‘§

v The density of the flux at this sufe
IS wl4mraz or Q/4maz C/m=,

v" The new quantity, electric flux density, is measured in C/m2 aul
denoted with D.

v" The direction of D at a point is the direction of the flux lines

at that point.

v' The magnitude of D is given by the number of flux lines
crossing a surface normal to the lines divided by the surface
area.
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Electric Flux Density

v' Referring again to the concentric e /\ nuing r
spheres, the electric flux density is In e . ‘

the radial direction :

D| = Q a, (inner sphere) ' g
= 4ra’

D| | = 47332 a, (outer sphere)
v Atadistancer, wherea<r <
of D= Q a
Arr? '

v' If we make the inner sphere smaller and smaller, it becomes
a point charge while still retaining a charge of Q. The electrix
flux density at a point r meters away is still given by:

D9

A7rr?

a

r
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Electric Flux Density

v Comparing with the radial electric field intensity of a
@tharge in free space Is:

e

Are,r*

a

r

v' Therefore, in free space, the following relation godes
D=¢E

v" For a general volume charge distribution in free e

c_ pvdv2
vol 477¢,R

ap

EMW 58



