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Syllabus
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Module 1

Coulomb’s Law, Electric Field Intensity and Flux density: Experimental law of

Coulomb, Electric field intensity, Field due to continuous volume charge

distribution, Field of a line charge, Field due to Sheet of charge, Electric flux

density, Numerical Problems. (Text: Chapter 2.1 to 2.5, 3.1)

Module 2

Gauss’s law and Divergence: Gauss ‘law, Application of Gauss’ law to point

charge, line charge, Surface charge and volume charge, Point (differential) form of

Gauss law, Divergence. Maxwell‘s First equation (Electrostatics), Vector Operator

▼ and divergence theorem, Numerical Problems (Text: Chapter 3.2 to 3.7).

Energy, Potential and Conductors: Energy expended or work done in moving a

point charge in an electric field, The line integral, Definition of potential

difference and potential, The potential field of point charge, Potential gradient,

Numerical Problems (Text: Chapter 4.1 to 4.4 and 4.6). Current and Current

density, Continuity of current. (Text: Chapter 5.1, 5.2)



Module 3

Poisson’s and Laplace’s Equations: Derivation of Poisson‘s and Laplace‘s

Equations, Uniqueness theorem, Examples of the solution of Laplace‘s
equation, Numerical problems on Laplace equation (Text: Chapter 7.1 to
7.3)

Steady Magnetic Field: Biot-Savart Law, Ampere‘s circuital law, Curl,

Stokes‘ theorem, Magnetic flux and magnetic flux density, Basic
concepts Scalar and Vector Magnetic Potentials, Numerical problems.
(Text: Chapter 8.1 to 8.6)

Module 4
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Force on a moving charge, differential currentMagnetic Forces:

elements, Force between differential current elements, Numerical
problems (Text: Chapter 9.1 to 9.3).

Magnetic Materials: Magnetization and permeability, Magnetic boundary

conditions, The magnetic circuit, Potential energy and forces on
magnetic materials, Inductance and mutual reactance, Numerical
problems (Text: Chapter 9.6 to 9.7).

Faraday’ law of Electromagnetic Induction –Integral form and Point
form, Numerical problems (Text: Chapter 10.1)



Module 5

Maxwell’s equations Continuity equation, Inconsistency of Ampere’s law with

continuity equation, displacement current, Conduction current, Derivation of

Maxwell‘s equations in point form, and integral form, Maxwell’s equations for

different media, Numerical problems (Text: Chapter 10.2 to 10.4)

Uniform Plane Wave: Plane wave, Uniform plane wave, Derivation of plane

wave equations from Maxwell’s equations, Solution of wave equation for perfect

dielectric, Relation between E and H, Wave propagation in free space, Solution of

wave equation for sinusoidal excitation, wave propagation in any conducting

media (γ, α, β, η) and good conductors, Skin effect or Depth of penetration,

Poynting‘s theorem and wave power, Numerical problems. (Text: Chapter 12.1

to 12.4)
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Textbooks
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• W.H. Hayt and J.A. Buck, ―Engineering Electromagnetics‖, 8th
Edition, Tata McGraw-Hill, 2014, ISBN-978-93-392-0327-6.



Reference Books
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1. Elements of Electromagnetics – Matthew N.O., Sadiku, Oxford university  

press, 4th Edn.

2. 2. Electromagnetic Waves and Radiating systems – E. C. Jordan and K.G.  

Balman, PHI, 2ndEdn.

3. 3. Electromagnetics- Joseph Edminister, Schaum Outline Series, McGraw Hill.

N. Narayana Rao, ―Fundamentals of Electromagnetics for Engineering‖,  

Pearson.



Course Outcomes
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• Evaluate problems on electrostatic force, electric field due to point, linear,

volume charges by applying conventional methods and charge in a volume..

• Apply Gauss law to evaluate Electric fields due to different charge

distributions and Volume Charge distribution by using Divergence Theorem

and determine potential and energy of a point charge

• Determine capacitance of a parallel plate capacitor, coaxial cylindrical

capacitor with different charge distributions using Laplace equation and Apply

Biot-Savart’s and Ampere’s laws for evaluating Magnetic field for different

current configurations

• Calculate magnetic force, potential energy and Magnetization with respect to

magnetic materials and voltage induced in electric circuits..

• Apply Maxwell’s equations for time varying fields, EM waves in free space

and conductors and Evaluate power associated with EM waves using Poynting

theorem.



Module 1
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• Revision of Vector Calculus –(Text 1: Chapter 1)

Coulomb’s Law, Electric Field Intensity and Flux density:  Experimental law 

of Coulomb, Electric field intensity, Field due to  continuous volume 
charge distribution, Field of a line charge, Field  due to Sheet of 
charge, Electric flux density, Numerical Problems.  (Text: Chapter 2.1 
to 2.5, 3.1)



Revision of Vector Calculus
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Electric field

Produced by the presence of  

electrically charged particles,  

and gives rise to the electric  

force.

Magnetic field

Produced by the motion of  

electric charges, or electric  

current, and gives rise to the  

magnetic force associated  

with magnets.

What is Electromagnetics?



What is Electromagnetics? 
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◼ An electromagnetic field is
generated when charged particles,
such as electrons, are accelerated.

◼ All electrically charged particles are
surrounded by electric fields.

◼ Charged particles in motion produce
magnetic fields.

◼ When the velocity of a charged
particle changes, an electromagnetic
field is produced.



✓ Electric and magnetic field exist nearly everywhere.

Why do we learn Engineering  

Electromagnetics
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Applications
✓ Electromagnetic principles find application in various disciplines  

such as microwaves, x-rays, antennas, electric machines,  
plasmas, etc.
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✓ Electromagnetic fields are used in induction heaters for melting,  
forging, annealing, surface hardening, and soldering operation.

✓ Electromagnetic devices include transformers, radio, television,  
mobile phones, radars, lasers, etc.

Applications
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Transrapid Train

• A magnetic traveling field moves the  
vehicle without contact.

• The speed can be continuously  
regulated by varying the frequency of  
the alternating current.

Applications
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✓ Scalar refers to a quantity whose value may be represented  
bya single (positive or negative) real number.

✓ Some examples include distance, temperature, mass, density,
pressure, volume, and time.

✓ A vector quantity has both a magnitude and a direction  
in space. We especially concerned with two- and three-
dimensional spaces only.

✓ Displacement, velocity, acceleration, and force are examples  
of vectors.
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• Scalar notation: A or A (italic or plain)

(bold or plain with arrow)• Vector notation: A or A

Scalars and Vectors

→



A+ B = B + A

A+ (B + C) = (A+ B) + C

A− B = A+ (−B)

A 
=

1
A

n n

A− B = 0 → A = B
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Vector Algebra



Rectangular Coordinate

System• Differential surface units:
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dx  dy

dy  dz

dx dz

• Differential volume unit :

dx dy dz



Vector Components and Unit  

Vectors

r = x + y + z

r = xax + ya y +zaz

ax , a y , az : unit vectors
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R PQ ?

PQ Q P
= r −rR

= (2ax − 2a y + az ) − (1ax + 2a y + 3az )

= ax − 4a y  − 2az



Vector Components and Unit Vectors
✓ For any vector B, B = Bxax + Bya y +Bzaz :

B = B2 + B2 + B2 = B
x y z

Magnitude of B

B
B2 + B2 + B2

x y z

B
a = =

B  

B Unit vector in the direction of B

✓ Example
Given points M(–1,2,1) and N(3,–3,0), find RMN and aMN.

= (3ax − 3ay + 0az ) − (−1ax + 2a y +1az ) = 4ax − 5a y − azRMN

MN

MN

=
RMNa
R 42 + (−5)2 + (−1)2

4ax − 5a y −1az
= z
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= 0.617ax − 0.772a y −0.154a



The Dot Product
✓ Given two vectors A and B, the dot product, or scalar product,

is defines as the product of the magnitude of A, the magnitude
of B, and the cosine of the smaller angle between them:

A B = A B cosAB

✓ The dot product is a scalar, and it obeys the commutative  law:

AB = B A

✓ For any vector A =

Axax

+Aya y + Azaz and B = Bxax +Bya y + Bzaz ,

A  B = Ax Bx + Ay By + AzBz

EMW 21



✓ One of the most important applications of the dot product is that  
of finding the component of a vector in a given direction.

The Dot Product

B  a = B a cosBa = B cosBa
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• The scalar component of B in the direction  
of the unit vector a is Ba

• The vector component of B in the direction  
of the unit vector a is (Ba)a



The Dot Product
✓ Example

The three vertices of a triangle are located at A(6,–1,2),  B(–
2,3,–4), and C(–3,1,5). Find: (a) RAB; (b) RAC; (c) the angle  
θBAC at vertex A; (d) the vector projection of RAB onRAC.

R AB = (−2ax + 3a y − 4az ) − (6ax − a y + 2az ) = −8ax + 4a y − 6az

R AC = (−3ax +1a y + 5az ) − (6ax − a y + 2az ) = −9ax + 2a y + 3az

A

B

C
BAC

cosBACR AB  R AC = R AB R AC

BAC cos
AB AC

=
R AB  RAC

R R

(−8ax + 4ay − 6az )  (−9ax + 2ay + 3az )  

(−8)2  + (4)2 + (−6)2 (−9)2 + (2)2 +(3)2
= =

 62
= 0.594

116 94

 BAC = cos (0.594)
−1 = 53.56
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A B = aN A B sinAB

The Cross Product
✓ Given two vectors A and B, the magnitude of the cross product,  

or vector product, written as AB, is defines as the product of  
the magnitude of A, the magnitude of B, and the sine of the  
smaller angle between them.

✓ The direction of AB is perpendicular to the plane containing  
A and B and is in the direction of advance of a right-handed  
screw as A is turned into B.
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✓ The cross product is a vector, and it  
is not commutative:

(B A) = −(A B)

x y z
a a = a

ay  az = ax

az  ax = ay



The Cross Product
✓ Example

Given A = 2ax–3ay+az and B = –4ax–2ay+5az, find AB.

AB = (AyBz − AzBy )ax + (AzBx − AxBz )a y + (AxBy − AyBx )az

= ((−3)(5) − (1)(−2))ax + ((1)(−4) − (2)(5))a y + ((2)(−2) − (−3)(−4))a z

= −13ax −14a y −16az

EMW 25



The Cylindrical Coordinate

System

EMW 26



The Cylindrical Coordinate System

• Differential surface units:

d dz

d dz

d  d

• Differential volume unit :

d  d dz

x2
x =  cos  = + y2

y = sin

z = z
x

 = tan−1 y

z = z

• Relation between the  
rectangular and the cylindrical  
coordinate systems
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
a

az

a

The Cylindrical Coordinate System

• Dot products of unit vectors in  
cylindrical and rectangular  
coordinate systems

a y

az

x
a

 A = A a

= (Axax + Aya y + Azaz ) a

x x  y y  z z = A a a + A a a + A a a

= Ax cos + Ay sin

 A = A a

= (Axax + Aya y + Azaz ) a

= Axax a + Aya y a + Azaz a

= − Ax sin  + Ay cos

Az = Aaz

= (Axax + Aya y + Azaz ) az

= Axax  az + Aya y  az + Azaz  az

= Az

?
A = Axax + Aya y + Azaz  A = Aa + Aa + Azaz

28EMW



The Spherical Coordinate System



The Spherical Coordinate System

• Differential surface units:

dr  rd
dr  r sind
rd r sind

• Differential volume unit :

dr rd r sind 30EMW



x = r sin cos

y = r sin sin

z = r cos

x2
r = + y2  + z2 , r  0

, 0  180
z

x2
 = cos−1

+ y2 + z2

x
 = tan−1 y

• Relation between the rectangular and  
the spherical coordinate systems

The Spherical Coordinate System

• Dot products of unit vectors in spherical and  
rectangular coordinate systems
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COULOMB’S LAW AND  

ELECTRIC FIELD INTENSITY
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✓ In 1600, Dr. Gilbert, a physician from England, published the
first major classification of electric and non-electric
materials.

✓ He stated that glass, sulfur, amber, and some other materials
“not only draw to themselves straw, and chaff, but all metals,
wood, leaves, stone, earths, even water and oil.”

✓ In the following century, a French Army Engineer,  
Colonel Charles Coulomb, performed an  
elaborate series of experiments using devices  
invented by himself.

✓ Coulomb could determine quantitatively the force  
exerted between two objects, each having a  
static charge of electricity.

✓ He wrote seven important treatises on electric  
and magnetism, developed a theory of attraction  
and repulsion between bodies of the opposite  
and the same electrical charge.

The Experimental Law of Coulomb
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The Experimental Law of Coulomb
✓ Coulomb stated that the force between two very small objects  

separated in vacuum or free space by a distance which is large  
compared to their size is proportional to the charge on each  
and inversely proportional to the square of the distance  
between them.

F = k
Q1Q2

R2

✓ In SI Units, the quantities of charge Q are measured in  
coulombs (C), the separation R in meters (m), and the force F  
should be newtons (N).

✓ This will be achieved if the constant of proportionality k is
written as:

1

40
EMW 34

k =



The Experimental Law of Coulomb
✓ The permittivity of free space ε is measured in farads per meter

(F/m), and has the magnitude of:

0

−12 1

36
10−9 F m = 8.85410

✓T h e  Coulomb’s law is  

now: 1 Q1Q2

R2

0
4

F =

✓ The force F acts along the line joining the two charges. It is  
repulsive if the charges are alike in sign and attractive if the are  
of opposite sign.
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The Experimental Law of Coulomb

2 12

0 12
R2

1 Q1Q2 a
4

F =

✓ I n  vector form, Coulomb’s law is written  

as:

✓ F2 is the force on Q2, for the case where Q1 and Q2 have the  
same sign, while a12 is the unit vector in the direction of R12, the  
line segment from Q1 to Q2.

12

12

a
R 12

=
R12 =

R12

R r2 − r1
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=
r2 −r1



Electric Field Intensity

✓ Let us consider one charge, say Q1, fixed in position in space.

✓ Now, imagine that we can introduce a second charge, Qt, as a “unit test charge”, that we 
can move around.

✓ We know that there exists everywhere a force on this second charge ► This second
charge is displaying the existence of a force field.

✓ The force on it is given by Coulomb’s law as:

1t

0 1t
R2

1 Q1Qt a
4

t
F =

✓ Writing this force as a “force per unit charge” gives:

1t

t 0 1t
R2

Q 4
=

Ft 1 Q1a Vector Field,
Electric Field Intensity



Electric Field Intensity
✓ We define the electric field intensity as the vector of force on a unit positive test 

charge.

✓ Electric field intensity, E, is measured by the unit newtons per coulomb (N/C) or volts  per 
meter (V/m).

1t

0 1t
R2

1 Q1a

t
Q 4

E =
Ft =

✓ The field of a single point charge can be written  

as:

R2
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0

1 Q
a

4
R

E =

✓ aR is a unit vector in the direction from the point at which the point charge Q is located, to  the
point at which E is desired/measured.



Electric Field Intensity
✓ For a charge which is not at the origin of  the

coordinate, the electric field intensity is:

0

1 Q r

−rr −

r
r −r

2
E(r) =

4

1 Q(r − r)

r −r
3

0
4

=

3 2

(x− x)2+ (y − y)2+ (z − z)2
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40

=
1 Q (x− x)ax + (y − y)ay + (z − z)az 



Electric Field Intensity
✓ The electric field intensity due to two point charges, say Q1 at r1 and Q2 at r2, is  the

sum of the electric field intensity on Qt caused by Q1 and Q2 acting alone  
(Superposition Principle).

1
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2

0 1

22

0 2

1 Q
E(r) =

4

1

4

Q

a +
r −r

r −r
a



Field Due to a Continuous Volume Charge  

Distribution
✓W e denote the volume charge density by ρv, having the units  
of

coulombs per cubic meter (C/m3).

✓T h e small amount of charge ΔQ in a small volume Δv is

Q = vv

✓W e may define ρv mathematically by using a limit on the aboveequation: Q
v = lim

v→0 v

✓ The total charge within some finite volume is obtained  
byintegrating throughout that volume:

Q =  vdv
vol



Field Due to a Continuous Volume Charge  

Distribution

✓ The contributions of all the volume charge in a given 
region,  letthe volume element Δv approaches zero, is an 
integral in the  form of:

r −r
2

0vol

E(r) =  4

1 v (r)dvr − r

r − r



Field of a Line Charge

✓ Now we consider a filamentlike distribution of volume charge  
density. It is convenient to treat the charge as a line charge of  
density ρL C/m.

✓ Let us assume a straight-line charge extending  
along the z axis in a cylindrical coordinate system  
from
–∞ to +∞.

✓ We desire the electric field intensity E at any point
resulting from a uniform line charge density ρL.
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dE = dE a + dEzaz



Field of a Line Charge
✓ The incremental field dE only has the components in aρ and  

az
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direction, and no aΦ direction. • Why?

✓ The component dEz is the result  
of symmetrical contributions of  
line segments above and below  
the observation point P.

✓ Since the length is infinity, they are
canceling each other ► dEz = 0.

✓ The component dEρ exists, and  from
the Coulomb’s law we know that  
dEρ will be inversely proportional to  
the distance to the line charge, ρ. dE = dE a + dEzaz



Field of a Line Charge
✓ Take P(0,y,0),

dE = dE a + dEzaz

r −r
3

0

1 dQ(r −r)

4
dE =

0
4 ( 2 + z2)3 2

=
 1 Ldz(a− zaz)

r= zaz

r = ya y =a

0
4 ( 2 + z2)3 2

=
 1 La dz

+
1  dzL

2 2 3 2

− 40 ( + z )
E = 

  z
= L

2 2 2 1 2 
40   ( + z )


+

−

0



L

2 
E =
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Field of a Line Charge
✓ Now let us analyze the answer itself:

0
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

L

2 
E = a

✓ The field falls off inversely with the distance to the charged  line, 
as compared with the point charge, where the field  decreased 
with the square of the distance.



Field of a Sheet of Charge
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✓ Another basic charge configuration  
is the infinite sheet of charge  
having a uniform density of ρS  
C/m2.

✓ The charge-distribution family  is 
now complete: point (Q), line  
(ρL), surface (ρS), and volume  
(ρv).

✓ Let us examine a sheet of charge above, which is placed in  the
yz plane.

✓ The plane can be seen to be assembled from an infinite  
number of line charge, extending along the z axis, from –∞ to
+∞.



Field of a Sheet of Charge

✓ For a differential width strip dy’,  the
line charge density is given by
ρL = ρSdy’.

✓ The component dEz at P is zero,  
because the differential segments  
above and below the y axis will  
cancel each other.

✓ The component dEy at P is  also
zero, because the differential  
segments to the right and to the  
left of z axis will cancel each  
other.

✓ Only dEx is present, and this
component is a function of x alone.
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Field of a Sheet of Charge
✓ The contribution of a strip to Ex at  

P is given by:

0
x2

cos
sdy

+ y2
x

dE =

x2

2

s xdy

+ y2
0

2
=

✓ Adding the effects of all the strips,

 +
xdy

2 220 − x + y
Ex =

 s 



20

y
+

= s tan−1

x −

=
s

20
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Field of a Sheet of Charge
✓ Fact: The electric field is always directed away from the positive

charge, into the negative charge.

✓W e now introduce a unit vector aN, which is normal to the sheet  
and directed away from it.

0
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N
2

E =
s a

✓ The field of a sheet of charge is constant in magnitude and 
direction. It is not a function of distance.



Electric Flux Density
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ELECTRIC FLUX DENSITY
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✓ About 1837, the Director of the Royal Society in London,  
Michael Faraday, was interested in static electric fields and the  
effect of various insulating materials on these fields.

✓ This is the lead to his famous invention, the electric motor.

✓ He found that if he moved a magnet through a loop of wire, an 
electric current flowed in the wire. The current also flowed if the  
loop was moved over a stationary magnet.

►Changing magnetic field produces an electric field.
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Electric Flux Density



Electric Flux Density

✓ In his experiments, Faraday had a pair of concentric metallic  
spheres constructed, the outer one consisting of two  
hemispheres that could be firmly clamed together.

✓ He also prepared shells of insulating material (or dielectric  
material), which would occupy the entire volume between the  
concentric spheres.
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Electric Flux Density
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✓F a r a d a y  found out, that there was a sort of “charge  
displacement” from the inner sphere to the outer sphere, which  
was independent of the medium.

✓W e refer to this flow as displacement, displacement flux,  
or simply electric flux.

ψ =Q

✓ Where ψ is the electric flux, measured in coulombs, and Q 
is the total charge on the inner sphere, also in coulombs.



Electric Flux Density
✓ At the surface of the inner sphere, ψ 

coulombs of electric flux are produced  
by the given charge Q coulombs, and  
distributed uniformly over a surface  
having an area of 4πa2 m2.

✓ The density of the flux at this surface  
is ψ/4πa2 or Q/4πa2 C/m2.

✓ The new quantity, electric flux density, is measured in C/m2 and
denoted with D.

✓ The direction of D at a point is the direction of the flux lines  
at that point.

✓ The magnitude of D is given by the number of flux lines  
crossing a surface normal to the lines divided by the surface  
area.
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Electric Flux Density
✓ Referring again to the concentric  

spheres, the electric flux density is in  
the radial direction :

✓ At a distance r, where a ≤ r ≤  

b,

Q

4a2
(inner sphere)

rr=a
D = a

Q

4b2
(outer sphere)

rr=b
D = a

Q

4r2
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r
D = a

✓ If we make the inner sphere smaller and smaller, it becomes  
a point charge while still retaining a charge of Q. The electrix  
flux density at a point r meters away is still given by:

r

Q

4r2
D = a



2

0

r

Q

4 r
E = a

Electric Flux Density

D = 0E

2vol
0

R

vdv

4 R
E =  a

R
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vol 4R2
D = 

v dv
a

✓ Comparing with the radial electric field intensity of a  
point charge in free space is:

✓ Therefore, in free space, the following relation applies:

✓ For a general volume charge distribution in free space:


