
Module 2

Gauss’s Law and Divergence

Energy, Potential and Conductors
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Syllabus

• Gauss’s law and Divergence: Gauss ‘law, Application of Gauss’

law to point charge, line charge, Surface charge and volume

charge, Point (differential) form of Gauss law, Divergence.

Maxwell‘s First equation (Electrostatics), Vector Operator ▼ and

divergence theorem, Numerical Problems (Text: Chapter 3.2 to

3.7).

• Energy, Potential and Conductors: Energy expended or work

done in moving a point charge in an electric field, The line

integral, Definition of potential difference and potential, The

potential field of point charge, Potential gradient, Numerical

Problems (Text: Chapter 4.1 to 4.4 and 4.6). Current and

Current density, Continuity of current. (Text: Chapter 5.1, 5.2)

•
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Gauss’s law and 

Divergence
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Gauss’s Law
◼The results of Faraday’s experiments with the concentric

spheres could be summed up as an experimental law by stating
that the electric flux passing through any imaginary spherical
surface lying between the two conducting spheres is equal to
the charge enclosed within that imaginary surface.

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

◼Faraday’s experiment can be generalized to the following
statement, which is known as Gauss’s Law:

“The electric flux passing through any closed surface is
equal to the total charge enclosed by that surface.”

ψ Q=



Gauss’s Law
◼ Imagine a distribution of charge, shown as a cloud of point

charges, surrounded by a closed surface of any shape.

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

◼ If the total charge is Q, the Q coulombs of electric flux will pass
through the enclosing surface.

◼At every point on the surface the electric-flux-density vector D
will have some value DS (subscript S means that D must be
evaluated at the surface).
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Gauss’s Law

◼ΔS defines an incremental element of area with magnitude of
ΔS and the direction normal to the plane, or tangent to the
surface at the point in question.

◼At any point P, where DS makes an angle θ with ΔS, then the
flux crossing ΔS is the product of the normal components of DS
and ΔS.

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

ψ flux crossing S =  cosSD S=  S= D S

closed
surface

ψ ψ Sd d= =   D S
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Gauss’s Law
◼The resultant integral is a closed surface integral, with dS

always involves the differentials of two coordinates 
► The integral is a double integral.

◼We can formulate the Gauss’s law mathematically as:

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

ψ charge enclosed
S

S d Q=  = = D S

nQ Q=  LQ dL=  S
S

Q dS=  v
vol

Q dv= 

◼The charge enclosed meant by the formula above might be 
several point charges, a line charge, a surface charge, or a 
volume charge distribution.
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Gauss’s Law
Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

◼We now take the last form, written in terms of the charge 
distribution,  to represent the other forms:

volS
S vd dv = D S

◼ Illustration. Let a point charge Q be 
placed at the origin of a spherical 
coordinate system, and choose a 
closed surface as a sphere of radius a. 

◼The electric field intensity due to the 
point charge has been found to be:

2

04
r

Q

r
=E a

0=D E
24

r

Q

r
 =D a
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Gauss’s Law
Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

24
S r

Q

a
=D a

2 sin  rd a d d  =S a

2

2
sin  sin

4 4
S r r

Q Q
d a d d d d

a
     

 
 =  =D S a a

◼At the surface, r = a,

2

0
0

cos
4

Q







 
 =

=

= −

ψ
S

S d=  D S

2

0 0
sin

4 r a

Q
d d

 

 
  

= =
=

=  

Q=
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Application of Gauss’s Law: Some Symmetrical Charge 

Distributions

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

◼Let us now consider how to use the Gauss’s law to calculate 
the electric field intensity DS:

S
SQ d=  D S

◼The solution will be easy if we are able to choose a closed 
surface which satisfies two conditions:

1. DS is everywhere either normal or tangential to the closed 
surface, so that DSdS becomes either DSdS or zero, respectively.

2. On that portion of the closed surface for which DSdS is not zero, 
DS is constant.

◼For point charge ► The surface of a sphere.

◼For line charge ► The surface of a cylinder.

8/31/2020 EMW 10



Application of Gauss’s Law: Some Symmetrical Charge 

Distributions

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

D =D a

◼From the previous discussion of the 
uniform line charge, only the radial 
component of D is present:

◼The choice of a surface that fulfill the 
requirement is simple: a cylindrical 
surface. 

◼Dρ is every normal to the surface of a 
cylinder. It may then be closed by two 
plane surfaces normal to the z axis.
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Application of Gauss’s Law: Some Symmetrical Charge 

Distributions

Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

S
SQ d=  D S

sides top bottom 0
z z z z

zz L

D dS D dS D dS 
 = ==

= + +  
2

0 0

L

z
D d dz






 
= =

=  

2D L =

2

Q
D

L



 =

◼We know that the charge enclosed is ρLL,

2

LD




=

02

LE



 
=
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Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

Application of Gauss’s Law: Some Symmetrical Charge 

Distributions

◼The problem of a coaxial cable is almost 
identical with that of the line charge.

◼Suppose that we have two coaxial 
cylindrical conductors, the inner of radius 
a and the outer of radius b, both with 
infinite length.

◼We shall assume a charge distribution of 
ρS on the outer surface of the inner 
conductor.

◼Choosing a circular cylinder of length L and radius ρ, a < ρ < b, 
as the gaussian surface, we find:

2SQ D L=

◼The total charge on a length L of the inner conductor is:
2

0 0
2

L

S S
z

Q ad dz aL



   

= =
= = 

S
S

a
D




 =



Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence

Application of Gauss’s Law: Some Symmetrical Charge 

Distributions

◼For one meter length, the inner conductor 
has 2πaρS coulombs, hence ρL = 2πaρS,

2

L





=D a

◼Everly line of electrix flux starting from the 
inner cylinder must terminate on the inner 
surface of the outer cylinder:

outer cyl ,inner cyl2 SQ aL = −

,outer cyl ,inner cyl2 2S SbL aL   = −

,outer cyl ,inner cylS S

a

b
 = −

◼ If we use a cylinder of radius ρ > b, 
then the total charge enclosed will be zero. 
► There is no external field,

0SD =

• Due to simplicity, 
noise immunity and 
broad bandwidth, 
coaxial cable is still 
the most common 
means of data 
transmission over 
short distances.



Application of Gauss’s Law: Differential Volume 

Element

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼We are now going to apply the methods of Gauss’s law to a 
slightly different type of problem: a surface without symmetry.

◼We have to choose such a very small closed surface that D is 
almost constant over the surface, and the small change in D
may be adequately represented by using the first two terms of 
the Taylor’s-series expansion for D.

◼The result will become more nearly correct as the volume 
enclosed by the gaussian surface decreases.
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Application of Gauss’s Law: Differential Volume 

Element

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼Consider any point P, located by a 
rectangular coordinate system.

◼The value of D at the point P may be 
expressed in rectangular components:

0 0 0 0x x y y z zD D D= + +D a a a

◼We now choose as our closed surface, 
the small rectangular box, centered at P, 
having sides of lengths Δx, Δy, and Δz, 
and apply Gauss’s law:

S

d Q = D S

front back left right top bottomS

d = + + + + +      D S
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Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Application of Gauss’s Law: Differential Volume 

Element
◼We will now consider the front surface 

in detail.

◼The surface element is very small, thus 
D is essentially constant over this 
surface (a portion of the entire closed 
surface):

front front
front

 D S

front  xy z D a

,frontxD y z 

◼The front face is at a distance of Δx/2 from P, and therefore:

,front 0 rate of change of  with 
2

x x x

x
D D D x


+ 

0
2

x
x

Dx
D

x


+


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Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼We have now, for front surface:

Application of Gauss’s Law: Differential Volume 

Element

0
front

 
2

x
x

Dx
D y z

x

 
+   

 


◼ In the same way, the integral over the back surface can be 
found as:

back back
back

 D S

back (  )xy z − D a

,backxD y z−  

,back 0
2

x
x x

Dx
D D

x


−



0
back

 
2

x
x

Dx
D y z

x

 
− +   

 


8/31/2020 EMW 18



◼ If we combine the two integrals over the front and back surface, 
we have:

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Application of Gauss’s Law: Differential Volume 

Element

front back
 xD

x y z
x


+   

 

right left
 

yD
y x z

y


+   

 

top bottom
 zD

z x y
z


+   

 

◼Repeating the same process to the remaining surfaces, we find:

◼These results may be collected to yield:

S

yx z
DD D

d x y z
x y z

  
 + +    

   
 D S

S

yx z
DD D

d Q v
x y z

  
 = + +  

   
 D S
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Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Charge enclosed in volume 
yx z

DD D
v v

x y z

  
 + +   

   

Application of Gauss’s Law: Differential Volume 

Element
◼The previous equation is an approximation, which becomes 

better as Δv becomes smaller.

◼For the moment, we have applied Gauss’s law to the closed 
surface surrounding the volume element Δv, with the result:
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◼We shall now obtain an exact relationship, by allowing the 
volume element Δv to shrink to zero.

Divergence
Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Syx z
dDD D Q

x y z v v

  
+ + = 

     

 D S

0 0
lim limSyx z

v v

dDD D Q

x y z v v →  →

  
+ + = = 

     

 D S


◼The last term is the volume charge density ρv, so that:

0
lim Syx z

v
v

dDD D

x y z v


 →

  
+ + = = 

    

 D S
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Divergence
Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼Let us no consider one information that can be obtained from 
the last equation:

0
lim Syx z

v

dDD D

x y z v →

  
+ + = 

    

 D S

◼This equation is valid not only for electric flux density D, but 
also to any vector field A to find the surface integral for a small 
closed surface.

0
lim Syx z

v

dAA A

x y z v →

  
+ + = 

    

 A S
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Divergence
Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼This operation received a descriptive name, divergence. The 
divergence of A is defined as:

0
Divergence of div lim S

v

d

v →


= =



 A S
A A

“The divergence of the vector flux density A is the 
outflow of flux from a small closed surface per unit 
volume as the volume shrinks to zero.”

◼A positive divergence of a vector quantity indicates a source of 
that vector quantity at that point.

◼Similarly, a negative divergence indicates a sink.
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Divergence
Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

div 
yx z

DD D

x y z

 
= + +

  
D

1 1
div ( ) z

D D
D

z




   

 
= + +

  
D

2

2

1 1 1
div ( ) (sin )

sin sin
r

D
r D D

r r r r




   

 
= + +

  
D

Rectangular

Cylindrical

Spherical
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Maxwell’s First Equation- (Electrostatics)

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼We may now rewrite the expressions developed until now:

div 
yx z

DD D

x y z

 
= + +

  
D

0
div lim S

v

d

v →


=



 D S
D

div v=D
Maxwell’s First Equation

Point Form of Gauss’s Law

◼This first of Maxwell’s four equations applies to electrostatics 
and steady magnetic field.

◼Physically it states that the electric flux per unit volume leaving 
a vanishingly small volume unit is exactly equal to the volume 
charge density there.
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Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

The Vector Operator  and The Divergence 

Theorem
◼Divergence is an operation on a vector yielding a scalar, just 

like the dot product.

◼We define the del operator  as a vector operator:

x y z
x y z

  
 = + +

  
a a a

( )x y z x x y y z zD D D
x y z

   
 = + +  + + 

   
D a a a a a a

yx z
DD D

x y z

 
 = + +

  
D

◼Then, treating the del operator as an ordinary vector, we can 
write:

div 
yx z

DD D

x y z

 
 + +

  
D = D =
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The Vector Operator  and The Divergence 

Theorem

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

1 1
( ) z

D D
D

z




   

 
 = + +

  
D

2

2

1 1 1
( ) (sin )

sin sin
r

D
r D D

r r r r




   

 
 = + +

  
D

Cylindrical

Spherical

◼The  operator does not have a specific form in other coordinate 
systems than rectangular coordinate system.

◼Nevertheless,
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The Vector Operator  and The Divergence 

Theorem

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

◼We shall now give name to a theorem that we actually have 
obtained, the Divergence Theorem:

vol volS
vd Q dv dv = = =    D S D

volS

d dv =   D S D 

◼The first and last terms constitute the divergence theorem:

“The integral of the normal 
component of any vector field 
over a closed surface is equal to 
the integral of the divergence of 
this vector field throughout the 
volume enclosed by the closed 
surface.”
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Energy, Potential and 

Conductors 
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Energy Expended in Moving a Point Charge in an 

Electric Field

Chapter 4 Energy and Potential

◼The electric field intensity was defined as the force on a unit 
test charge at that point where we wish to find the value of the 
electric field intensity.

◼To move the test charge against the electric field, we have to 
exert a force equal and opposite in magnitude to that exerted 
by the field. ► We must expend energy or do work.

◼To move the charge in the direction of the electric field, our 
energy expenditure turns out to be negative. ► We do not do 
the work, the field does.
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Energy Expended in Moving a Point Charge in an 

Electric Field

Chapter 4 Energy and Potential

E Q=F E

◼The component of this force in the direction dL is:

◼To move a charge Q a distance dL in an electric field E, the 
force on Q arising from the electric field is:

EL E LF = F a LQ= E a

◼The force that we apply must  be equal and opposite to the 
force exerted by the field:

appl LF Q= − E a

◼Differential work done by external source to Q is equal to:

LdW Q dL= − E a Q d= − E L

• If E and L are perpendicular, the 
differential work will be zero
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Chapter 4 Energy and Potential

Energy Expended in Moving a Point Charge in an 

Electric Field

◼The work required to move the charge a finite distance is 
determined by integration:

final

init
W Q d= −  E L

•The path must be specified beforehand

•The charge is assumed to be at rest at both initial 
and final positions

final

init
W dW= 

•W > 0 means we expend energy or do work

•W < 0 means the field expends energy or do work
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The Line Integral

Chapter 4 Energy and Potential

◼The integral expression of previous equation is an 
example of a line integral, taking the form of 
integral along a prescribed path.

final

init
LW Q E dL= − 

◼Without using vector notation, 
we should have to write:

•EL: component of E along dL

1 1 2 2 6 6( )L L LW Q E L E L E L= −  +  + + 

1 1 2 2 6 6( )W Q= −  +  + + E L E L E L

◼The work involved in moving a charge Q from B to A is 
approximately:
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The Line Integral
Chapter 4 Energy and Potential

◼ If we assume that the electric field is uniform,

1 2 6= = =E E E

1 2 6( )W Q= −   +  + + E L L L

(uniform          BAW Q= −  E)E L

BAL
◼Therefore,

◼Since the summation can be interpreted as a line integral, the 
exact result for the uniform field can be obtained as:

A

B
W Q d= −  E L

(uniform       
A

B
W Q d= −   E)E L

(uniform          BAW Q= −  E)E L •For the case of uniform E, W 
does not depend on the particular 
path selected along which the 
charge is carried8/31/2020 EMW 34



Differential Length

Chapter 4 Energy and Potential

x y zd dx dy dz= + +L a a a

zd d d dz   = + +L a a a

sinrd dr rd r d   = + +L a a a

Rectangular

Cylindrical

Spherical
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Work and Path Near an Infinite Line Charge

Chapter 4 Energy and Potential

zd d d dz   = + +L a a a
02

LE  



 
= =E a a

final

1
init

0 12

LW Q d 


 

 
= −  a a

final

init
02

LQ d  





= −  a a

final

init
02

LW Q d 




 
= −  a a

02

b
L

a

d
Q

 

 
= − 

0

ln
2

LQ b

a




= −

0=
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Definition of Potential Difference and Potential

Chapter 4 Energy and Potential

◼We already find the expression for the work W done by an 
external source in moving a charge Q from one point to another 
in an electric field E:

final

init
W Q d= −  E L

final

init
Potential difference V d= = −  E L

◼Potential difference V is defined as the work done by an 
external source in moving a unit positive charge from one point 
to another in an electric field:

◼We shall now set an agreement on the direction of movement. 
VAB signifies the potential difference between points A and B
and is the work done in moving the unit charge from B (last 
named) to A (first named).
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Chapter 4 Energy and Potential

◼Potential difference is measured in joules per coulomb (J/C).  
However, volt (V) is defined as a more common unit.

◼The potential difference between points A and B is:

 V
A

AB
B

V d= −  E L • VAB is positive if work is done in carrying 
the positive charge from B to A

◼From the line-charge example, we found that the work done in 
taking a charge Q from ρ = a to ρ = b was:

0

ln
2

LQ b
W

a




= −

◼Or, from ρ = b to ρ = a,

0

ln
2

LQ a
W

b




= −

◼Thus, the potential difference between points at ρ = a to
ρ = b is:

0

ln
2

L
ab

W b
V

Q a




= =

Definition of Potential Difference and Potential

0

ln
2

LQ b

a




=
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Chapter 4 Energy and Potential

2

04
r r r

Q
E

r
= =E a a

rd dr=L a

A

AB
B

V d= −  E L

◼For a point charge, we can find the potential difference 
between points A and B at radial distance rA and rB, choosing 
an origin at Q:

2

04

A

B

r

r

Q
dr

r
= −

0

1 1

4 A B

Q

r r

 
= − 

 
• rB > rA → VAB > 0, WAB > 0,

Work expended by the 
external source (us)

• rB < rA → VAB < 0, WAB < 0,
Work done by the electric 
field

Definition of Potential Difference and Potential
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Chapter 4 Energy and Potential

◼ It is often convenient to speak of potential, or absolute 
potential, of a point rather than the potential difference 
between two points.

◼For this purpose, we must first specify the reference point 
which we consider to have zero potential.

◼The most universal zero reference point is “ground”, which 
means the potential of the surface region of the earth.

◼Another widely used reference point is “infinity.”

◼For cylindrical coordinate, in discussing a coaxial cable, the 
outer conductor is selected as the zero reference for potential.

Definition of Potential Difference and Potential

◼ If the potential at point A is VA and that at B is VB, then:

AB A BV V V= −
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The Potential Field of a Point Charge

Chapter 4 Energy and Potential

◼ In previous section we found an expression for the potential 
difference between two points located at r = rA and r = rB in the 
field of a point charge Q placed at the origin:

0

1 1

4
AB A B

A B

Q
V V V

r r

 
= − = − 

 

A

B

r

AB r
r

V E dr= −

◼Any initial and final values of θ or Φ will not affect the answer. 
As long as the radial distance between rA and rB is constant, 
any complicated path between two points will not change the 
results.

◼This is because although dL has r, θ, and Φ components, the 
electric field E only has the radial r component.
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The Potential Field of a Point Charge
Chapter 4 Energy and Potential

◼The potential difference between two points in the field of a 
point charge depends only on the distance of each point from 
the charge.

◼Thus, the simplest way to define a zero reference for potential 
in this case is to let V = 0 at infinity.

◼As the point r = rB recedes to infinity, the potential at rA
becomes:

AB A BV V V= −

0 0

1 1

4 4
AB

A B

Q Q
V

r r 
= −

0 0

1 1

4 4
AB

A

Q Q
V

r 
= −



0

1

4
AB A

A

Q
V V

r
= =
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The Potential Field of a Point 

Charge

Chapter 4 Energy and Potential

04

Q
V

r
=

1

04

Q
V C

r
= +

◼Generally,

◼Physically, Q/4πε0r joules of work must be done in carrying 
1 coulomb charge from infinity to any point in a distance of r
meters from the charge Q.

◼We can also choose any point as a zero reference:

with C1 may be selected so that V = 0 at any desired value of r.
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Equipotential Surface

Chapter 4 Energy and Potential

◼Equipotential surface is a surface composed of all those points 
having the same value of potential.

◼No work is involved in moving a charge around on an 
equipotential surface.

◼The equipotential surfaces in the potential field of a point 
charge are spheres centered at the point charge.

◼The equipotential surfaces in the potential field of a line charge 
are cylindrical surfaces axed at the line charge. 

◼The equipotential surfaces in the potential field of a sheet of 
charge are surfaces parallel with the sheet of charge.
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Chapter 4 Energy and Potential

Potential Gradient

◼We have discussed two methods of determining potential: 
directly from the electric field intensity by means of a line
integral, or from the basic charge distribution itself by a volume
integral. 

◼ In practical problems, however, we rarely know E or ρv.

◼Preliminary information is much more likely to consist a 
description of two equipotential surface, and the goal is to find 
the electric field intensity.
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Chapter 4 Energy and Potential

Potential Gradient
◼The general line-integral 

relationship between V and E is: 
V d= − E L

V − E L

dV d= − E L

◼For a very short element of length 
ΔL, E is essentially constant: 

cosV E L  − 

cos
dV

E
dL

= −

◼Assuming a conservative field, for a given reference and 
starting point, the result of the integration is a function of the 
end point (x,y,z). We may pass to the limit and obtain:

cos
V

E
L




−

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Potential Gradient
Chapter 4 Energy and Potential

◼From the last equation, the maximum positive increment of 
potential, Δvmax, will occur when cosθ = –1, or ΔL points in the 
direction opposite to E.

max

dV
E

dL
=

◼We can now conclude two characteristics of the relationship 
between E and V at any point:

1. The magnitude of E is given by the maximum value of the 
rate of change of V with distance L.

2. This maximum value of V is obtained when the direction of 
the distance increment is opposite to E.
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Potential Gradient
Chapter 4 Energy and Potential

◼For the equipotential surfaces below, 
find the direction of E at P.

max

,

180

dV

dL

 = 

E
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Potential Gradient
Chapter 4 Energy and Potential

◼Since the potential field information is more likely to be 
determined first, let us describe the direction of ΔL (which leads 
to a maximum increase in potential) in term of potential field.

◼Let aN be a unit vector normal to the equipotential surface and 
directed toward the higher potential.

◼The electric field intensity is then expressed in terms of the 
potential as:

max

N

dV

dL
−E = a

max

dV dV

dL dN
=

◼The maximum magnitude occurs when ΔL is in the aN direction. 
Thus we define dN as incremental length in aN direction,

N

dV

dN
−E = a
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Chapter 4 Energy and Potential

Potential Gradient

Gradient of grad N

dT
T T

dN
= = a

◼The mathematical operation to find the rate of change in a 
certain direction is called gradient.

◼Now, the gradient of a scalar field T is defined as:

◼Using the new term,

N

dV

dN
−E = a grad V−=
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Chapter 4 Energy and Potential

Potential Gradient
◼Since V is a function of x, y, and z, the total differential is:

◼But also,

V V V
dV dx dy dz

x y z

  
= + +

  

dV d= − E L x y zE dx E dy E dz= − − −

◼Both expression are true for any dx, dy, and dz. Thus:

x

V
E

x


= −



y

V
E

y


= −



z

V
E

z


= −



x y z

V V V

x y z

   
= − + + 

   
E a a a

grad x y z

V V V
V

x y z

  
= + +

  
a a a

◼Note: Gradient of a scalar is a vector.
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x y z

V V V
V

x y z

  
 = + +

  
a a a

Potential Gradient
Chapter 4 Energy and Potential

x y z
x y z

  
 = + +

  
a a a

V= −E

◼ Introducing the vector operator for gradient:

We now can relate E and V as:

1
z

V V V
V

z
 

  

  
 = + +

  
a a a

1 1

sin
r

V V V
V

r r r
 

  

  
 = + +

  
a a a

Rectangular

Cylindrical

Spherical
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Current and Current Density
◼Electric charges in motion constitute a current.

◼The unit of current is the ampere (A), defined as a rate of 
movement of charge passing a given reference point (or 
crossing a given reference plane).

dQ
I

dt
=

Chapter 5 Current and Conductors

◼Current is defined as the motion of positive charges, although 
conduction in metals takes place through the motion of 
electrons.

◼Current density J is defined, measured in amperes per square 
meter (A/m2).
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Current and Current Density
Chapter 5 Current and Conductors

◼The increment of current  ΔI crossing an incremental surface 
ΔS normal to the current density is:

NI J S = 

◼ If the current density is not perpendicular to the surface,

I = J S

◼Through integration, the total current is obtained:

S
I d=  J S
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Current and Current Density

Chapter 5 Current and Conductors

◼Current density may be related to the velocity of volume 
charge density at a point.

• An element of charge ΔQ = ρvΔSΔL moves 
along the x axis

• In the time interval Δt, the element of charge 
has moved a distance Δx

• The  charge moving through a reference 
plane perpendicular to the direction of 
motion is ΔQ = ρvΔSΔx

Q
I

t


 =


v

x
S

t



= 


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Current and Current Density
Chapter 5 Current and Conductors

v xI Sv = 

◼The limit of the moving charge with respect to time is:

x v xJ v=

◼ In terms of current density, we find:

v=J v

◼This last result shows clearly that charge in motion constitutes 
a current. We name it here convection current.

◼J = ρvv is then called convection current density.
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Continuity of Current
Chapter 5 Current and Conductors

◼The principle of conservation of charge: 
“Charges can be neither created nor destroyed.”

◼But, equal amounts of positive and negative charge (pair of 
charges) may be simultaneously created, obtained by 
separation, destroyed, or lost by recombination.

S
I d=  J S

◼Any outward flow of positive charge must be balanced by a 
decrease of positive charge (or perhaps an increase of 
negative charge) within the closed surface.

◼ If the charge inside the closed surface is denoted by Qi, then 
the rate of decrease is –dQi/dt and the principle of 
conservation of charge requires:

i

S

dQ
I d

dt
=  = − J S

• The Continuity Equation in Closed Surface

• The Integral Form of the Continuity Equation
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v

t


 = −


J

Chapter 5 Current and Conductors

Continuity of Current
◼The differential form (or point form) of the continuity equation is 

obtained by using the divergence theorem:

vol
( )

S
d dv =   J S J

vol vol
( ) v

d
dv dv

dt
 = − J

◼We next represent Qi by the volume integral of ρv:

◼ If we keep the surface constant, the derivative becomes a 
partial derivative. Writing it within the integral,

vol vol
( ) vdv dv

t


 = −

 J

( ) vv v
t


  = − 


J

• The Differential Form (Point Form) 
of the Continuity Equation


