Module 2

Gauss’s Law and Divergence
Energy, Potential and Conductors
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Syllabus

>

e Gauss’s law and Divergence: Gauss ‘law, Application of Gauss
law to point charge, line charge, Surface charge and volume
charge, Point (differential) form of Gauss law, Divergence.
Maxwell‘s First equation (Electrostatics), Vector Operator ¥ and
divergence theorem, Numerical Problems (Text: Chapter 3.2 to
3.7).

e Energy, Potential and Conductors: Energy expended or work
done in moving a point charge in an electric field, The line
integral, Definition of potential difference and potential, The
potential field of point charge, Potential gradient, Numerical
Problems (Text: Chapter 4.1 to 4.4 and 4.6). Current and
Current density, Continuity of current. (Text: Chapter 5.1, 5.2)
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Gauss’s law and
Divergence
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Gauss’s Law

B The results of Faraday's experiments with the concentric
spheres could be summed up as an experimental law by stating
that the electric flux passing through any imaginary spherical
surface lying between the two conducting spheres is equal to
the charge enclosed within that imaginary surface.

y=Q

B Faraday’'s experiment can be generalized to the following
statement, which is known as Gauss'’s Law:

“The electric flux passing through any closed surface is
equal to the total charge enclosed by that surface.”



Gauss’s Law

B Imagine a distribution of charge, shown as a cloud of point
charges, surrounded by a closed surface of any shape.

l) S ' &/\ IS‘

M |f the total charge is Q, the Q coulombs of electric flux will pass
through the enclosing surface.

B At every point on the surface the electric-flux-density vector D
will have some value D¢ (subscript S means that D must be
evaluated at the surface).
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Gauss’s Law

B AS defines an incremental element of area with magnitude of
AS and the direction normal to the plane, or tangent to the
surface at the point in question.

B At any point P, where D makes an angle 6 with AS, then the
flux crossing AS is the product of the normal components of Dg

and AS.
Ay = flux crossing AS = Dg C0s60-AS =Dg -AS

y=[dy=¢ D,-dS

closed
surface

" t N
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Gauss’s Law

B The resultant integral is a closed surface integral, with dS
always involves the differentials of two coordinates
» The integral is a double integral.

L s-law mathematically as:
V= ([) D, -dS = charge enclosed = Q

B The charge enclosed meant by the formula above might be
several point charges, a line charge, a surface charge, or a
volume charge distribution.

Q=>Q, Q=[pdt Q=] pds Q=| pdv
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Gauss’s Law

B \We now take the last form, written in terms of the charge
distribution, to represent the other forms:

¢ D -dS =

p,av

vol

M |[lustration. Let a point charge Q be
placed at the origin of a spherical
coordinate system, and choose a
closed surface as a sphere of radius a.

B The electric field intensity due to the

point charge has been found to be: |
E= ar g, r=a ds
472'80r2 0

D=¢E = D= Q ., e~
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Gauss’s Law

B At the surface, r = a,
D, = Q

Arra’

dS=a’sinf dadg a,

a

r

D, -dS= Q ~a“sin@dody a, -a, - Qi 6dod g
4ra 4

\|/:<JSSDS-dS
2w (o7

- Q sinodods

-~ Jg=0do-0 4,

Q

——C0s¢
4r

r=a
T 0 r=a dS

2
‘9|¢=o ¢
6=0

]
1O
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Application of Gauss’s Law: Some Symmetrical Charge
Distributions

B | et us now consider how to use the Gauss’s law to calculate
the electric field intensity Dq:

Q=¢ D, -dS

® The solution will be easy if we are able to choose a closed
surface which satisfies two conditions:

1. Dg Is everywhere either normal or tangential to the closed
surface, so that D.-dS becomes either D.dS or zero, respectively.

2. On that portion of the closed surface for which Dg-dS Is not zero,
D Is constant.

M For point charge » The surface of a sphere.
M For line charge » The surface of a cylinder.
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Application of Gauss’s Law: Some Symmetrical Charge

Distributions
B From the previous discussion of the
uniform line charge, only the radial

component of D is present:
D=Da,

B The choice of a surface that fulfill the
requirement is simple: a cylindrical
surface.

B D, is every normal to the surface of a
cylinder. It may then be closed by two
plane surfaces normal to the z axis.

8/31/2020 EMW
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Application of Gauss’s Law: Some Symmetrical Charge
Distributions

Q=¢ D -dS
=D,[ ds,| +D,[ ds,| +D,[ ds,
Jsides P, top L bottom 7=0
D [ [ pdgd
- P.z=oj¢=op ¢ ‘ .
Line charge
— Dp27Z'pL PL : P -
K
1
=D =& E
P 2mnplL ;
B \We know that the charge enclosed is p, L, ;
P
D =
P 2mp
Ep — pL
27, P
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Application of Gauss’s Law: Some Symmetrical Charge
Distributions

B The problem of a coaxial cable is almost
identical with that of the line charge.

B Suppose that we have two coaxial |
cylindrical conductors, the inner of radius £+ _
/Ipzh

_Conducting
~~ cylinders

-

a and the outer of radius b, both with
Infinite length.

® \We shall assume a charge distribution of »-¢
Ps on the outer surface of the inner
conductor.

B Choosing a circular cylinder of length L and radius p, a < p <D,
as the gaussian surface, we find:

Q=D 27pL
M The total charge on a length L of the inner conductor Is:

L 27 a
Q=] . padgdz = 2zalp, =|D; = ZS




Application of Gauss’s Law: Some Symmetrical Charge
Distributions

® For one meter length, the inner conductor
has 2maps coulombs, hence p, = 2maps,

_ Conducting

" cylinders
D=FL a
2mp ”
B Everly line of electrix flux starting from the [
inner cylinder must terminate on the inner = |*
surface of the outer cylinder: p=a
Qouter cyI Zﬂal—ps inner cyl
272—pr8 outer cyl — 27Z'a|_,OS inner cyl * Dueto Simp“City,
a noise immunity and

broad bandwidth,

coaxial cable is still

M [f we use a cylinder of radius p > b, the most common
then the total charge enclosed will be zero. means of data

. . fransmission over
» There is no external field, <hort distances.

D, =0

Ps outer eyl — B Ps inner cyl



Application of Gauss’s Law: Differential Volume
Element

M \We are now going to apply the methods of Gauss'’s law to a
slightly different type of problem: a surface without symmetry.

B \We have to choose such a very small closed surface that D is
almost constant over the surface, and the small change in D
may be adequately represented by using the first two terms of
the Taylor’s-series expansion for D.

B The result will become more nearly correct as the volume
enclosed by the gaussian surface decreases.
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Application of Gauss’s Law: Differential Volume

Element
B Consider any point P, located by a i
rectangular coordinate system. D=Dy=Dioa + Doty + Do,

I
B The value of D at the point P may be |
expressed in rectangular components: T

D,=D,a, + Dyoay +D,qa, /

4
®

B \We now choose as our closed surface,
the small rectangular box, centered at P,
having sides of lengths Ax, Ay, and Az,
and apply Gauss’s law:

cﬁSD-dS:Q
C_‘SD-dS: +| | +

+| +
k I igh
8?3 1/2020 front bac eft right t[gR/IW bottom 16



Application of Gauss’s Law: Differential Volume

| | Element
B \We will now consider the front surface i

In detall . D=Dy=Da,+Dga,+D,a,

I
B The surface element is very small, thus |
D is essentially constant over this |

4
®

. - Az /I —————
surface (a portion of the entire closed Ax
surface): Ay

jfront = Dfront ) ASfront
= Dfront ) AyAZ a‘x
= Dx,frontAyAZ

B The front face Is at a distance of Ax/2 from P, and therefore:

D, tone = D.o +%x rate of change of D, with x

X, front
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Application of Gauss’s Law: Differential Volume

lement

B \We have now, for front surface:

j AX 0D, AYAZ
front 2 OX

M |n the same way, the integral over the back surface can be

found as:

jback = Dback - AS back
= Dback ) (_AyAZ ax)

= — xbackAyAZ
: Aan
Dx,back — DxO 2 GX
o= [ - Xo+gaDXjAyAz
back 2  OX

8/31/2020 EMW
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Application of Gauss’s Law: Differential Volume

| ~ Element
M [f we combine the two integrals over the front and back surface,

we have:
+ = - b, AXAYAz

front back @X

] Repeating the same process to the remaining surfaces, we find:
y
j right Ieft AyAXAZ

. 8DZ
.“top+ jbottom: OZ AZAXAy

B These results may be collected to yield:

oD
c_ﬁ D.dS = oD, +—L+ D, AXAYAZ
s ox oy oz

oD
4>DdS Q= (aDX+ y+8DZJAV
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Application of Gauss’s Law: Differential Volume

| ~ Element |
B The previous equation is an approximation, which becomes
better as Av becomes smaller.

B For the moment, we have applied Gauss’s law to the closed
surface surrounding the volume element Av, with the result:

oD
Charge enclosed in volume Av = (aDX +—L+ D, jx AV

ox oy 0z
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Divergence

B We shall now obtain an exact relationship, by allowing the
volume element Av to shrink to zero.

oD D-.dS
(aax+ y+aaozjisf>s e
Z

ox oy AV AV

(ﬁDdS_"mg

AV—0 AV Av—0 AV

oD, , D, oD,
ox oy 0z

B The last term is the volume charge density p,, So that:

oD, D, ) . $D-dS
+ +
ox oy 0z
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Divergence

B | et us no consider one information that can be obtained from
the last equation:

[8DX oD, aDZ] . ¢ D-dS
+ -

ox oy 0z

B This equation is valid not only for electric flux density D, but
also to any vector field A to find the surface integral for a small
closed surface.

(8AX+GAY+8AZ] . A-dS
ox oy oz
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Divergence

B This operation received a descriptive name, divergence. The
divergence of A is defined as:

_ _ : A-dS
Divergence of A =div A = lim =
AvV—0 AV

“The divergence of the vector flux density A is the
outflow of flux from a small closed surface per unit
volume as the volume shrinks to zero.”

B A positive divergence of a vector quantity indicates a source of
that vector guantity at that point.

B Similarly, a negative divergence indicates a sink.
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Divergence

Rectangular

Cylindrical

Spherical
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Maxwell's First Equation- (Electrostatics)
B \We may now rewrite the expressions developed until now:

D-dS
divD = lim =
AV—0 AV
oD
divD:aDX+ y+6DZ
ox oy 0z
div D = Maxwell’s First Equation
VD =p, Point Form of Gauss’s Law

M This first of Maxwell’s four equations applies to electrostatics
and steady magnetic field.

B Physically it states that the electric flux per unit volume leaving
a vanishingly small volume unit is exactly equal to the volume
charge density there.
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The Vector Operator V and The Divergence

| | Theorem o |
M Divergence is an operation on a vector yielding a scalar, just
like the dot product.

B \We define the del operator V as a vector operator:

0 0 0
V=—a +—a, +—a,
OX oy ’ oz

H Then, treating the del operator as an ordinary vector, we can
write:

V. D=£QaX +£ay +gazj-(DxaX +D,a,+D,a,)

OX oy 0z
oD
v-D:aDu eraDZ
ox oy 0oz
oD
divD=V-D=6DX+ y+8DZ
ox oy 0z
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The Vector Operator V and The Divergence

Theorem _ _
B The V operator does not have a specific form in other coordinate

systems than rectangular coordinate system.
M Nevertheless,

V-D==-— += +——2 Cylindrical
pop O e T g
oD :
V-D:izg ‘D) +— 0 (sinéD,) + l / Spherical
reor rsiné o6 rsiné@ o¢
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The Vector Operator V and The Divergence
Theorem

B We shall now give name to a theorem that we actually have
obtained, the Divergence Theorem:

¢ D-ds=Q=[ pdv=] V-Ddv

vol

® The first and last terms constitute the divergence theorem:

chSD-dS: V.-Ddv

vol / Closed surface S

<

“The integral of the normal ;
component of any vector field /‘
over a closed surface is equal to = .

the integral of the divergence of B}

this vector field throughout the

volume enclosed by the closed

surface.” Volume v

!

W4
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Energy Expended in Moving a Point Charge in an
Electric Field

B The electric field intensity was defined as the force on a unit
test charge at that point where we wish to find the value of the
electric field intensity.

B To move the test charge against the electric field, we have to
exert a force equal and opposite in magnitude to that exerted
by the field. » We must expend energy or do work.

B To move the charge in the direction of the electric field, our
energy expenditure turns out to be negative. » We do not do
the work, the field does.
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Energy Expended in Moving a Point Charge in an
Electric Field

B To move a charge Q a distance dL in an electric field E, the
force on Q arising from the electric field is:

F- =QE

B The component of this force in the direction dL is:
F., =F -a =QE-a,

H The force that we apply must be equal and opposite to the
force exerted by the field:

—QE-a,

appl
M Differential work done by external source to Q is equal to:
W =-QE-a, dL =—QE-dL

°If E and L are perpendicular, the
differential work will be zero
8/31/2020 EMW 31




Energy Expended in Moving a Point Charge in an

Electric Field

B The work required to move the charge a finite distance is
determined by integration:

final

W = dw

init

final

W =-Q

init

E-dL

8/31/2020

*The path must be specified beforehand

*The charge is assumed to be at rest at both initial
and final positions

‘W >0 means we expend energy or do work
W < 0 means the field expends energy or do work
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The Line Integral

B The integral expression of previous equation is an
example of a line integral, taking the form of

Integral along a prescribed path.
H \Without using vector notation,

we should have to write:
W _ _ijlnal ELdL

init

Final position
El..’)

*E_: component of E along dL

Initial position

B The work involved in moving a charge Q from B to A is
approximately:

W =-Q(ELAL +E AL, +---+ E (AL)
W =-Q(E,-AL, +E,-AL, +---+E, -AL,)
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The Line Integral

M [f we assume that the electric field is uniform,

E,=E,=-=E;
W =-QE- (AL, +AL, +---+AL)
LBA
M Therefore,

W=-QE-L;, (uniform E)

B Since the summation can be interpreted as a line integral, the
exact result for the uniform field can be obtained as:

A
W :—QIB E.dL
W = —QE-j:dL (uniform E)

W=-QE-L;, (uniform E) «For the case of uniform E, W.
does not depend on the particular
path selected along which the

8/31/2020 EMw Charge is carried 34
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Differential Length

Rectangular
Cylindrical
Spherical

EMW

35



Work and Path Near an Infinite Line Charge
E=Ea =—fL 3
pp
27E, P
Infinite line dL = d,Oap + pd ¢a¢ + dzaz

charge p;

P

dL=p, dpa, _ _Q » final pL d¢a .a

g ~final
' W=-0[ £ a .dpa

8/31/2020 emw 27€, A
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Definition of Potential Difference and Potential

M \We already find the expression for the work W done by an
external source in moving a charge Q from one point to another
In an electrjc field E:

W =-0 E-dL

init

B Potential difference V is defined as the work done by an |
external source in moving a unit positive charge from one point
to another in an electric field:

final

Potential difference =V =— j E.-dL

init

B \We shall now set an agreement on the direction of movement.
V,g Signifies the potential difference between points A and B
and is the work done in moving the unit charge from B (last
named) to A (first named).
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Definition of Potential Difference and Potential

B Potential difference is measured in joules per coulomb (J/C).
However, volt (V) is defined as a more common unit.

B The potential difference between points A and B Is:
_ , * V,r IS positive if work is done in carryin
Vie = IB E-dLV the pogitive chargefrom B to A yins

® From the line-charge example, we found that the work done in
taking a charge Q fromp = a to p = b was:

W:_QIOL |n9
2re, A
HOr fromp =btop = g,
wo QP a _Qp b

2re, b 27, a

B Thus, the potential difference between pointsatp = a to
p = bis:
W p Inb

ab o
8/31/2080 2mg, a EMW 38




Definition of Potential Difference and Potential

B For a point charge, we can find the potential difference
between points A and B at radial distance r, and rz, choosing
an origin at Q:

1 1
Q — * Irg>r1,2 Vg >0, W,z >0,
rh I Wiork expended by the
external source (us)

. rB<rA9\JOB<O,WABb<O,

rk done by the electric
field
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Definition of Potential Difference and Potential

B |t is often convenient to speak of potential, or absolute
potential, of a point rather than the potential difference
between two points.

B For this purpose, we must first specify the reference point
which we consider to have zero potential.

B The most universal zero reference point is “"ground”, which
means the potential of the surface region of the earth.

B Another widely used reference point is “infinity.”

B For cylindrical coordinate, in discussing a coaxial cable, the
outer conductor is selected as the zero reference for potential.

H If the potential at point A is V, and that at B is Vg, then:
Vg =Va Vg
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The Potential Field of a Point Charge

B In previous section we found an expression for the potential
difference between two points located atr =r, and r = rg In the
field of a point charge Q placed at the origin:

Q 1 1 A(ry, 04, 04) E=E,a,
VAB — — :VA _VB

— dL=dra +rdfag+rsinfdpa,

- ® B(rg, O3, ¢3)

B Any initial and final values of 6 or @ will not affect the answer.
As long as the radial distance between r, and rz Is constant,
any complicated path between two points will not change the
results.

B This is because although dL has r, 6, and ¢ components, the

electric field E only has the radial r component.
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The Potential Field of a Point Charge

B The potential difference between two points in the field of a
point charge depends only on the distance of each point from

the charge.

® Thus, the simplest way to define a zero reference for potential

In this case is to let V = 0 at infinity.
B As the point r = rg recedes to infinity, the potential at r,

becomes:
VAB :VA_VB
V. Q 1 Q 1

AB o
Arg, ¥y, dmeg, Iy

VAB_Ql Qi

Argy ¥y, 4Ame, ©

Q 1
Vg = A — =V,
me, I,

8/31/2020 EMW
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;I,'pe Potential Field of a Point
Charge

B Gener
V =

47&90

B Physically, Q/4meyr joules of work must be done in carrying
1 coulomb charge from infinity to any point in a distance of r
meters from the charge Q.

M \We can also choose any point as a zero reference:

V = Q +C,
Are,r

with C,; may be selected so that V = 0 at any desired value of r.
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Equipotential Surface

B Equipotential surface is a surface composed of all those points
having the same value of potential.

B No work Is involved in moving a charge around on an
equipotential surface.

B The equipotential surfaces in the potential field of a point
charge are spheres centered at the point charge.

B The equipotential surfaces in the potential field of a line charge
are cylindrical surfaces axed at the line charge.

B The equipotential surfaces in the potential field of a sheet of
charge are surfaces parallel with the sheet of charge.
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Potential Gradient

B \We have discussed two methods of determining potential:
directly from the electric field intensity by means of a line
integral, or from the basic charge distribution itself by a volume
Integral.

M In practical problems, however, we rarely know E or p,.

B Preliminary information is much more likely to consista
description of two equipotential surface, and the goal is to find
the electric field intensity.
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Potential Gradient

H The general line-integral
relationship between V and E is: /

V=-[E-dL //A \}\\\

AL
0y _ ——

P
dV =—E-dL . il o
hort element of length s sl
M For a very shor B s————
AL, E is essentially constant: \i\ E //7
AV =—E-AL o
AV =—-EALcosé
ﬂ = —-Ecosd
AL

B Assuming a conservative field, for a given reference and
starting point, the result of the integration is a function of the
end point (X,y,z). We may pass to the limit and obtain:

d—vz—EcosH
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Potential Gradient

B From the last equation, the maximum positive increment of
potential, Av, .., will occur when cos@ = -1, or AL points in the
dlrg\;:tlon opposﬂe to E.

dL o

B \We can now conclude two characteristics of the relationship
between E and V at any point:

1. The magnitude of E Is given by the maximum value of the
rate of change of V with distance L.

2. This maximum value of V is obtained when the direction of
the distance increment is opposite to E.
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Potential Gradient

M For the equipotential surfaces below,
find the direction of E at P.

+40 + 30
+ 50

+ 80

V+90>>

6 =180°

8/31/2020 EMW
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Potential Gradient

B Since the potential field information is more likely to be
determined first, let us describe the direction of AL (which leads
to a maximum increase in potential) in term of potential field.

M| et a, be a unit vector normal to the equipotential surface and
dlrec:ted toward the higher potential.

B The electric field intensity is then expressed in terms of the
potential as:

dVv
dL

B The maX|mu_m magnitude occurs when AL is in the ay direction.
Thus we define dN as incremental length in a direction,

E=- a,

dv| _dv
dL| . dN
E——d—va
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Potential Gradient

B The mathematical operation to find the rate of change in a
certain direction is called gradient.

B Now, the gradient of a scalar field T is defined as:
‘ Gradientof T =grad T = S—LaN \

B Using the new term,
dv
E= —d—NaN = —grad V
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Potential Gradient

M Since V is a function of X, y, and z, the total differential is:

dV=&dx+ﬂdy+%dz
OX oy 0z

B But also,
dvV =-E-dL =-E,dx-E dy-E,dz

B Both expression are true for any dx, dy, and dz. Thus:

e - N
- X E=— &aﬁﬂa +ﬂaZ
E oV OX oy ' oz
y__a
oV oV oV
oV gradV =—a, +—a, +—a,
EZZ_E OX 6y 0z

B Note. Gradient of a scalar is g yector.



Potential Gradient

M [ntroducing the vector operator for gradient:

0 0 0
V=—a +—a,+—a2,
OX oy ’ oz

We now can relate E and V as:

Rectangular

Cylindrical

Spherical
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Current and Current Density

M Electric charges in motion constitute a current.

B The unit of current is the ampere (A), defined as a rate of
movement of charge passing a given reference point (or
crossing a given reference plane).

| = aQ
dt

B Current is defined as the motion of positive charges, although
conduction in metals takes place through the motion of
electrons.

B Current density J is defined, measured in amperes per square
meter (A/m?).
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Current and Current Density

B The increment of current Al crossing an incremental surface
AS normal to the current density is:

Al = J AS

M |f the current density is not perpendicular to the surface,
Al =J-AS

B Through integration, the total current is obtained:

I:LJdS
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Current and Current Density

B Current density may be related to the velocity of volume
charge density at a point.

AQ=p,Av

A

AQ=p, Ay _-_ -

* An element of charge AQ = p,ASAL moves

along the x axis AQ
 In the time interval At, the element of charge A] =—= AS —
has moved a distance Ax Al At

« The charge moving through a reference
plane perpendicular to the direction of

MOFRMiSAQ = P, ASAX EMW 55



Current and Current Density

® The limit of the moving charge with respect to time is:
Al = p, ASV,

M In terms of current density, we find:
J =PV,

J=pV

M This last result shows clearly that charge in motion constitutes
a current. We name it here convection current.

mJ = p\V is then called convection current density.
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Continuity of Current

B The principle of conservation of charge:
“Charges can be neither created nor destroyed.”

B But, equal amounts of positive and negative charge (pair of
charges) may be simultaneously created, obtained by
separation, destroyed, or lost by recombination.

| = C_‘SSJ -dS * The Continuity Equation in Closed Surface

B Any outward flow of positive charge must be balanced by a
decrease of positive charge (or perhaps an increase of
negative charge) within the closed surface.

B If the charge inside the closed surface is denoted by Q,, then
the rate of decrease is —dQ;/dt and the principle of
conservation of charge requires:

dQ.

| = Cj)s J-dS = _F  The Integral Form of the Continuity Equation
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Continuity of Current

B The differential form (or point form) of the continuity equation is
obtained by using the divergence theorem:

Cﬁs J-dS = Lm (V-J)dv
B \We next represent Q, by the volume integral of p,:
fo. (V-J)dv = _d p,dv

dt ¢ vol

B |f we keep the surface constant, the derivative becomes a
partial derivative. Writing it within the integral,

[ (v-3)dv= 9P gy

vol vol ot
ap,

(V-J)Av =— AV
ot
o
V-J=- P « The Differential Form (Point Form)

ot of the Continuity Equation




