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Uniqueness Theorem









Examples of the Solution of Laplace’s Equation

Example 1

Assume V is a function only of x – solve Laplace’s equation

V
Vo x

d



Examples of the Solution of Laplace’s EquationFinding the capacitance of a parallel-plate 
capacitor

Steps

1 – Given V, use E = - DelV to find E
2 – Use D = eE to find D
3 - Evaluate D at either capacitor plate, D = Ds 
= Dn an
4 – Recognize that rs = Dn
5 – Find Q by a surface integration over the 
capacitor plate

C
Q

Vo

e S

d



Examples of the Solution of Laplace’s Equation

Example 2 - Cylindrical
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Examples of the Solution of Laplace’s Equation

Example 3 



Examples of the Solution of Laplace’s Equation

Example 4  (spherical coordinates)

V Vo
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Examples of the Solution of Laplace’s Equation

Example 5  

V Vo
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The Steady Magnetic Field

◼At this point, we shall begin our study of the magnetic field with 
a definition of the magnetic field itself and show how it arises 
from a current distribution.

◼The relation of the steady magnetic field to its source is more 
complicated than is the relation of the electrostatic field to its 
source.

Chapter 8 The Steady Magnetic Field

◼The source of the steady magnetic field may be a permanent 
magnet, an electric field changing linearly with time, or a direct 
current. 

◼Our present concern will be the magnetic field produced by a 
differential dc element in the free space.



Biot-Savarts Law

◼Consider a differential current element as a vanishingly small 
section of a current-carrying filamentary conductor.

◼We assume a current I flowing in a differential vector length of 
the filament dL.

Chapter 8 The Steady Magnetic Field

◼The law of Biot-Savart then states that 
“At any point P  the magnitude of the magnetic field intensity 
produced by the differential element is proportional to the 
product of the current, the magnitude of the differential length, 
and the sine of the angle lying between the filament and a 
line connecting the filament to the point P at which the field is 
desired; also, the magnitude of the magnetic field intensity is 
inversely proportional to the square of the distance from the 
differential element to the point P.”



Biot-Savart Law

The Steady Magnetic Field

◼The Biot-Savart law may be written concisely using vector 
notation as

2 34 4

RId Id
d

R R 

 
= =

L a L R
H

◼The units of the magnetic field intensity H are evidently 
amperes per meter (A/m).

1 1 12
2 2
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RI d
d

R


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L a
H

◼Using additional subscripts to 
indicate the point to which each of 
the quantities refers,



Biot-Savart Law

Chapter 8 The Steady Magnetic Field

◼ It is impossible to check experimentally the law of Biot-Savart 
as expressed previously, because the differential current 
element cannot be isolated.

◼ It follows that only the integral form of the Biot-Savart law can 
be verified experimentally,

24

RId

R


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L a
H



◼The Biot-Savart law may also be expressed in terms of 
distributed sources, such as current density J (A/m2) and 
surface current density K (A/m).

◼Surface current K flows in a sheet of vanishingly small 
thickness, and the sheet’s current density J is therefore infinite.

◼Surface current density K, however, is measured in amperes 
per meter width. Thus, if the surface current density is uniform, 
the total current I in any width b is

Biot-Savart Law

The Steady Magnetic Field

I Kb=

where the width b is measured 
perpendicularly to the direction in 
which the current is flowing.



◼Thus, the differential current element IdL may be expressed in 
terms of surface current density K or current density J,

Biot-Savart Law

Chapter 8 The Steady Magnetic Field

Id dS dv= =L K J

and alternate forms of the Biot-Savart law can be obtained as

24
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◼For a nonuniform surface current density, integration is 
necessary:

I KdN= 
where dN is a differential element of the path across which the 
current is flowing.



Biot-Savart Law

Chapter 8 The Steady Magnetic Field

◼We may illustrate the application of the Biot-Savart law by 
considering an infinitely long straight filament.

◼Referring to the next figure, we should recognize the symmetry 
of this field. As we moves along the filament, no variation of z or     
f occur.

◼The field point r is given by r = ρaρ, 
and the source point r’ is given by 
r’ = z’az. Therefore,

12 zzrr = − = −R r r a a
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Biot-Savart Law
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◼We take dL = dz’az and the current is directed toward the 
increasing values of z’. Thus we have

2 2 2 3 2
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• The resulting magnetic field intensity 
is directed to af direction.



Biot-Savart Law
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◼Continuing the integration with respect to z’ only,

2 2 2 3 24 ( )
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• The magnitude of the field is not a 
function of f or z.

• It varies inversely with the distance 
from the filament.

• The direction of the magnetic-field-
intensity vector is circumferential.



Biot-Savart Law
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2 1(sin sin )
4

I
f 

r
= −H a

◼The formula to calculate the magnetic field intensity caused by 
a finite-length current element can be readily used:

• Try to derive this formula



Biot-Savart Law

◼Example
Determine H at P2(0.4,0.3,0) in 
the field of an 8 A filamentary 
current directed inward from 
infinity to the origin on the 
positive x axis, and then outward 
to infinity along the y axis.

2

8
(sin 53.1 sin( 90 ))

4 (0.3)
x f


= − − H a

12
f


= a 2
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A mx z
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4 (0.4)
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
= − − H a

8
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
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A my z


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2 2 2x y= +H H H
20

6.37 A mz z


= − = −a a

1 90 ,x = −  2 53.1x = 

1 36.9 ,y = − 
2 90y = 

Chapter 8 The Steady Magnetic Field

• What if the line goes 
onward to infinity 
along the z axis?



Ampere’s Circuital Law

◼ In solving electrostatic problems, whenever a high degree of 
symmetry is present, we found that they could be solved much 
more easily by using Gauss’s law compared to Coulomb’s law.

◼Again, an analogous procedure exists in magnetic field.
◼Here, the law that helps solving problems more easily is known 

as Ampere’s circuital law.

Chapter 8 The Steady Magnetic Field

◼The derivation of this law will wait until several subsection 
ahead. For the present we accept Ampere’s circuital law as 
another law capable of experimental proof.

◼Ampere’s circuital law states that the line integral of magnetic 
field intensity H about any closed path is exactly equal to the 
direct current enclosed by that path,

d I = H L



Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

• The line integral of H about the closed 
path a and b is equal to I

• The integral around path c is less than I.

◼The application of Ampere’s circuital law involves finding the 
total current enclosed by a closed path.



Ampere’s Circuital Law
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◼Let us again find the magnetic field 
intensity produced by an infinite long 
filament carrying a current I. The 
filament lies on the z axis in free 
space, flowing to az direction.

◼We choose a convenient path to any 
section of which H is either 
perpendicular or tangential and 
along which the magnitude H is 
constant.

◼The path must be a circle of radius ρ, and Ampere’s circuital 
law can be written as

2
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Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

◼As a second example, consider an infinitely long coaxial 
transmission line, carrying a uniformly distributed total current I
in the center conductor and –I in the outer conductor.

◼A circular path of radius ρ, where ρ is larger than the radius of 
the inner conductor a but less than the inner radius of the outer 
conductor b, leads immediately to

( )
2

I
H a bf r
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◼ If ρ < a, the current enclosed is
2

encl 2
2I H I

a
f

r
r= =

◼Resulting

2
( )

2
H I a

a
f

r
r


= 



Ampere’s Circuital Law
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◼ If the radius ρ is larger than the outer radius of the outer 
conductor c, no current is enclosed and

0 ( )H cf r= 

◼Finally, if the path lies within the outer conductor, we have
2 2

2 2
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b
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c b
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• ρ components cancel,
z component is zero.

• Only f component of H 
does exist.

×



Ampere’s Circuital Law
Chapter 8

The Steady Magnetic Field

◼The magnetic-field-strength variation with radius is shown 
below for a coaxial cable in which b = 3a, c = 4a.

◼ It should be noted that the magnetic field intensity H is 
continuous at all the conductor boundaries → The value of Hφ
does not show sudden jumps.

◼Outside the coaxial cable, a complete cancellation of magnetic 
field occurs. Such coaxial cable would not produce any 
noticeable effect to the surroundings (“shielding”).

• The shielding effect of 
coaxial cable applies for 
static and moving charges 



Ampere’s Circuital Law
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◼As final example, consider a sheet of current flowing in the 
positive y direction and located in the z = 0 plane, with uniform 
surface current density K = Kyay.

◼Due to symmetry, H cannot vary with x and y.
◼ If the sheet is subdivided into a number of filaments, it is 

evident that no filament can produce an Hy component.
◼Moreover, the Biot-Savart law shows that the contributions to 

Hz produced by a symmetrically located pair of filaments cancel 
each other. → Hz is zero also.

◼Thus, only Hx component is present.



Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

◼We therefore choose the path 1-1’-2’-2-1 composed of straight-
line segments which are either parallel or perpendicular to Hx
and enclose the current sheet.

◼Ampere's circuital law gives

1 2 ( )x x yH L H L K L+ − = 1 2x x yH H K − =

3 1x xH H=

◼ If we choose a new path 3-3’-2’-2’3, the same current is 
enclosed, giving

3 2x x yH H K− =

and therefore

• K : surface current 
density [A/m]



1
2 N= H K a

Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

◼Because of the symmetry, then, the magnetic field intensity on 
one side of the current sheet is the negative of that on the other 
side.

◼Above the sheet
1
2

( 0)x yH K z= 

1
2

( 0)x yH K z= − 
while below it

◼Letting aN be a unit vector normal (outward) to the current 
sheet, this result may be written in a form correct for all z as



Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

◼ If a second sheet of current flowing in the opposite direction, 
K = –Kyay, is placed at z = h, then the field in the region 
between the current sheets is

and is zero elsewhere

(0 )N z h=   H K a

0 ( 0, )z z h=  H



Ampere’s Circuital Law

Chapter 8 The Steady Magnetic Field

◼The difficult part of the application of Ampere’s circuital law is 
the determination of the components of the field which are 
present. 

◼The surest method is the logical application of the Biot-Savart 
law and a knowledge of the magnetic fields of simple form (line, 
sheet of current, “volume of current”).

• Solenoid • Toroid

• Ideal • Real • Ideal • Real



Ampere’s Circuital Law
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◼For an ideal solenoid, 
infinitely long with radius a
and uniform current density 
Kaaφ, the result is

( )a zK ar= H a

0 ( )ar= H

◼ If the solenoid has a finite 
length d and consists of N
closely wound turns of a 
filament that carries a 
current I, then 

(
)z

NI

d
=H a well within 

the solenoid



Ampere’s Circuital Law
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◼For a toroid with ideal case

0 (
)a

a
K f

r

r

−
=H a inside 

toroid

(0
)

=H outside 
toroid

◼For the N-turn toroid, we have 
the good approximations

(
)2

NI
f

r
=H a inside 

toroid

(0
)

=H outside 
toroid



Curl

◼ In our study of Gauss’s law, we applied it to a differential 
volume element which led to the “Concept of Divergence.”

◼We now apply Ampere’s circuital law to the perimeter of a 
differential surface element and discuss the third and last of the 
special derivatives of vector analysis, the curl.

◼Our immediate objective is to obtain the point form of Ampere’s 
circuital law.

Chapter 8 The Steady Magnetic Field



Curl

◼Again, we choose rectangular 
coordinate, and an incremental closed 
path of sides Δx and Δy is selected.

◼We assume that some current 
produces a reference value for H at 
the center of this small rectangle, 
given by

Chapter 8 The Steady Magnetic Field

0 0 0 0x x y y z zH H H= + +H a a a

1 2 ,1 2( ) yH y− − = H L

◼The closed line integral of H about this path is then 
approximately the sum of the four values of H·ΔL on each side.

◼We choose the direction of traverse as 1-2-3-4-1, which 
corresponds to a current in the az direction.

◼The first contribution, from section 1-2, is therefore



2 3 ,2 3 0
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H
H x H y x

y
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 
 − − +    

H L

Curl

◼The value of Hy on section 1-2 may 
be given in terms of the reference 
value Hy0 at the center of the 
rectangle, the rate of change of Hy
with x, and the distance Δx/2 from the 
center to the midpoint of side 1-2.

Chapter 8 The Steady Magnetic Field

,1 2 0

1

2

y

y y

H
H H x

x
−

  
+  

  

1 2 0

1
( )

2

y

y

H
H x y

x
−

 
 +   

 
H L

◼Thus,

◼The next contribution, from section 2-3, is given as
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Curl

◼Further, section 3-4 will give

Chapter 8 The Steady Magnetic Field

◼Finally, section 4-1 will give

◼Adding the results from all 4 sections, we obtain
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Curl

◼By Ampere’s circuital law, this closed path integration of 
magnetic field intensity H must be equal to the current enclosed
by the path, or the current crossing any surface bounded by the 
path.

◼ If we assume a general current density J, the enclosed current 
is then

Chapter 8 The Steady Magnetic Field

y x
z

H H
d x y J x y

x y

 
 −     
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  
−

   

 H L

zI J x y  

and

◼Finally,



Curl

◼ If we choose closed paths which are oriented perpendicularly to 
each of the remaining two coordinate axes, analogous 
processes lead to expression for the x and y components of the 
current density

Chapter 8 The Steady Magnetic Field

, 0
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◼As we let the closed path shrink, the approximation becomes 
more nearly exact, and we have the current density in z
direction.
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Curl
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◼Comparing all equation in the previous slide, we can conclude 
that “a component of a current density in a certain direction is 
given by the limit of the quotient of the closed line integral of H
about a small path in a plane normal to that component as the 
area enclosed by the path shrinks to zero.”

◼This limit has its counterpart in other fields of science and 
received the name of curl.

◼The mathematical form of the curl is

0
(curl ) lim

N

N
S

N

d

S →


=



 H L
H

◼ΔSN is the planar area enclosed by the closed line integral, 
while N subscript indicated that the component of the curl is 
normal to the surface enclosed by the closed path.



Curl
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curl
y yx xz z

x y z

H HH HH H

y z z x x y
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H a a a

◼ In rectangular coordinates, the curl H is given by

◼This result may be written in the form of a determinant or in 
terms of the vector operator, as follows

curl

x y z

x y z

x y z

H H H

  
=
  

a a a

H curl = H H

Rectangular
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Small Paddle Wheel as a Curl Meter
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• Clockwise rotation • No rotation
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Small Paddle Wheel as a Curl Meter
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Curl

◼Example
Let H=0.2z2ax for z>0, and H=0 
elsewhere, as shown in the next 
figure. Calculate     H·dL about a 
square path with side d, centered 
at (0,0,z1) in the y=0 plane where 
z1>d/2.

21
1 2

21
1 2

0.2( ) 0

0.2( ) 0

d z d d

z d d
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 H LFirst 

Chapter 8 The Steady Magnetic Field
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=  = − + −  

     
 

+ − = 
  

H H a a

a J



 =H J

0 =E

◼To complete our original examination of the application of 
Ampere’s circuital law to a differential-sized path, we may write

• Point Form of Ampere’s Circuital law

• Second Maxwell’s Equation, 
non-time varying condition.

• Point Form of Potential Difference law

• Third Maxwell’s Equation, 
non-time varying condition.



Stokes’ Theorem
◼Previously, from Ampere’s circuital law, we derive one of 

Maxwell’s equations, ∇×H=J.
◼This equation is to be considered as the point form of Ampere’s 

circuital law and applies on a “per-unit-area” basis.
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◼Now, we shall devote the material to a mathematical theorem 
known as Stokes’ theorem.

◼ In the process, we shall show that we may obtain Ampere’s 
circuital law from ∇×H=J.



Stokes’ Theorem

◼Consider the surface S of the next figure, which is 
broken up into incremental surfaces of area ΔS.

◼ If we apply the definition of the curl to one of these 
incremental surfaces, then: 
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( )
S

N

d

S






 H L
H

( )
S

N

d

S


 



 H L
H a

( ) ( )S Nd S    =   H L H a H S

or

or



Stokes’ Theorem

◼Let us now perform the circulation for every ΔS comprising S
and sum the results.
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( )
S

d d =   H L H S

◼Therefore,

where dL is taken only on the perimeter of S.

◼As we evaluate the closed line 
integral for each ΔS, some 
cancellation will occur because 
every interior wall is covered once 
in each direction.

◼The only boundaries on which 
cancellation cannot occur form the 
outside boundary, the path 
enclosing S.



Stokes’ Theorem
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◼Example
Consider the portion of a sphere as shown. 
The surface is specified by r = 4, 0 ≤ θ ≤ 0.1π, 
0 ≤ f ≤ 0.3π. The closed path forming its 
perimeter is composed of three circular arcs. 
Given the magnetic field H = 6rsinfar + 18r
sinθcosf aɸ A/m, evaluate each side of Stokes’ 
theorem.

sinrd dr rd r d f  f= + +L a a a

1 2 3

sind H rd H r d H rd f   f  = + +   H L

 
0.3

0

18(4)sin 0.1 cos 4sin 0.1d d



 f  f = H L

2288sin 0.1 sin0.3 = 22.2 A= ( )
S

d d =   H L H S



Stokes’ Theorem
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 
+ − 

 

H a

a

2 sin rd r d d  f=S a

0.3 0.1

0 0

( ) (36cos cos )(16sin )
S

d d d

 

 f   f  =  H S

0.3
0.1

21
2 0

0

576( sin ) cos d




 f f= 
2288sin 0.1 sin0.3 =

22.2 A= ( )
S

d d =   H L H S



Magnetic Flux and Magnetic Flux Density
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◼ In free space, let us define magnetic flux density B as

0=B H

where B is measured in webers per square meter (Wb/m2) or 
tesla (T).

◼The constant μ0 is not dimensionless and has a defined value 
for free space, in henrys per meter (H/m), of

7

0 4 10 H m  −= 

◼The magnetic-flux-density vector B, as the name weber per 
square meter implies, is a member of the flux-density family of 
vector fields.

◼Comparing the laws of Biot-Savart and Coulomb, one can find 
analogy between H and E that leads to an analogy between B
and D; D = ε0E and B = μ0H. 



Magnetic Flux and Magnetic Flux Density
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◼ If B is measured in teslas or webers per square meter, then 
magnetic flux Φ should be measured in webers.

◼Let us represent magnetic flux by Φ and define Φ as the flux 
passing through any designated area,

Wb
S

d = B S
S

d Q =  = D S

◼We remember that Gauss’s law states that the total electric flux 
passing through any closed surface is equal to the charge 
enclosed. This charge is the source of the electric flux D.

◼For magnetic flux, no current source can be enclosed, since the 
current is considered to be in closed circuit.



Magnetic Flux and Magnetic Flux Density
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◼For this reason, the Gauss’s law for the magnetic field can be 
written as

0
S

d =B S

◼Through the application of the divergence theorem, we can also 
find that

0 =B
• Fourth Maxwell’s Equation, 

static electric fields and steady 
magnetic fields.



Magnetic Flux and Magnetic Flux Density
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◼Collecting all equations we have until now of static electric 
fields and steady magnetic fields,

0
vr =

 =

D

E





◼The corresponding set of four integral equations that apply to 
static electric fields and steady magnetic fields is

vol

0

v

S

d Q dv

d

r = =

 =

 



D S

E L

0

 =

 =

H J

B





0

S

S

d I d

d

 = = 

 =

 



H L J S

B S



Solved Example

◼Example
Find the flux between the conductors of the 
coaxial line we have discussed previously, for 
a ≤ ρ ≤ b, 0 ≤ z ≤ d. 
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Scalar Magnetic Potential

We are already familiar with the relation between the scalar electric potential and electric field: 

So it is tempting to define a scalar magnetic potential such that:

This rule must be consistent with Maxwell’s equations, so therefore:

But the curl of the gradient of any function is identically zero!  Therefore, the scalar magnetic potential

is valid only in regions where the current density is zero (such as in free space).

So we define scalar magnetic

potential with a condition:



Further Requirements on the Scalar Magnetic Potential

The other Maxwell equation involving magnetic field must also be satisfied.  This is:

in free space

Therefore:

..and so the scalar magnetic potential satisfies Laplace’s equation (again with the restriction

that current density must be zero:



Example:  Coaxial Transmission Line
With the center conductor current flowing out of the screen, we have

Thus:

So we solve:

.. and obtain:

where the integration constant has been set to zero



Ambiguities in the Scalar Potential

The scalar potential is now:

where the potential is zero at 

At point P ( ) the potential is

But wait!  As      increases to  

we have returned to the same physical location, and 

the potential has a new value of -I.

In general, the potential at P will be multivalued, and will

acquire a new value after each full rotation in the xy plane:



Overcoming the Ambiguity

Barrier at 

To remove the ambiguity, we construct a mathematical barrier at any value of phi.  The angle domain 

cannot cross this barrier in either direction, and so the potential function is restricted to angles on either

side.   In the present case we choose the barrier to lie at               so that   

The potential at point P is now single-valued:



Vector Magnetic Potential

We make use of the Maxwell equation:

.. and the fact that the divergence of the curl of any vector field is identically zero (show this!)

This leads to the definition of the magnetic vector potential, A:

Thus:

and Ampere’s Law becomes 



Equation for the Vector Potential

We start with:

Then, introduce a vector identity that defines the vector Laplacian:

Using a (lengthy) procedure (see Sec. 7.7) it can be proven that

We are therefore left with



The Direction of A

We now have

In rectangular coordinates:

The equation separates to give:

This indicates that the direction of A will be the same as that of the current to which it is associated.

(not so simple in the 

other coordinate systems)

The vector field, A, existing in all space, is sometimes described as being a “fuzzy image”
of its generating current.  



Expressions for Potential

Consider a differential elements, shown here.  On the left is a point charge represented

by a differential length of line charge.  On the right is a differential current element.  The setups

for obtaining potential are identical between the two cases.  

Line Charge Line Current

Scalar Electrostatic Potential Vector Magnetic Potential



General Expressions for Vector Potential

For large scale charge or current distributions, we would sum the differential 

contributions by integrating over the charge or current, thus:

and 

The closed path integral is taken because the current must

close on itself to form a complete circuit.

For surface or volume current distributions, we would have, respectively:

or

in the same manner that we used for scalar electric potential.



Example

We continue with the differential current element as shown here:

In this case

becomes at point P:

Now, the curl is taken in cylindrical coordinates:

This is the same result as found using the Biot-Savart Law (as it should be)



End of the Lecture
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