Module 4

Magnetic Forces: Force on a moving charge, differential current
elements, Force between differential current elements, Numerical
problems (Text: Chapter 9.1 to 9.3).

Magnetic Materials: Magnetization and permeability, Magnetic
boundary conditions, The magnetic circuit, Potential energy and
forces on magnetic materials, Inductance and mutual reactance,
Numerical problems (Text: Chapter 9.6 to 9.7).

Faraday’ law of Electromagnetic Induction —Integral form and Point
form, Numerical problems (Text: Chapter 10.1)



MAGNETIC FORCES, MATERIALS, AND INDUCTANCE

FORCE ON A MOVING CHARGE

In an electric field the definition of the electric field intensity shows us that the force on a charged particle is

F = QF

The force is in the same direction as the electric field intensity (for a positive charge) and is directly proportional to both E and Q. If the
charge is in motion, the force at any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found experimentally to experience a force whose magnitude is
proportional to the product of the magnitudes of the charge Q, its velocity v, and the flux density B, and to the sine of the angle between

the vectors v and B. The direction of the force is perpendicular to both v and B and is given by a unit vector in the direction of v A B. The
force may therefore be expressed as

F=0vxB

The force on a moving particle due to combined electric and magnetic fields is obtained easily
by superposition,

F=QE+v xB)

This equation is known as the Lorentz force equation, and its solution is required in determining electron orbits in the magnetron, proton

paths in the cyclotron, plasma characteristics in a magnetohydrodynamic (MHD) generator, or, in general, charged-particle motion in
combined electric and magnetic fields.

FORCE ON A DIFFERENTIAL CURRENT ELEMENT

The force on a charged particle moving through a steady magnetic field may be written as the differential force exerted on a differential
element of charge,

IFHQ v x B J=ppy i@ pudv  dF = p,dvv x B :




dF = J x Bdv Jdv—=KdS = IdL

dF = K x BdS the Lorentz force equation may be applied to surface current density,

dF = I dL x B or to a differential current filament,

F:%IJLXB:—I%BXJL

One simple result is obtained by applying (7) or (10) to a straight conductor in a uniform magnetic field,

F=17L xB
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FORCE BETWEEN DIFFERENTIAL CURRENT ELEMENTS

The magnetic field at point 2 due to a current element at JH lrl .*:“_4 X AR12
point 1 was found to be 4JTR%2
the differential force on a differential current element is dF = [ dL x B
the differential amount of our differential force on element 2 5
as ff{fﬂ*g) = fgfng X ffBg
we obtain the force between two differential current elements,
. I
d(dFy) = pro——=—dLy x (dLj x ag12)
47 Ry,
. LD [ dL; x agp>
. o Fr, = [ dL> x =
The total force between two filamentary circuits is < 47 < RT”
obtained by integrating twice: _ -
f1fg dpy X f?’Ll
47 J | R{,
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MAGNETIZATION AND PERMEABILITY

Surface defined

/ by closed path

m = /dS

FIGURE 9.9
A section dL. of a closed path along which magnetic dipoles have been partially aligned by some external

magnetic field. The alignment has caused the bound current crossing the surface defined by the closed path
to increase by nldS - dL. amperes.
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Let us begin by defining the magnetization M in terms of the magnetic
dipole moment m. The bound current /; circulates about a path enclosing a
differential area dS, establishing a dipole moment (A-m?),

m = [,dS

If there are n magnetic dipoles per unit volume and we consider a volume Aw,
then the total magnetic dipole moment is found by the vector sum

nivw

My = » M (19)
i=1

Each of the m; may be different. Next, we define the magnetization M as the
magnetic dipole moment per unit volume,

nAv B
M Iim — — M- —-dL=1Ir
= lim — Z m; I 35\1 dL o 1
B | is the total free current enclosed by the closed path.
Ip =1, + 1

B B

[ =1y — 1 = ——M| -dL H=—-M B = uo(H+ M)
o o
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Utilizing the several current densities, we have

fh:%‘Jhwa ?x}-’l:J;,
S B
Vx—=Jr
Ir = %‘ Jr - dS 0
A
I=@®J-dS
ﬁ f VxH=J
a magnetic susceptibility m can be defined: M = y,,H
B = po(H+ x»H)
g =1+
— noprH MR Am
is defined as the relative permeability R . We next define L= [LOJLR B = uH

the permeability :
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MAGNETIC BOUNDARY CONDITIONS

where we assume that the boundary may carry a
surface current K whose component normal to the
plane of the closed path is K. Thus

Bn2 = Bni H,—-Hp=K

FIGURE 9.10
A gaussian surface and a closed path are constructed at the boundary between media 1 and 2, having
permeabilities of ;) and p», respectively. From this we determine the boundary conditions By, = By» and

8/3 ;%OEOHQ = K, the component of the surface curfefit density directed into the page. 8



THE MAGNETIC CIRCUIT

B
the corresponding relationship between the mmf and the VindB = f H - JL
magnetic field intensity, A

we see that the magnetic flux density will be the analog of the current

J = oLk density,

the total magnetic flux flowing through the cross
section of a magnetic circuit: D = ‘ B-dS

we shall now define reluctance as the ratio of the magnetomotive force to
the total flux; thus

I, — ®R R — “’ﬁ
wS

Finally, let us consider the analog of the source voltage in an electric circuit.

We know that the closed line integral of E 1s zero,

%an’L:()

In other words, Kirchhoff’s voltage law states that the rise in potential through
the source is exactly equal to the fall in potential through the load. The expres-

sion for magnetic phenomena takes on a slightly different form,

8/31/2020 % HVYL = liotal

%H'dL = NI
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Let us try out some of these ideas on a simple magnetic circuit. In order to
avold the complications of ferromagnetic materials at this time, we shall assume
that we have an air-core toroid with 500 turns, a cross-sectional area of 6 cm?, a
mean radius of 15 ¢cm, and a coil current of 4 A. As we already know, the
magnetic field is confined to the interior of the toroid, and if we consider the

closed path of our magnetic circuit along the mean radius, we link 2000 A-t,
l/’_pn? source — 2()“0 A'[

Although the field in the toroid 1s not quite uniform, we may assume that it is for
all practical purposes and calculate the total reluctance of the circuit as

d 27(0.15)

R =—=
1S 47107 x 6 x 102

= 1.25x 10° A-t/Wb

Thus

Vins 2000

W 1.25x 10°
This value of the total flux is in error by less than % percent, in comparison with
the value obtained when the exact distribution of flux over the cross section 1s
used.

b — —1.6x107° Wb

Hence

_O Lo G0 T
TS T ex10 U

and finally,

B 2.67x 1073
H=—= = 2120 A-t
w 4z10-7 /m
As a check, we may apply Ampere’s circuital law directly in this symmetrical
problem,

#p2mr = NI 10



and obtain

NI 500 x 4
Hy =—=— = 2120 A/m
2ar  6.28 x 0.15
at the mean radius. 2
A
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FIGURE 9.11 A hysteresis loop for silicon steel. The
Magnetization curve of a sample of silicon sheet steel. coercive force H. and remnant flux den
. -
sity B, are indicated.
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POTENTIAL ENERGY AND FORCES ON MAGNETIC MATERIALS

l an expression for the energy in an electrostatic field by establishing the work necessary
Wg = _f D - E v tobring the prerequisite point charges from infinity to their final resting places. The
vol general expression for energy is
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1
. . W H — = B-Hdv
The total energy stored in a steady magnetic 2 vol

In spite of the fact that these results are valid only for linear media, we may use them to calculate the forces on
nonlinear magnetic materials if we focus our attention on the linear media (usually air) which may surround them.
For example, suppose that we have a long solenoid with a silicon-steel core. A coil containing n turns/m with a
current | surrounds it. The magnetic field intensity in the core is therefore nl A t/m, and the magnetic flux density

can be obtained from the magnetization curve for silicon steel. Let us call this value Bst .

| B 2 ¢
AWy = FdlL = =25 dL o BuS
2 1o 210

If, for example, the magnetic field intensity is sufficient to produce saturation in
the steel, approximately 1.4 T, the force is

F=1780x10°S N
or about 1131bs/in’.

INDUCTANE AND MUTUAL INDUCTANCE

We now define inductance (or self-inductance) as the ratio of the N®
total flux linkages to the current which they link, L= _f
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Let us apply (49) in a straightforward way to calculate the inductance per meter length of a coaxial cable of inner
radius a and outer radius b. We may take the expression for total flux developed as Eq. (42) in Chap. 8,

As an example of the use of flux and flux density in magnetic fields, let us

wold . b find the flux between the conductors of the coaxial line of Fig. 8.8a. The mag-
n —

P =

27 a netic field intensity was found to be
Hqg,:z;—p (a<p<b)
and therefore
B = uyH = ;Tﬂ;a¢

The magnetic flux contained between the conductors in a length d 1s the
flux crossing any radial plane extending from p = ato p = b and from, say, z = 0

toz=d
d
. igf
C[?J:fSBwfz’S:f 231*,03';& dpdzag
or
Id |
o =42 (42)
2 a

This expression will be used later to obtain the inductance of the coaxial

}lc}ﬂ%lﬂl%%l{)ﬂ line.
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the inductance rapidly for a length d, ,Uuﬂd b L b
piaty g L In— H L ——In— H}/m

©®)

FIGURE 8.8
(a) Cross section of a coaxial cable carrying a uniformly distributed current / in the inner conductor and

—1I in the outer conductor. The magnetic field at any point is most easily determined by applying Ampere’s
circuital law about a circular path. (b) Current filaments at p = p;. ¢ = £¢;, produces H, components

which cancel. For the total field, H = Hya,.

K=K,a,atp=py-a,z=0

H= Zxﬂp a, (well inside toroid)

H=K, ”°p‘ ? a4 (inside toroid)

H=0 (outside)
(a) (b)

FIGURE 8.12
(a) An ideal toroid carrying a surface current K in the direction shown. (b) An N-turn toroid carrying a
8/31/2020 filamentary current /. rﬁ% r{g



In the problem of a toroidal coil of N turns and a current 7, as shown in
Fig. 8.12h, we have

NT
By = O

2P

If the dimensions of the cross section are small compared with the mean radius of
the toroid pg then the total flux is

NIS
o _ Mo

21

where S 1s the cross-sectional area. Multiplying the total flux by N, we have the
flux linkages, and dividing by 7, we have the inductance
i N3S

L
27T Py

(51)

An equivalent definition for inductance may be made using an energy point of view,

where 7 is the total current flowing in the closed path and Wy 1s the energy in the
magnetic field produced by the current. After using (52) to obtain several other

reneral expressions for inductance, we shall show that it 1s equivalent to (49). We
H g p ]
L = 72 first express the potential energy Wy in terms of the magnetic fields,
f B-Hdv
Jvol
[ = 2© 7 (53)
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FIGURE 9.14

A portion of a coil showing partial flux
linkages. The total flux linkages are
obtained by adding the fluxes linking
each turn.
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and then replace B by V x A,

1
L=— H - (V x A)dv
I vol
The vector identity
V-(AxH =H-(VxA)—A-(VxH) (54)
may be proved by expansion in cartesian coordinates. The inductance 1s then
1
L:_z[f ?~(A><H)a‘u+f A-{?xH)a’w} (59)
I vol vol

After applying the divergence theorem to the first integral and letting V.x H = J
in the second integral, we have

1
L :ﬁ[%(f\ X H)*dS—i—f A*Jff’f;}
S vol

The surface integral 1s zero, since the surface encloses the volume contain-
ing all the magnetic energy. and this requires that A and H be zero on the
bounding surface. The inductance may therefore be written as

]
L:—zf A-Jdv (56)
1 vol
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i l ] 1 i dL
A:f dv - Hd » [ = — % - I dL
o 4R L —!—zfml(fml 431‘!?{{{;) -Jdv 72 ( 431‘1{‘) ¢
/L.
Ef(f)
T

To obtain our original definition of inductance (49) let us hypothesize a
uniform current distribution in a filamentary conductor of small cross section so
that J dv in (56) becomes I dL,

L:%%Aw& (59)
] 1 P
— - . L:— B!fS L:—
L Ifs{vxg\) ds !fs ( F

If we now let the filament make N identical turns about the total flux, an
idealization which may be closely realized in some types of inductors, the closed
line integral must consist of N laps about this common path and (60) becomes
N®

I

L= (61)
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The flux @ 1s now the flux crossing any surface whose perimeter 1s the path
occupied by any one of the N turns. The inductance of an N-turn coil may
still be obtained from (60), however, if we realize that the flux 1s that which
crosses the complicated surface® whose perimeter consists of all N turns.

The interior of any conductor also contains magnetic flux, and this flux
links a variable fraction of the total current, depending on its location. These flux
linkages lead to an internal inductance, which must be combined with the external
inductance to obtain the total inductance. The internal inductance of a long
straight wire of circular cross section, radius a, and uniform current distribution
1S

i
Lgint — ﬁ H,/ITI

the mutual inductance between circuits 1 and 2, - N2¢'12
M12, in terms of mutual flux linkages, 11
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where E12 signifies the flux produced by 11 which links the path of the filamentary current 12, and N2 is the number
of turns in circuit 2. The mutual inductance, therefore, depends on the magnetic interaction between two currents.
With either current alone, the total energy stored in the magnetic field can be found in terms of a single inductance,

or self-inductance; with both currents having nonzero values, the total energy is a function of the two self-
inductances

and the mutual inductance.

1
L1,

/ {HHI . Hj)d’t‘ .-'1413 = ;'F'Vfgl
vol

I /
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Faradays Law

* Faradays law is stated as

o
cmfz—ﬁ V (1)

Equation (1) implies a closed path, although not necessarily a closed conducting
path; the closed path, for example, might include a capacitor, or it might be a
purely imaginary line in space. The magnetic flux is that flux which passes
through any and every surface whose perimeter is the closed path, and dd/d!
is the time rate of change of this flux.
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A nonzero value of d&/di may result from any of the following situations:

* (a) time changing flux linkage a stationary
closed path.

* (b) relative motion between a steady flux a
closed path.

* (c) a combination of the above two cases.



If the closed path is that taken by an N-turn filamentary conductor, it 1s

often sufficiently accurate to consider the turns as coincident and let

dd
f=—-N—
em =

(2)

where @ 1s now interpreted as the flux passing through any one of N coincident

paths.

We need to define emf as used in (1) or (2). The emf is obviously a scalar,
and (perhaps not so obviously) a dimensional check shows that it is measured in

volts. We define the emf as

cmfzﬁE-dL
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Replacing @ in (1) by the surface integral of B, we have

d
Emfzj!;E-sz——fB-dS (4)
di [

We first consider a stationary path. The magnetic flux is the only time-
varying quantity on the right side of (4), and a partial derivative may be taken

under the integral sign,
emf=%E-dL=—f£-dS (5)
g Ot
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f[‘i’xE ds =— f—-u’&
§ 50

where the surface integrals may be taken over identical surfaces. The surfaces are
perfectly general and may be chosen as differentials,

(V x E). JE,_—@- S
and
vxE= -2 6)
o1
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This 15 one of Maxwell's four equations as written in differential, or point,
form, the form 1n which they are most generally used. Equation (5) 1s the integral

form of this equation and is equivalent to Faraday's law as applied to a fixed
path. If B is not a function of time, (5) and (6) evidently reduce to the electro-
static equations,

fE dL =10 (electrostatics)

and

VxE=0 (electrostatics)
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