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Syllabus

« Maxwell’s equations Continuity equation, Inconsistency of Ampere’s law with continuity
equation, displacement current, Conduction current, Derivation of Maxwell‘s equations in
point form, and integral form, Maxwell’s equations for different media, Numerical
problems (Text: Chapter 10.2 to 10.4)

 Uniform Plane Wave: Plane wave, Uniform plane wave, Derivation of plane wave
equations from Maxwell’s equations, Solution of wave equation for perfect dielectric,
Relation between E and H, Wave propagation in free space, Solution of wave equation for
sinusoidal excitation, wave propagation in any conducting media (y, a, B, 1) and good
conductors, Skin effect or Depth of penetration, Poynting‘s theorem and wave power,
Numerical problems. (Text: Chapter 12.1 to 12.4)



Displacement Current

&1 The fundamental postulate for electromagnetic induction assures us that a time-varying
magnetic field gives rise to an electric field.

Time-varying case: VxE=0 ) VXE:_(?B

t
VxE=-2 1 VxH=3, @
ot
V-sz, 3 V.B=0. 4)
&1 The mathematical expression of charge conservation is the equation of continuity :
= 0
v.y=- (5)

a Divergence of Eq. (7-47b): V.(VxH)=0=V.J, (7—49) (nullidentity)

since Eq. (7 — 48) asserts that V- Jdoes not vanish in a time-varying situation,
Eqg. (7 —49) is, in general, not true.



First of all, a term Opl ot must be added to the right side

—

V(Vxﬁ):U:VJ+%§. (6)

Using Eqg. (3) in Eq. (6), we have

V(Vxﬁ):V(3+%§)

which implies that

—_—

— = 0D
VxH=J+—.
ot (7)
Eq. (7) indicates that a time-varying electric field will give rise to a magnetic field, even in
the absence of a current flow.
The additional term 5D/ &is necessary to make Eq. (7 — 52) consistent with the principle of
conservation of charge.

The term 55 / otis called displacement current density.



Maxwell’s Equations in Point Form

VXE:_%’
VxH =340,
V-D=p,

V.-B=0

(a)

(b)

(c)

(d)

They are known as Maxwell's equations.



INTEGRAL FORM OF MAXWELL’S EQUATIONS.

&1 The four Maxwell’s equations in (a, b, c, d) are differential equations that are valid at
every point in space.

In explaining electromagnetic phenomena in a physical environment we must deal with
finite objects of specified shapes and boundaries.

It is convenient to convert the differential forms into their integral-form equivalents.

&l We take the surface integral of both sides of the curl equations over an open surface S
with contour C and apply Stokes’s theorem to obtain

§CE-di=—L%—'t3-d§ @)
fodi-[3+Dyes o
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&1 Taking the volume integral of both sides of the divergence equations over a volume V
with a closed surface S and using divergence theorem, we have

§SB-d§:jvpdv ©)

§S§-d§=0. (d)

The set of four equations in (a, b, ¢, d) are the integral form of Maxwell’s
equations.
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Maxwell’s Equations in Diffrential and Integral
Form

& Maxwell’s Equations

Differential Form Integral Form Significance
VXE:—G—B §E-di:—d—q} Faraday’s law
ot c dt
vxﬁ:3+@ §ﬁ.di:|+ a_Ddg Ampere’s circuital law
ot c s ot
V-sz SB-dg=Q Gauss’s law
V.B=0 4}@ .ds=0 No isolated magnetic charge




PROPAGATION & REFLECTION OF PLANE WAVES

Will discuss the effect of propagation of EM wave in four medium : Free

space ; Lossy dielectric ; Lossless dielectric (perfect dielectric) and
Conducting media.

Also will be discussed the phenomena of reflections at interface between
different media.

Ex : EM wave is radio wave, TV signal, radar radiation and optical wave in
optical fiber.

Three basics characteristics of EM wave :

- travel at high velocity
- travel following EM wave characteristics

- travel outward from the source

These propagation phenomena for a type traveling wave called plane wave
can be explained or derived by Maxwell’s equations.
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ELECTRIC AND MAGNETIC FIELDS FOR PLANE WAVE

From Maxwell’s equations :

vnE_ OB __ oF
ot ot
<~xH =J+4 e zj—l—ga—E

EMW
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Assume the medium is free of charge : Py = 0,d =0

__ OH
V<E =-1u——
ot
Vxﬁzg—aE
ot
VeD =0
VeB =0

From vector identity and taking the
curl of (1)and substituting (1) and (2)

Vx(VxE)=V(VeE)-V°E
where V(VeE)=0

8/31/2020

L)
(2)
(3)
(4)
=>V x(-ygj =-V°E

_ o _
—V°E = u—(V xH
uat(Vx )

_ O°E
. V%E = ue
# ot?

e Helmholtz's equation for electric field
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— Similarly in the same way, from
o°E
VE = LE vm= vector identity and taking the curl of
ot? (2)and substituting (1) and (2)
In Cartesian coordinates : —
V?H = gaZH Am~
82E+62E+82E _ﬂgazE —HETo
ox°  oy* oz° ot’
Assume that :
(i) Electric field only has x component
(i) Propagate in the z direction
O°E, O°E,
— ﬂg 5
oz° ot
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X

oz°

O°E
ot?

X

The solution for this equation :

To find H field :

E, =E_ cos(wt- fz)+ E, cos(awt + [2)

Incidence wave propagate in +z

direction

Reflected wave propagate in -z
direction

VXE =- 3_H
ot
VxE = ok, y'aEX z
oz oy
— {,BE: sin(at - Bz) - PE, sin(ot +,BZ)}§’

EM
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On the right side oH oH oH OH
ﬂ{ X 2 + y / A}

equation : -l — =~
ot ot ot ot

Equating components on both side =y component

oH

- 1 aty _ {ﬁE: Sin(a)’[ -ﬁz) -ﬁE)_( Sin(a)t +ﬂz)}

-H, =| PE« sinot - fz)dt - | PEx_sin(at + Bz) dt
' 7 7

= A E. cos(wt - fz) + s E.  cos(aot+ £2)

oy, oy,
H, = s E. cos(wt - 52) v E. cos(wt+ f2)
y X X
oy, oy,

= H cos(wt - Bz)-H, cos(at + pz)
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Hence :

E, =E, cos(wt- fz)+ E, cos(at + fz)

H =H/cos(awt-pBz)-H, cos(wt+ pz)

These equations of EM wave are called PLANE WAVE.

Main characteristics of EM wave :
(i) Electric field and magnetic field always perpendicular.

(i) NO electric or magnetic fields component in the direction of
propagation.

(i) E xH will provides information on the direction of propagation.

EMW
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PLANE WAVE IN LOSSY DIELECTRICS — IMPERFECT

DIELECTRICS

o #0; U=, ;&= E¢,

Assume a media is charged free , p, =0

Vxﬁ:j+a—D=(O'+ ja)g)E
ot
_ 6B -
VXE — - — - (2)
o JoH

(1)

Taking the curl of (2) :

Vxngz-ja),u(Vxﬁ)

EMW
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From v

8/31/2020

ector identity

V xV x A :V(V ° K)-VZK

V(V eE)-V2E =- joudo + joe)E

V°E - ja),u(a+ ja)g)E =0

V°E-»°E =0

Where :

y? = joulo+ jos)
= -0’ Uus+ jouo

Yy = propagation constant

(4)

Vxﬁ:j+—aa?:(a+ja)8)ﬁ (1)
_ 5B/

VxE=-2 . )

X P JopH (2)

VxVsz—ja),u(Vxﬁ)

Equating (4) and (5) for Re and
Im parts :

o’ -p =-0"us (Re) (6)

2a = ouo (Im) (7)

Define :

y=a+|)p
y2=(a?- %)+ 2jap

(ol W
LIVl

LAL
\'AY
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Magnitude for (5) ;
7i=a’+p* ()

Magnitude for (4) ;

Add (10) and (6) :

77| = (- @) +(@opf

= o @’e + o2

)

Equate (8) and (9) :

a’+ fB° = a),u\/a)25+0'2

(10)

a’-f° =-w"us (Re) (6)

Hence :

20° = a),u\/a)25+0'2 -0’ ue

2

o
:a)z,ug\/1+ >
w°E

-0’ s

2 2
o2 =L H \/1+ 7 1

2 w’e’

ue o’
a=w_|—|,/1+——-1| Np/m (11)

e

o is known as attenuation constant as a
measure of the wave is attenuated while
traveling in a medium.

EMW
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Substract (10) and (6) :

28% = o w’e + 0% + @ e

2
,B—a)\/’u—g{\/l+ ° +1} rad/m (12)
2 w°E

B is phase constant

If the electric field propagate in +z direction and has component x, the equation
of the wave is given by :

E(z,t) = E,e™ cos(wt - Bz)R| w3

And the magnetic field :

H(z,t)=H,e®* cos(a)t -pz-6, )37 (14)
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_E
ul

where; |H 0 (15)

E(z,t) = E;e™ cos(wt - fz)R (4
H(z,t)=H,e* cos(a)t -pz-6, ))7 (15)

Intrinsic impedance :

o+ Jwe

n:\/ O o260, =nfe" () us

where ; - m

2 1/4

tan26, =—, 0< @, < 45°

Conclusions that can be made for the wave propagating in lossy dielectrics

material :

(i) E and H fields amplitude will be attenuated by e«

(ii) E leading H by 977

-z

EMW
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o 0
, tan20, =—, 0= 6, =45 (17)

)2:|1/4 WE

Wave velocity ; 7] = ple
1+ 2
U=wlp ;, A=2x1p { (we
Loss tangent ;
J _ oE
U = i=tan6? (18)

‘Jd‘ - ‘ja)ef‘ - wE

From (17) and (18)
0 =20,

Loss tangent values will determine types of media :

tan 8 small (0 / we <0.1) — good dielectric — low loss

tan 6 large (0 /we >10) - good conductor — high loss

Another factor that determined the characteristic of the media is operating frequency. A
medium can be regarded as a good conductor at low frequency might be a good

dielectric at higher frequency.

EMW
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E (z,t) = E,e™™ cos(wt - Sz)X

= E e @elletA)g

H(z,t)=H, e* Cos(a)t -pZ-0, )37

— EO e'azej(wt_ﬂz_eﬂ)

= y
77|

(14)

(15)

Graphical representation of E field in lossy dielectric

E, * E(z,t) = E,e™ cos(at - fz)X

22
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PLANE WAVE IN LOSSLESS (PERFECT) DIELECTRICS

Characteristics:

c=0,e=¢¢,, =1,

(19)

Substitute in (11) and (12) :

2
a:w\/“;[ 142 -1} Np/m (12)

&

a=0, f[=wue 20

u

27 (21)

_ O 1 P
B Jus B

7= \/ZL 0° (22)
&

ﬂ—a)\/ﬂ;{ 1+

2
(02

e’

+1] rad/m (12)

12
n= J _ﬂ
o+ joe

=26, =", (@

location.

The zero angle means that E and H fields are in phase at each fixed

EMW
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PLANE WAVE IN FREE SPACE

Free space is nothing more than the perfect dielectric media :

U=C~3x10°m/s

n=n,= /ﬂ =120z Q
€o

EMW

a=0, f[=w.ue
10, 1 27
u==S=—~-_, 1=
b \ue p
n=,=20° (22)
&

(20)

(21)

=, =47x10" H/m

1

c=¢& =8854x10" ~—x10° F/m
° 367
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The field equations for E and H obtained :

E = E, cos(wt - fz)X

H

_5 cos(awt - pz2)y

o

(27)

(28)

E(z,t) = E,e™ cos(awt - fz)R| (14

H(z,t)=H,e* cos(a)t -pz-6, ))7

E and H fields and the direction of propagation :

EMW

(15)
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PLANE WAVE IN CONDUCTORS

In conductors :

With the characteristics :

O >> @E

— —»y O

e

O ~>®,&=Eg, [h= Lofl,  (29)

Substitute in (11 and (12) :

a=[f= %zw/ﬂf,ua

n:‘/%445o
o

(30)

E leads H by 45°

The field equations for E and H obtained :

E = E;e” cos(wt - S2) K (32)

L1 Eo - 0\

H=—e"cos(wt-fz-45")y
7o

EMW

(31)

(33)

2
a=a 2| 1+-Z -1\ Np/m (12)
2 wE

()

2
ﬂ—w\/“;[ 1+ fz+1] rad/m (12)

26



8/31/2020

. . — Y 1 -0z
It is seen that in conductors andE  wavkd are attenuated by e

From the diagram i:0 2ferred to as the skin depth. It refers to the amplitude of

the wave propagate to a conducting media is reduced to from its initial
value.
In a distance : Eoe'“5 = Eoe'l It can be seen that at higher
1 frequencies §decreasing.
~o=1la=
Mo | (34
X
EO/

EMIW
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POWER AND THE POYNTING VECTOR

vxE:-yi—T (35)

Vxﬁ=o§+ga—E (36)
ot

Dot product (36) with E
EO(VX ﬁ):o'E2 + Eogaa—lf (37)

From vector identity:

Vo(z\x §)= go(sz\)-Ko(ng) (38)

H.(VXE)+Vo(H>< E):0E2+I§05§ (39)

8/31/2020 EMW

Change Z\ — H, B :irt:f,37) and use (38) , equation (37) becomes :
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HO(VXE)+V0(H

xE)=cE*+Eesc— (39
) o

_  JE

t

And from (35):

He (VxE) He -,ua—H =-EEH0H (40)

ot 2 ot
Therefore (39) becomes:
2 _

MM G ExH)=oE?+Eesl (| where

2 ot at Ve(HxE)=-ve(ExH)

Integration (41) throughout volume V :

JV-(EXI?)JIV=

7,
ot

-— [18E2+;L1H }dv IGE dv (42)

EMW
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IVO(Exﬁ)jV: % [15E +;uH }dv jO‘E dv (a2)

\Y

Using divergence theorem to (42):

YT o0 r|1l 1
§(ExH)edS =- BT uH® - jaE dv  (43)
S ot 2
A - > - ——X 4
Y Y Y
Total energy flow The decrease of the energy Dissipated
leaving the volume densities of energy stored in the ohmic power

electric and magnetic fields

Equation (43) shows Poynting Theorem and can be written
as :

w=ExH W/m’

EMW 30
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Poynting theorem states that the total power flow leaving the volume is equal to
the decrease of the energy densities of energy stored in the electric and
magnetic fields and the dissipated ohmic power.

The theorem can be explained as shown in the
diagram below :
Output power
o]
Ohmic losses

7 =R
rry s

Stored electric field Stored magneti

Input power

EMW
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Given for lossless dielectric, the electric and magnetic fields are :

E = E, cos(wt - fz)X

H = 5cos(a)t - 5Z2)Y
n

The Poynting vector becomes:

w=ExH W/m’
2

o= = cos? (at - f2)
]
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To find average power density :

Integrate Poynting vector and divide with interval T=1/f :

1 EZ2
P .= _f 0 cos®(wt — Bz)dt
T3 7
1 EZ |
= 1+cos(2wt -2 t
T g[ ( sy
T
_ 1 K t+isin(2a)t—2,6’z)
2T n$ 2w
2
‘-Pave=iE° W / m?
2 1

T

0

2
Average power. P i E— S (VV)

through area S : ave

8/31/2020 2 Elm
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Given for lossy dielectric, the electric and magnetic fields are :

E = E,e® cos(wt - fz)X
E

I|

= ““cos(at-pz-0,)y
770

The Poynting vector becomes:

2

o= E' o cos(awt - Bz) cos(awt - 32
7

-0,)

Average power :

2
P EE—e “ cosé
2 n

ave
7

EMW
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